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Riassunto

Questa dissertazione è dedicata principalmente allo studio di uno tipo

di problema di Ottimizzazione Combinatoria, il problema di Multicast e

di alcune sue varianti. Dato un grafo G = (V,E) e un sottoinsieme R

di elementi dell’insieme dei nodi V , il problema di Multicast consiste nel

determinare un sottoinsieme connesso T dell’insieme degli archi che ricopra

tutti i nodi di R (usando eventulamente anche dei nodi nel complementare

di R) e che minimizzi una opportuna funzione obiettivo che rappresenta il

costo di connessione.

La maggior parte dei risultati presentati riguarda dei particolari tipi di

reti, le reti Ad-Hoc senza fili. I nodi di queste reti sono apparecchi elettro-

nici (sensori, computer, radio trasmettitori etc.) che inviano dei segnali ra-

dio senza utilizzare delle infrastrutture fisse e senza avere un’amministrazione

centralizzata. Il problema di Multicast, in questo caso, è quello di assegna-

re una potenza agli apparecchi della rete in modo che gli elementi di un

insieme R ricevano i segnali inoltrati da un particolare nodo della rete detto

sorgente e che la somma delle potenze assegnate sia minima. Una delle

caratteristiche di una trasmissione radio consiste nel fatto che una qualsia-

si trasmissione può essere captata da tutti gli apparecchi che si trovano nel

raggio di trasmissione dell’emittente, e quindi al contrario delle reti con

fili, pagando il costo di un unico arco e dunque di una sola trasmissione è
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possibile raggiungere e connettere più nodi nello stesso tempo.

In particolare, i principali contributi di tale dissertazione possono essere

sintetizzati come segue:

• Si propone una formulazione di Set Covering per il problema di mini-

ma potenza in reti Ad-Hoc senza fili che nel confronto con alcune

delle formulazioni presenti nella letteratura risulta avere il migliore

rilassamento lineare e si propongono due metodi di risoluzione del

problema che sfruttano una possibile riduzione del problema stesso

sulla base delle proprietà del modello di Set Covering.

• Si presentano, inoltre, due euristiche per generare delle disuguaglianze

valide appartenenti alla prima chiusura di Chvàtal del politopo di Set

Covering cos̀ı da rafforzarne il rilassamento lineare. Nel caso di reti

senza fili con un limitato numero di nodi, si confrontano il valore

ottimo e i tempi di soluzione del rilassamento lineare del problema

con l’aggiunta dei vincoli generati dalle euristiche, con il valore ot-

timo e i tempi di esecuzione del rilassamento lineare del problema con

l’aggiunta dei vincoli della prima chiusura di Chvàtal del politopo di

Set Covering.

• Inoltre, viene proposta una originale variante del problema di Multi-

cast in cui agli apparecchi elettronici è assegnata una probabilità di

fallimento nella ricezione e trasmissione dei messaggi. Sono infatti pre-

sentate nella dissertazione tre formulazioni di programmazione lineare

intera mista che modellizzano la richiesta di connessione dell’insieme

R, formato da tutti i nodi della rete eccetto la sorgente, con un livello

di affidabilità fissato. La soluzione ottima di questo problema non

solo fornisce una connessione, ma in realtà permette di individuare

una connessione robusta di tutti i nodi della rete con la sorgente.
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• Infine, un’ altra variante del problema di Multicast, considerata nella

dissertazione, è quella in cui non si richiede solo una connessione

dell’insieme R con la sorgente con il minimo costo (o peso) totale,

ma assegnando a ogni arco del grafo anche dei tempi di percorrenza

dell’arco stesso, si affronta il problema di trovare un albero di costo

minimo che connetta i nodi di R con la sorgente con l’ulteriore vincolo

che i terminali in R siano raggiunti entro un tempo limite prestabilito.

Per questo problema, nel caso di reti con fili, sono proposte quattro

formulazioni di programmazione lineare intera mista insieme a delle

tecniche di preprocessamento del grafo per ridurne il numero sia di

nodi che di archi. Le quattro formulazioni sono state utilizzate per

risolvere problemi di Steiner Tree proposti nella libreria SteinLib [48]

con i tempi di percorrenza sugli archi generati in modo casuale in

maniera sia correlata che non correlata con i costi degli archi.

Classificazione AMS 2000: Primaria: 90C27, 90C11 Secondaria: 90C35,

90B10, 68R10.

Parole chiave: Ottimizzazione Combinatoria; problema di Multicast; Pro-

grammazione lineare intera mista; problema di Set Covering; reti Ad-Hoc

senza fili; problema di Broadcast probabilistico; problema di Steiner Tree

con vincoli di ritardo; Preprocessamento.





Abstract

This dissertation is devoted, mainly, to a specific class of Combinatorial

Optimization problems: the Multicast problem and some related variants.

Specifically, given a graph G = (V,E) and a subset R of elements of the set

of the nodes V , the Multicast problem consists in determining a connected

subset T of the set of the edges, whose elements connect all the nodes

belonging to R (using possibly some nodes not in R) in such a way that an

objective function representing the cost of the connection is minimized.

The major part of the presented results is devoted to a particular type

of network, the Ad-Hoc wireless network. The nodes of these networks are

electronic devices (sensors, computers, radio transmitters etc.) which trans-

mit radio signals without using a fix infrastructure and without a centralized

administration. The Multicast problem, in this case, consists in assigning

a power to the devices of the network in such a way that the elements

belonging to the set R receive the messages originated from a particular

node of the network, called source, and the total amount of assigned power

is minimized. One of the peculiarity of a radio transmission is that every

signal forwarded by a node can be received by all the nodes placed in the

transmission range of the communication and, thus, contrary to the wired

network case, performing only one transmission and so paying the cost of a

single arc, it is possible to connect several nodes at the same time.
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In particular, we can summarize the main contributions of in this disser-

tation as follows:

• We propose a Set Covering formulation for the Minimum Power Multi-

cast problem in wireless Ad-Hoc networks, which results to be stronger

than certain formulations presented in literature and we propose two

exact methods for solving the problem making use of a possible re-

duction of the size of the problem which is based on the properties of

the Set Covering problem.

• We present also two heuristics for generating valid inequalities of

the first Chvátal closure of the Set Covering polytope and, thus, for

strengthening the linear relaxation of the formulation of the Mini-

mum Power Multicast problem. In the case of wireless networks with

a small number of nodes, we compare the optimum value and the

computational time for solving the linear relaxation of the problems

with the addition of the constraints generated by the heuristics with

the optimum value and the computational time occuring for solving

the linear relaxation of the problems with all the cuts belonging to

the first Chvátal closure of the Set Covering polytope.

• Moreover, an innovative variant of the Multicast problem is consid-

ered, in which to the devices of a wireless network is assigned a proba-

bility of failure in the reception and transmission of the messages. In-

deed, we present here three mixed integer programming formulations

for the problem of connecting the source with all the other nodes of

the network (R is the set of all the nodes of the network except the

source) with a reliability threshold. The solution, hence, not only

guarantees a connection, but in fact gives a robust connection of the

elements of the network with the source.
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• Finally, another variant of the Multicast problem, considered in the

dissertation, is the problem of finding not only a connection of a sub-

set R with a source with the minimum total cost (or weight) but,

assigned to each arc a delay, we deal with the problem of finding a

minimum cost arborescence connecting the source with the elements

of R with additional time limit constraints. For this problem, in case

of wired networks, four mixed integer programming formulations are

proposed together with a preprocessing procedure for reducing the size

of the problem. The four formulations with the preprocessing proce-

dure have been tested on some Steiner Tree problems proposed in the

SteinLib library [48], where the delay on the arcs have been randomly

generated in a correlated and non-correlated way with respect to the

costs of the arcs.

Mathematics Subject Classification 2000: Primary: 90C27, 90C11

Secondary: 90C35, 90B10, 68R10.

Keywords: Combinatorial Optimization; Multicast problem; Mixed in-

teger programming formulations; Set Covering problem; Wireless Ad-Hoc

networks; Probabilistic Broadcast problem; Delay-constrained Steiner Tree

problem; Preprocessing.
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Introduction

The Multicast problem is a Combinatorial Optimization problem whose

aim is to connect by wired or wireless links a set of required vertices at the

minimum cost. There are several contexts in which such a problem finds

its application, one of these is the Multicast routing in communication [66].

The main objective, in this case, is to ensure that an information generated

by a node of a network, called source, reaches a multicast group which is a

set of selected elements of the network, minimizing the usage of resources,

in particular the energy or the power employed in the communication.

The major part of the presented results is devoted to a particular type of

network, the Ad-Hoc wireless network (see e.g. [60], [72], [84]). The vertices

of these networks are electronic devices (sensors, computers, radio trans-

mitters etc.) which transmit radio signals without using a fix infrastructure

and without a centralized administration. This type of network is expected

to be used in several fields going from natural disasters to battlefields, where

the existing infrastructures are damaged or unusable.

The devices of an Ad-Hoc network are supposed to be stationary and

they are equipped with an omnidirectional antenna in such a way that

the signal is spread radially from the nodes. A device may communicate

with a single–hop, i.e. directly, with any other terminal which is located
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within its transmission range. In order to communicate with the terminals

placed out of this range a multi–hop communication has to be performed:

it simply consists in making use of intermediate devices, called routers, that

retransmit the received messages to the directly unreachable terminals ([72],

[84]).

A crucial issue in this context consists in assigning a transmission power

to each node in order to ensure the connectivity of the network while min-

imizing the total power expenditure over the network. Determining the

optimal transmission power for each node is, indeed, desirable since a high

power value will achieve a wide transmission range and, therefore, reach

many nodes via a direct link, but at the same time will require higher

consumption and will increase the interference level. On the other hand,

low energy value may isolate one or more nodes causing the network to

be disconnected. Both Cagalj et al. and Clementi et al. have shown that

the Multicast problem in wireless Ad-Hoc networks is an NP-hard problem

([13], [20]).

In case of Multicast problem in wired networks, we take into account a

Quality of Service in the routing of the communication. Indeed, in many ap-

plication [66] there may be the further request of delivering the information

generated by a source and directed to a set of destinations within a maxi-

mum delay. Naturally, the Quality of Service constraints and in the specific

the maximum delay constraints impose a restriction on an acceptable Mul-

ticast tree. Only recently the Delay-constrained Steiner Tree problem has

been object of study (see [49], [66]), indeed, with the developments of the

multimedia technology, the real-time applications need to transmit infor-

mation within a certain amount of time and so a message generated by one

source of the network has to reach a set of target devices for delivering the

same information in a fixed delay limit.
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The first chapter is a preliminary chapter in which all the concepts:

definitions, properties and problems that are used all along the dissertation

are presented.

With the second chapter, we begin to consider the Minimum Power Mul-

ticast problem in wireless Ad-Hoc networks. We present a Set Covering

formulation for the problem and we show that it is better than the formu-

lation proposed in [53] and better than two adaptations to the Multicasting

case of formulations proposed in [3] and in [60] for the Broadcasting problem

(where the Broadcasting problem is a particular Multicast problem in which

all the nodes of the network must be connected to the source). We propose

also two exact procedures for solving the problem that use the properties of

a Set Covering formulation and we present some computational results on

randomly generated graphs with size ranking from 5 to 100 nodes and an

increasing number of destinations.

In the third chapter, we study the properties of the Set Covering poly-

tope of the Multicast problem in wireless Ad-Hoc networks. Specifically, we

describe two heuristics for finding particular valid inequalities of the first

Chvátal closure in order to strengthen the linear relaxation of the formula-

tion. We compare the results on the improvement of the lower bounds ob-

tained by solving the linear relaxation of the formulation with the addition

of the constraints generated by these heuristics with the results produced

minimizing over the first Chvátal closure polytope [19].

In the fourth chapter, we deal with the Broadcasting problem in which

the minimization of the power cost and the achievement of a robust routing

are considered. Indeed, we take into account the possibility that the devices

may be subject to a temporary damage or a permanent failure and so they

are assigned a probability of being active. We propose three mixed integer

linear programming formulations whose optimal solution not only minimizes
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the total transmission power over the network, but also guarantees a certain

reliability level. The optimal solution provides a broadcasting structure

robust enough to guarantee, in case of failure of some terminals, a reliable

connectivity for the remaining terminals.

The study of a generalization of the Steiner tree problem is, instead, the

topic of the fifth chapter. In particular the Delay constrained Steiner Tree

problem is analysed, there, in wired networks. We present several valid

mixed integer programming formulations that provide a tree spanning the

source and the required nodes with the minimum cost and that satisfies a

maximum delay threshold. We compare the respective linear relaxations

of the formulations and we describe some preprocessing procedures to re-

duce the size of the problems. We present exact and approximate solution

procedures with some computational results.

At the end, there is an appendix in which we briefly define some of the

symbols used in the dissertation.



Chapter 1

Preliminaries

In this introductive chapter, we want to recall several basic definitions

and properties ([10], [64], [68], [77], [86]) that will be used in the subse-

quent chapters. A list of further notations can be found at the end of the

dissertation.

First of all, a Linear Programming problem (LP) consists in minimizing

or maximizing a linear function, called objective function, on a feasible

region defined by a series of linear constraints. An example of LP problem

in standard form looks like the following:

min cT x

s.t.

A x = b

x ≥ 0

(1.1)

where A is am×n real matrix with rankm, c is an n-dimensional vector, b an

m-dimensional vector and x an n-dimensional vector of decision variables.
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If the decision variables take only integer values, the problem:

min cT x

s.t.

A x = b

x ≥ 0

x ∈ Z
n

(1.2)

is an Integer Linear Programming (IP) problem. In particular, if all the

decision variables are restricted to 0−1 values, the problem is called Binary

Integer Programming (BIP).

If some, but not all the decision variables are integer, the problem:

min cT x+ dT y

s.t.

A x+By = b

x ≥ 0, y ≥ 0

x ∈ Z
n

(1.3)

is called Mixed Integer Programming (MIP) and B is a m × p matrix, d is

a p-dimensional vector and y is a p-dimensional vector of real variables.

1.1 Formulations

Definition 1.1.1. The feasible region of an LP problem (1.1) is the set

P = {x ∈ R
n
+ : Ax = b} which is a polyhedron, while the feasible region of

an IP problem (1.2) is the set S := P ∩Z
n. If the polyhedron P is bounded,

it is called polytope.
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Definition 1.1.2 (Relaxation of an IP problem). Given the IP problem

(1.2) with feasible region S, a problem of this type: min{cTx : x ∈ T ⊆ R
n}

is a relaxation of it if S ⊆ T .

Naturally, the optimal value of a relaxation of an IP problem is lower than

the optimal value of the IP problem and so it represents a lower bound for

the optimal value of the IP problem.

There are several possible relaxations of an IP problem, but in the fol-

lowing we will consider only the linear relaxation.

Definition 1.1.3 (Linear relaxation). The linear programming relax-

ation of an IP problem: min{cT x : x ∈ P ∩ Z
n} with formulation P =

{x ∈ R
n : Ax ≥ b} is the LP problem: min{cT x : x ∈ P}.

The linear programming relaxation can be, thus, obtained by eliminating

the restriction that the variables x need to be integer. For this reason, again,

the optimal value of the linear relaxation of an IP problem is a lower bound

of the optimal value of the IP problem itself.

Definition 1.1.4. Given two linear formulations P1 and P2 for an integer

problem:

(i) the formulation P1 is better than P2 if and only if P1 ⊂ P2,

(ii) the formulation P1 is equivalent to P2 if and only if P1 = P2,

(iii) if neither formulation is better than the other they are incomparable.

Definition 1.1.5 (Convex hull). Given a set S ⊆ R
n, the convex hull of S,

denoted by conv(S), is the set of all the possible finite convex combination

of elements of S, i.e. conv(S) := {x ∈ R
n : x =

∑k

i=1 αixi,
∑k

i=1 αi =

1, αi ≥ 0 ∀i ∈ {1, .., k}, for all {x1, .., xk} subsets of S}.
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Among all the possible linear relaxations of an integer programming prob-

lem, the best one is the convex hull of all its feasible points:

PI := conv(P ∩ Z
n) = conv({x ∈ R

n : Ax ≥ b, x integer}). (1.4)

Proposition 1.1.1. It holds that PI ⊆ P .

In Figure 1.1, the yellow polytope is the convex hull of a feasible set S

of integer points and it represents an ideal formulation for an IP problem

with feasible set S, while the polytope which is the union of the yellow and

green portions is a possible linear relaxation of the IP formulation.

Figure 1.1: The ideal formulation and a possible LP relaxation of an IP

problem

Definition 1.1.6 (Full–dimensional polyhedron). A polyhedron P =

{x ∈ R
n : Ax ≥ b} is full-dimensional if and only if dim(P ) = n, where

dim(P ) is the maximum number of affinely independent points of P minus

one.

In general, it is not trivial to give a complete description of the polyhe-

dron PI of an IP or MIP problem, so that it is interesting to strengthen

certain inequalities, in particular, to find facet defining inequalities.
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Definition 1.1.7 (Valid inequalities). Let π ∈ Rn, π0 ∈ R and let

P ⊆ R
n be a polyhedron; the inequality πTx ≤ π0 is a valid inequality

for the polyhedron P if πTx ≤ π0 for all the points x ∈ P , that is if

P ⊆ {x ∈ R
n : πT x ≤ π0}.

Definition 1.1.8 (Facet defining inequalities). A valid inequality πTx ≤

π0 is a facet defining inequality for a polyhedron P if and only if the equality

πTx = π0 is verified for dim(P ) affinely independent points of P .

Another definition we should give is the definition of the support of a

vector:

Definition 1.1.9 (Support). If x∗ is an n-dimensional vector its support

is the set:

Supp := {j ∈ {1, 2, .., n} : x∗j 6= 0}.

1.2 Set Covering problem

The Set Covering problem is a classical Combinatorial Optimization

problem of great theoretical and practical interest.

Definition 1.2.1 (Set Covering problem). Given a finite set I and a

family F = {Fj}j∈J of subsets of I, given a cost cj ∈ R
+ associated with

each element Fj of the family F . A subset J of the set J is a cover of I if

• I =
⋃

i∈J

Fi

and it has the minimum cost if

∑

j∈J

cj ≤
∑

j∈J ′

cj, ∀ J ′ ⊆ J, J ′ cover of I.
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The Set Covering problem consists, thus, in finding a subset J of J such

that

I =
⋃

j∈J

Fj

and the cost
∑

j∈J cj is the minimum of the costs of all the possible covers

of I.

The Set Covering problem has been shown to be NP-complete in 1972

[45]. This type of problem can be formulated as an optimization problem

introducing a 0− 1 matrix A ∈ R
n×m called incidence matrix whose generic

element aij is defined by:

aij =

{

1 if i ∈ Fj,

0 otherwise.

A formulation of the Set Covering problem can be, thus, the following:

min cT x

s.t.

Ax ≥ 1

x ∈ {0, 1}n

(1.5)

where c is a n-dimensional vector of costs.

There are several conditions for reducing the size of the incidence matrix

of the Set Covering problem. Indeed, denoting by aTi the ith row of A and

by Aj the jth column of A, the next proposition states some dominance

rules for rows and columns of A.

Proposition 1.2.1 (Dominance of rows and columns).

i) If the ith row is null, then the Set Covering problem is infeasible.
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ii) If the ith row has only one element equal to one in the kth column,

then set xk = 1 and erase not only the column Ak, but also all the

rows j such that ajk = 1.

iii) Let Ai and Aj be two columns such that aki ≥ akj for every row index

k. If the corresponding costs are such that ci ≤ cj, then erase the

column j.

iv) Let aTi and aTj be two rows such that aik ≥ ajk for every column index

k, then covering the jth row implies the covering of the ith row so that,

the ith row can be erased.

We denote by M the set of the row indices of the incidence matrix A and

by N the set of the column indices of A. The Set Covering polytope PI(A)

is:

PI(A) := conv
(

{x ∈ R
|N |
+ : Ax ≥ 1, x ≤ 1, x integer}

)

and the relaxed polytope P (A) is:

P (A) := {x ∈ R
|N |
+ : Ax ≥ 1, x ≤ 1}.

For each i ∈M , we denote by N i the set of the column indices j such that

the value of the element aij of the matrix A is one, i.e.,

N i := {j ∈ N : aij = 1}.

The Set Covering polytope has been widely studied (see e.g. [7], [8], [22],

[76]) and here we summarize some of its properties.

Proposition 1.2.2.

• PI(A) is full-dimensional if and only if |N i| ≥ 2 for all i ∈M ;

• if PI(A) is full-dimensional, then the inequality xi ≥ 0 defines a facet

of PI(A) if and only if |N i \ {j}| ≥ 2 for all i ∈M ;
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• if PI(A) is full-dimensional, then all the inequalities xj ≤ 1 for all

j ∈ N define facets of PI(A);

• if PI(A) is full-dimensional and π0 > 0, then all facet defining in-

equalities π x ≥ π0 for PI(A) have πj ≥ 0 for all j ∈ N .

Remark 1.2.1. The only facet defining inequalities for the Set Covering

polytope having right hand side equal to one are among the inequalities of

the system Ax ≥ 1.

1.3 Graphs

We report here several definitions about the graphs.

Definition 1.3.1 (Undirected and directed Graph). An undirected

graph G is a pair G = (V,E), where V is a finite set of nodes or vertices and

E is a family of subsets of V of cardinality two, called edges. Furthermore,

a directed graph D is a pair D = (V,A) where V is the set of vertices and

A is a set of ordered pairs of vertices, called arcs.

Definition 1.3.2 (Path). Given a graph G = (V,E) a path is a sequence

[v1, v2, ..., vk] of nodes with k > 1, such that each pair of consecutive nodes

belongs to E and there is no repetition of nodes in the sequence.

Definition 1.3.3 (Cycle). Given a graph G = (V,E) a cycle is a sequence

[v1, v2, ..., vk] with k ≥ 1, such that each pair of consecutive nodes belongs

to E, the nodes v1, v2, ..., vk−1 are distinct and v1 = vk.

Definition 1.3.4 (Tree). A tree T = (V ′, E ′) is a connected graph with

no cycles.

Definition 1.3.5 (Cutset). Let G = (V,E) be an undirected graph, S be

a subset of V and Sc its complementary in V , a cutset is the set: δ(S) :=
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{e = {i, j} ∈ E : i ∈ S, j ∈ Sc}. If the graph G = (V,A) is a directed

graph, then for S ⊂ V two directed cuts can be defined:

δ+(S) := {(i, j) ∈ A : i ∈ S, j ∈ Sc}

is the set of the arcs outgoing from S and

δ−(S) := {(i, j) ∈ A : i ∈ Sc, j ∈ S}

is the set of the incoming arcs in S.

Definition 1.3.6 (degree). The degree of a node v ∈ V is the cardinality

of δ({v}). For simplicity it is common to use δ(v) instead of δ({v}). In

a directed graph, the set of the incoming arcs in v is denoted by δ−(v),

whereas the set of the outgoing arcs from v is denoted by δ+(v).

1.4 Shortest Path, Spanning Tree and Max-

imum Flow problems

Three well studied problems are defined in this section: the Shortest

Path problem, the Minimum Spanning Tree problem and the Maximum

Flow problem.

Definition 1.4.1 (The Shortest Path). Given a graph G = (V,E) with

nonnegative cost (or length) associated with each edge e ∈ E, the Shortest

Path (SP) problem consists in finding a path from a source node s to a

terminal node t with the minimum total cost (or length).

The Shortest Path problem is polynomially solvable and Dijkstra’s algo-

rithm is an efficient algorithm for solving it. This algorithm [27] starts with

the node s ∈ V and a set L := {s}; at each iteration the algorithm labels



10 Preliminaries

a node i ∈ Lc with the shortest length of a path from s to i with internal

nodes in L, updates the set L := L ∪ {i} and updates the distances from s

to the nodes in L. This process is repeated until t ∈ L.

Definition 1.4.2 (The Minimum Spanning tree). Let G = (V,E) be

a graph with nonnegative cost (or weight) associated with each edge e ∈ E,

the Minimum Spanning Tree problem consists in finding a tree with the

minimum total cost (or weight) that spans all the nodes of G.

The greedy process that underlies Dijkstra’s algorithm is similar to the

process used in Prim’s algorithm. Prim’s algorithm [70] is used to find the

Minimum Spanning Tree in a graph G = (V,E). Starting with a node s ∈ V

and a set L := {s}, at each iteration the algorithm chooses a minimum-cost

edge e = {u, v} ∈ E, connecting a node u ∈ L to a node v ∈ Lc and updates

the set L := L ∪ {v}. This process is repeated until L = V .

Definition 1.4.3 (Maximum Flow problem in capacitated graph).

Given a directed graph G = (V,A), two different nodes s and t belonging

to V and a nonnegative capacity uij for each arc (i, j) ∈ A, the Maximum

Flow problem consists in finding the maximum value of f such that a |A|-

dimensional nonnegative vector x satisfies the flow conservation constraints

∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =















f if i = s,

0 ∀ i ∈ V \ {s, t},

−f if i = t,

not exceeding the capacities on the arcs (0 ≤ xij ≤ uij, ∀(i, j) ∈ A).

Definition 1.4.4 (Cut and capacity of a cut). Given a directed graph

G = (V,A) with a nonnegative capacity uij for each arc (i, j) ∈ A and given

two different nodes s and t, an s − t cut is a partition (S, Sc) of the set V
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such that s ∈ S and t ∈ Sc. The capacity of this s− t cut is

C(S, Sc) :=
∑

(i, j) ∈ A

i ∈ S, j ∈ Sc

uij

Remark 1.4.1. The maximum flow value equals the total net flow across

any s− t cut (S, Sc):

f =
∑

(i, j) ∈ A

i ∈ S, j ∈ Sc

xij −
∑

(j, i) ∈ A

j ∈ Sc, i ∈ S

xji

Proposition 1.4.1 (Max-flow–Min-cut). The value of a Maximum Flow

problem equals the capacity of a Minimum cut [33].

1.5 Steiner Tree problem

The Steiner Tree problem in a network is the problem of connecting a

set of required vertices with the minimum cost.

Definition 1.5.1 (The Steiner Tree Problem (ST)). Given an undi-

rected graph G = (V,E) with a cost (or weight) ce on each edge e ∈ E

and given a subset of the nodes R, called required nodes; the Steiner Tree

problem consists in finding a minimum cost subtree of G that spans all the

nodes in R with the possibility of including or not the nodes in V \R, which

are called Steiner nodes.

In general, the Steiner Tree problem is an NP-complete problem. Two

special versions of the problem are polynomially solvable: if |R| = 2, then

the problem reduces to the Shortest Path problem and if R = V , then the

problem is the minimum Spanning Tree problem.
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Definition 1.5.2 (Steiner Arborescence problem). The Steiner Ar-

borescence problem is the directed version of the ST problem; the graph G

is a directed weighted graph, a root node s, called source, is given and it is

required to find a directed path from s to every terminal nodes in R with

the minimum cost.

The cost or weight of a Steiner Tree T is indicated by c(T ) and it is

defined as follows:

c(T ) :=
∑

e∈T

ce.

1.5.1 Preprocessing

Preprocessing the graph is an important factor for solving the ST prob-

lem in a reasonable time. It is applied on the undirected graph G = (V,E)

and the goal of this process is to reduce the size of the problem contract-

ing or deleting nodes or edges in order to obtain an equivalent but reduced

graph G′ = (V ′, E ′) ([6], [9], [16], [47], [81]).

Definition 1.5.3 (Feasible reduction). Given a Steiner Tree problem on

the graph G = (V,E) with terminal set R and costs c, a feasible reduction

is a transformation of the problem into a Steiner Tree problem on the graph

G′ = (V ′, E ′), with terminal set R′, costs c′ and constant cost cr ∈ R+ with

the properties that:

(i) |V ′| ≤ |V |,

(ii) |E ′| ≤ |E|,

(iii) |R′| ≤ |R|,
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(iv) if S is a feasible solution for the original problem, then there exists a

feasible solution S ′ for the reduced problem with c(S) = c′(S ′) + cr.

Quite simple reduction tests for the Minimum Steiner Tree are the degree

tests applied recursively to each reduced graph until no more reduction can

be performed.

Proposition 1.5.1 (Degree Reductions). Given a Steiner Tree problem

on the graph G = (V,E), with terminal set R and vector of costs c:

(i) A Steiner node with degree less than or equal to one can be eliminated;

(ii) If a node i in R has degree one, its incident edge {i, j} is contained

in every feasible solution and can be contracted;

(iii) If a Steiner node i has degree two and {i, j} and {i, k} are its adia-

cent edges, then these edges can be replaced by the edge {j, k} whose

associated cost is c(j,k) = c(i,j) + c(i,k).

Remark 1.5.1. Contracting an edge {i, j} incident to a node i ∈ R means:

• if j ∈ R, identify node i with j, eliminate the edge {i, j}, reduce the

cardinality of R and store the cost c(i,j), that is, the costant cost cr of

the definition above is updated, i.e. cr := cr + c(i,j);

• if j ∈ V \ (R ∪ {s}), identify nodes i with j (that becomes a required

node) and update cr.

1.5.2 Reduced costs fixing

Definition 1.5.4 (Reduced costs). Given an LP problem of the form

(1.1), let B be an m×m nonsingular submatrix of A, x be a basic solution
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and cB be the vector of costs of the basic variables. For each j ∈ {1, .., n}

the reduced cost cj of the variable xj is defined according to the formula:

cj = cj − cTBB
−1Aj.

Let zLP be the optimal value of the linear relaxation of an IP problem

(see the problem (1.2)) and let zUB be the value of the best feasible solu-

tion known for the problem (an upper bound for the optimal value of the

problem).

Proposition 1.5.2 (Reduced costs fixing). [64] If a nonbasic variable

xj at its lower bound in the optimal solution of the linear relaxation of an

IP is such that zLP + cj ≥ zUB, then there exists an optimal solution of the

IP with xj at its lower bound. Similarly, if a nonbasic variable xk at its

upper bound in the optimal solution of the linear relaxation of an IP is such

that zLP − ck ≥ zUB, then there exists an optimal solution of the IP with xk

at its upper bound.



Chapter 2

Minimum Power Multicast

problem

In this chapter, we take into account the Minimum Power Multicast prob-

lem (MPM) in wireless Ad-Hoc networks [52]. The chapter is organized as

follows: an introduction to the problem is given in section 2.1 and related

works are presented in section 2.2. A formal description of the modelling

aspects of the problem can be found in section 2.3, while the mathemati-

cal formulation of the MPM problem expressed in terms of a Set Covering

problem is discussed in section 2.4 together with its comparison with some

of the formulations that have been proposed in the literature. In section 2.5,

we show some logic inequalities, whereas in 2.6, we report how to modify

the graph associated with the Multicasting problem in wireless networks in

order to model it as a Steiner Arborescence problem in a wired network.

Section 2.7 is devoted to the description of two exact procedures for solving

the problem that include the reduction technique for the Set Covering prob-

lem to reduce the huge number of the model’s constraints. Finally, some

computational results are illustrated in section 2.8 and some concluding

15
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remarks are summarized in 2.9.

2.1 Introduction

Ad-Hoc networks are composed of a set of mobile devices with limited

resources, that communicate with each other by transmitting a radio signal

without using any fixed infrastructure or centralized administration. Nowa-

days, this kind of networks find their applications in several fields such as

exchanging messages in an area where natural disasters have destroyed the

existing infrastructure or in a battlefield. They are also used, for example,

to allow internet access or simply to exchange information in buildings or in

trains or to enable video-conferencing, etc. (see e.g. [66], [84]). The devices

of an Ad-Hoc network, called also nodes, are arbitrarily located in an area

where they are able to move, but at the time of the transmission all the

nodes are supposed to be stationary; all along this dissertation, we will con-

sider only static networks. Every terminal of the network is equipped with

an omnidirectional antenna in such a way that the signal is spread radially

from the nodes. A device may communicate with a single–hop, i.e. directly,

with any other terminal which is located within its transmission range. In

order to communicate with the terminals placed out of this range a multi–

hop communication has to be performed: it simply consists in making use

of intermediate devices, called routers, that retransmit the received message

to the directly unreachable terminals ([72], [84]). Those nodes that are not

reached by any signal are called isolated nodes.

The Multicast problem consists in connecting a specified device, called

“source”, with a set of target terminals, called “destinations”, with the

possibility of using any other device of the network as router. Since the

resources of the devices are limited (for example nodes are equipped with
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batteries) the source–destination connections should be obtained using the

minimum amount of power. This objective would also have the advantage

of reducing the interferences within the network and, consequently, of im-

proving the signal quality.

The Minimum Power Multicast problem consists in assigning a trans-

mission power to each node of the network in such a way that the source

is connected to all the destinations with the minimum total transmitting

power. We omit to consider interference problem in the model and we sup-

pose that there is no constraint on the maximum transmission power of the

nodes. Finally, we assume that the topology of the network and hence the

exact position of all the terminals is known in advance.

2.2 Related works

The MPM problem represents a generalization of the very well known

Minimum Power Broadcasting (MPB) problem. Indeed, if the set of des-

tinations coincides with all the nodes of the network, except the source,

the MPM problem reduces to the MPB problem (see e.g. Althaus et al. [1],

Altinkemer et al. [3], Das et al. [25], Montemanni et al. [60], Wieselthier

et al. [85], Yuang [88]). The MPM problem has been proved to be NP-

complete (Cagalj et al. [13], Clementi et al. [20], [21]) and thus difficult to

solve to optimality. Moreover, it is not simply a minimum Steiner Arbores-

cence ([25], [57], [84]) connecting the source with the destinations because

of the so called “broadcast property”. Indeed a transmitting node reaches

all the nodes of the network placed within its transmission range without

any additional power, so that the amount of power in the solution of the

MPM problem is not worse than the amount of power in the solution of the

minimum Steiner Arborescence on the same but wired network.
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While the MPB problem has attracted a wide attention in the scientific

literature, the MPM problem has been scarcely studied despite its applica-

tive importance. In fact, nowadays most of the MPM formulations available

represent somehow an adaptation of the MPB models to the multicasting

case. Interesting approaches to the problem are due to Wieselthier et al.

[84] and to Das et al. [25]. The first authors describe an algorithm, called

the Broadcast Incremental Power (BIP), and three greedy heuristics for the

Multicast Power problem. The Broadcast Incremental Power (BIP) [84] is

a modification of the Prim’s algorithm [70]. Indeed, starting with a node

s ∈ V source of the communication and a set L := {s}, at each iteration

the algorithm chooses a minimum-incremental power edge e = (u, v) ∈ E,

connecting a node u ∈ L to a node v ∈ Lc and updates the set L := L∪{v}.

This process is repeated until L = V . The increment of power is the dif-

ference between the power that has to be used by a node u ∈ L to reach a

node v ∈ Lc and the power already assigned to u.

Three different integer programming models have been proposed in [25]

by Das et al.; these formulations for the MPM problem have been obtained

as a generalization of those constructed for the MPB problem. Some specific

studies for the multicast case have been considered in Guo et al. [36] and in

Leino [53]. In particular, a linear integer formulation for the MPM problem

has been presented in Leino [53] and a general scheme of a cutting plane

algorithm has been used for its solution, whereas a flow-based formulation

expressed in terms of a mixed integer programming has been suggested in

Guo et al. [36].
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2.3 Mathematical Models for the MPM

We shall model the MPM problem in terms of a graph, by considering

the devices of the network as nodes and the transmission links as arcs like

in Figure 2.1.

Figure 2.1: Example of a Multicast problem in a complete graph with 6

nodes

Let G = (V,A) be a directed complete graph, where V represents the

set of the terminals of the network and A is the set of directed arcs which

connect all the possible pairs (i, j), with i, j ∈ V and j 6= i. Each node

i ∈ V can receive data from any other node of the network and send data

to any node in its transmission range, which is not a priori constrained to

assume any fixed value. We select a particular node s ∈ V as the source

of the messages (the red antenna in Figure 2.1), and a subset of nodes

R ⊂ V whose elements are the destinations of the communication (the

green antennae in Figure 2.1). Nodes belonging to V \ (R ∪ {s}) may act

either as routers, i.e., they can be involved in forwarding the messages or

they may remain isolated without receiving or transmitting any signal (the

blue antennae in Figure 2.1).
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Let n and m be two integer numbers representing respectively the cardi-

nality of set V and that of R, with 1 ≤ m < n. We note that if m = 1 the

problem reduces to finding the Shortest Path from the source to the destina-

tion and if m = n− 1 the Multicasting problem reduces to a Broadcasting

problem. Despite some analogies with the Minimum Spanning Arbores-

cence problem, the MPB problem in wireless networks has been proved to

be NP-complete ([13], [20], [21]). We assume that the nodes are fixed since

we are considering static networks and, thus, all the distances dij between

each pair of nodes i and j in V are known in advance. This is an approx-

imation of the real world applications, but it is not too restrictive, as one

may think, especially, if we consider optimization over short time intervals

and assume that the devices move slowly in the area.

For simplicity, we consider here the case in which for any distinct nodes

i, k, l ∈ V , it holds: dik 6= dil.

With each arc (i, j) it is associated a cost pij that represents the minimum

amount of power required to establish a direct connection from node i to

node j. As usually assumed in literature in a simple signal propagation

model [72], the power pij is considered to be proportional to the power of

the distance dij with an environment-dependent exponent κ whose value is

typically in the interval [2,5]; therefore, pij := (dij)
κ. Notice that the results

presented in this dissertation remain valid also in case more complex signal

propagation models are considered.

Most of the already defined formulations of the problem ([53], [60], [84])

use, instead of the costs pij for the arcs, an incremental cost cij defined as

follows:

cij = pij − piaij ∀(i, j) ∈ A,

where, according to the definition given in [60], the node aij is the “ancestor”

of j with respect to i:
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aij :=











i if pij = min
k∈V
{pik},

argmax
k∈V

{pik|pik < pij} otherwise.
(2.1)

By introducing the so called range assignment function, which assigns to

each node i ∈ V its transmitting power r(i):

r : V → R
+, i 7→ r(i),

the MPM problem can be equivalently formulated defining such a function

in order to minimize the quantity
∑

i∈V r(i), while guaranteeing the connec-

tion among the source and all the destinations. Obviously, in any efficient

solution, r(i) must be zero or equal to pij for some j (i.e., node i does not

transmit or uses exactly the amount of power necessary to reach a target

node j), so we shall assume this to be the case. We want to stress here that

when we talk about connection among the source and all the destinations

in this chapter and in chapter 4 we do not mean necessarily a direct connec-

tion, but we do not also mean the existence of a path in the traditional sense

(see Definition 1.3.2) from the source to each destination. In fact, since the

nodes are equipped with omnidirectional antennae and the communication

is a radio transmission, any signal forwarded by node i ∈ V and directed to

node j ∈ V is also received by all the nodes that are not more distant than j

from i, i.e., if r(i) = pij, then every node k ∈ V such that pik ≤ pij receives

the signal (see Figure 2.2). This is the so called “broadcast property” ([60],

[84]) which is a peculiarity of this kind of networks. Several nodes can be,

therefore, covered and reached with a single transmission and, hence, using

a single transmission power.

Even though the MPM problem consists in assigning the transmission

power to the nodes, as suggested before, it is convenient to consider the

decision variables associated with the arcs ([25], [60]) in order to model the
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Figure 2.2: Broadcast property

link states. In particular, we want to model: (i) the event that node i is

transmitting to a target node j (that is, i uses exactly an amount pij of

power); (ii) the event that the transmission of node i is received by node j

(that is, the power assigned to node i is not smaller than pij); and (iii) the

event that arc (i, j) belongs to the underlying Steiner Arborescence which

connects s with every node in R. We introduce, thus, three sets of variables,

x, y and z to characterize each of the three above events.

The set of variables x describes which node transmits to whom; formally,

using the range assignment function:

xij :=

{

1 if r(i) = pij,

0 otherwise.

The set of variables y determines which nodes are in the transmission

range of other nodes, i.e. for all (i, j) ∈ A, yij = 1, if the node i transmits

and reaches node j, otherwise yij = 0. By expressing y variables using the

definition of the function r, we can write for all (i, j) ∈ A:

yij :=

{

1 if r(i) ≥ pij,

0 otherwise.
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Finally, the variables z define a Steiner Arborescence T , connecting s with

all the destinations in R: for all (i, j) ∈ A, if (i, j) ∈ T , then zij = 1 (that

is the node i is transmitting and the node j is reached by it), otherwise

zij = 0.

The ”broadcasting property” makes the difference between the Minimum

Steiner Arborescence problem and the Minimum Power Multicast problem

([25], [84]), indeed, if the objective function of the first problem in a wired

network can be expressed in this way:

min
∑

(i,j)∈A

pijzij,

the objective function for the Multicasting problem in a wireless network is

the following:

min
∑

i∈V

max
j∈V \{i}

pijzij.

For this reason, the cost of an optimal solution of the Multicasting problem

is a lower bound for the optimal Steiner Arborescence solution in the same

but wired graph.

Since we assign only one power value to each node i ∈ V , there will be

at most one intended target node j for i. Thus, as in [25]:

Remark 2.3.1. For any node i ∈ V the following relation holds

∑

j∈V \{i}

xij ≤ 1.

Furthermore, using the inequalities of the Remark 2.3.1, it is possible to

express a relation between variables y and x. Indeed, if variable xik = 1,

it means that node i transmits with the power necessary to reach k. Any

other node j which is not farther than k from i also receives the transmission,

therefore, yij = 1. We can, thus, derive:
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Remark 2.3.2. For all (i, j) ∈ A the following relation binds the y and x

variables:

yij =
∑

k∈V \{i}, dij≤dik

xik.

Moreover, we can notice that in any efficient solution, if variable xij = 1,

then also variable zij = 1, since the link (i,j) belongs to the underlying

Steiner Arborescence connecting the source to the destinations; on the other

hand, an arc (i, j) might belong to the Steiner Arborescence even if j is not

the target node of i, i.e., r(i) = pik > pij, with k ∈ V \ {i} and xij = 0 but

zij = 1.

On the basis of the definition of the variables and the above observations,

we have:

Remark 2.3.3. For all (i, j) ∈ A the following relations must hold

xij ≤ zij ≤ yij.

We describe now three formulations presented in literature. The first one

is a slight modification in terms of notation of the model proposed by Leino

[53]:

min
∑

(i,j)∈A

cijyij (2.2)

s.t.
∑

i∈S,j∈Sc

yij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.3)

yij ≤ yiaij ∀ (i, j) ∈ A, aij 6= i (2.4)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (2.5)
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The second one is an adaptation to the Multicasting problem of the MPB

formulation defined in Montemanni et al [60] (by omitting the symmetric

connectivity condition):

min
∑

(i,j)∈A

cijyij (2.6)

s.t.
∑

i∈S,j∈Sc

zij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.7)

yij ≤ yiaij ∀ (i, j) ∈ A, aij 6= i (2.8)

zij ≤ yij ∀ (i, j) ∈ A (2.9)

yij, zij ∈ {0, 1} ∀ (i, j) ∈ A. (2.10)

Observe that, since variables zij do not appear in the objective function,

we can strengthen formulation (2.7) − (2.10) by substituting inequalities

(2.9) with the equations zij = yij without losing any optimal solution. By

doing so, it is easy to see that formulation (2.7) − (2.10) is, in fact, a

relaxation of formulation (2.3)− (2.5).

Finally, the last formulation is the multicasting version of the MPB for-

mulation presented in Altinkemer et al [3]. While the first two formulations

minimize the incremental cost, this model minimizes directly the power to
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be assigned to each arc:

min
∑

(i,j)∈A

pijxij (2.11)

s.t.
∑

i∈S,j∈Sc

zij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.12)

zij ≤
∑

k∈V \{i},dij≤dik

xik ∀ (i, j) ∈ A (2.13)

xij, zij ∈ {0, 1} ∀(i, j) ∈ A. (2.14)

Constraints (2.3), (2.7) and (2.12) are the “connectivity constraints”,

that is, for each cut (S, Sc) with s ∈ S and Sc ∩ R 6= ∅, these constraints

enforce the existence of at least one arc outgoing from a node belonging

to S and incoming in a node of Sc; constraints (2.4) and (2.8) are the

“broadcast constraints”, enforcing the “broadcast property”; constraints

(2.9) and (2.13) represent the variable relations described in Remarks 2.3.2

and 2.3.3; and constraints (2.5), (2.10) and (2.14) are the domain definition

constraints.

2.4 The Set Covering Formulation

In this section, we will define our Set Covering–based model for the

MPM problem. We start by proposing a first formulation that we prove to

be at least as strong as the formulation (2.2) − (2.5). Then by exploiting

the topological properties of the problem, we introduce our Set Covering

model.

For convenience, we shall use the following notation: for each node i ∈ V ,

let vi be an array whose components are the nodes of the network ordered
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with respect to an increasing distance from node i. In other words, if j and

k are two indices in {1, . . . , n} with j ≤ k, then vij and vik are two nodes in

V whose distances from i are related by

divij ≤ divi
k
.

We refer to vi as a distance array.

Figure 2.3: Example for the distance arrays

Example 2.4.1. For the network in Figure 2.3 the distance arrays are the

following: vs = (s, 1, 2, 3, 4), v1 = (1, s, 2, 4, 3), v3 = (3, 2, s, 4, 1),

v4 = (4, 2, 1, 3, s).

By Remark 2.3.2, we have:

Remark 2.4.1. For all i ∈ V and j ∈ {2, . . . , n− 1} the following relations

must hold

xivij = yivij − yivij+1

and for j = n:

xivin = yivin .
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We propose now a first formulation which uses only the variables x:

min
∑

(i,j)∈A

pijxij (2.15)

s.t.
∑

i∈S,j∈Sc

∑

k∈V \{i}, dij≤dik

xik ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅

(2.16)
∑

j∈V \{i}

xij ≤ 1 ∀ i ∈ V (2.17)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.18)

We notice that it is possible to use Remarks 2.3.2 and 2.4.1 to augment

formulation (2.2)− (2.5) with variables xij and formulation (2.15)− (2.18)

with variables yij, so that their linear relaxations can be compared. By

doing so, we can derive the following result.

Proposition 2.4.1. The linear relaxation of formulation (2.15)− (2.18) is

equivalent to the linear relaxation of formulation (2.2)− (2.5).

Proof. First of all, observe that, since vectors x and y are related as in

Remarks 2.3.2 and 2.4.1 the objective functions (2.2) and (2.15) express the

same quantity. In fact, by the definition of incremental costs, for any i ∈ V

and j ∈ {2, . . . , n} we have

pivij =

j
∑

k=2

civi
k
.

Hence, by using Remark 2.4.1, we have

n
∑

j=2

pivijxivij =
n−1
∑

j=2

j
∑

k=2

civi
k
(yivij − yivij+1

) +
n
∑

k=2

civi
k
yivin =
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n
∑

k=2

civi
k

n
∑

j=k

yivij −
n−1
∑

k=2

civi
k

n
∑

j=k+1

yivij =
n
∑

k=2

civi
k
yivi

k
.

Consequently, we have

∑

(i,j)∈A

pijxij =
∑

i∈V

n
∑

j=2

pivijxivij =
∑

i∈V

n
∑

k=2

civi
k
yivi

k
=

∑

(i,j)∈A

cijyij.

Assume now that x is a feasible solution of the relaxation of (2.15) −

(2.18), and that y is the corresponding vector of variables obtained in Re-

mark 2.3.2. We have to show that y is a feasible solution for the linear

relaxation of (2.2)− (2.5). Indeed, we have:

∑

i∈S,j∈Sc

yij =
∑

i∈S,j∈Sc

∑

k∈V \{i}, dij≤dik

xik ≥ 1.

Moreover, for any (i, j) ∈ A such that aij 6= i, since variables xij are not

negative, we have:

yij =
∑

k∈V \{i}, dij≤dik

xik ≤ xiaij +
∑

k∈V \{i}, dij≤dik

xik =
∑

k∈V \{i}, d
iai
j
≤dik

xik = yiaij

and, for any (i, j) ∈ A,

0 ≤ yij =
∑

k∈V \{i}, dij≤dik

xik ≤
∑

j∈V \{i}

xij ≤ 1.

On the other hand, let y be a feasible solution for the linear relaxation of

formulation (2.2)− (2.5) and let x be the corresponding vector of variables

obtained by Remark 2.4.1. We can show that x is a feasible solution for

the linear relaxation of (2.15) − (2.18). Indeed, by using Remark 2.3.2,
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constraints (2.16) are easily seen to be satisfied. Moreover, for any i ∈ V ,

by Remark 2.4.1 we have:

∑

j∈V \{i}

xij =
n
∑

j=2

xivij =
n−1
∑

j=2

(yivij − yivij+1
) + yivin = yivi2 ≤ 1,

which means that constraints (2.17) are also satisfied. Finally, by using

(2.4), we have:

0 ≤ yiaij − yij = xiaij ≤ 1.

By using similar arguments as those in the proof of Proposition 2.4.1 and

letting variables x and y be related according to Remarks 2.3.2 and 2.4.1,

it is easy to prove the following:

Remark 2.4.2. Any feasible solution to the linear relaxation of formulation

(2.6)− (2.5) is also feasible for the linear relaxation of formulation (2.15)−

(2.18).

We can notice that in constraints (2.16) the coefficients of some variables

xij could be greater than one. This suggests to strengthen the formulation

by reducing to one all the left-hand-side coefficients of constraints (2.16).

In order to describe the resulting constraints, we introduce the following

notation.

Let S be any proper subset of V . For every i ∈ S, we label with vik(S)

the first component in the distance array vi which is not an element of S.

Furthermore, we denote by K i(S) the subset of V \ {s} whose elements are

all the nodes of the network different from the source and having distance

from i greater than or equal to divi
k(S)

. For a better understanding of this

notation, we give an example.
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Figure 2.4: Example for constraints (2.20)

Example 2.4.2. Looking at Figure 2.4, V := {s, 1, 2, 3, 4}, R := {3, 4} and

S := {s, 2, 4}. The distance arrays are: vs = (s, 2, 4, 1, 3), v1 = (1, 2, 3, s, 4),

v2 = (2, s, 1, 4, 3), v3 = (3, 4, 1, 2, s), v4 = (4, 3, s, 2, 1); thus vsk(S) and v2
k(S)

are node 1, while v4
(k(S)) is node 3 and Ks(S) := {1, 3}, K2(S) := {1, 3, 4}

and K4(S) := {1, 2, 3}.

Now we are able to present the strengthened formulation of the MPM

problem:

min
∑

(i,j)∈A

pijxij (2.19)

s.t.
∑

i∈S

∑

j∈Ki(S)

xij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.20)

∑

j∈V \{i}

xij ≤ 1 ∀ i ∈ V (2.21)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.22)

The set of constraints (2.20) represents the connectivity requirements;

for every cut (S, Sc) with s ∈ S and R ∩ Sc 6= ∅ there should be a node
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i in S that transmits with a power sufficient to reach at least one node in

Sc. We remark that the “target” node j of node i (that is, the one such

that xij = 1) does not need to be in Sc, indeed, j can belong to S, but

the distance between i and j must be greater than the distance from i to

a node in Sc. For example, the presence of one of the arcs in Figure 2.4

would satisfy the constraint (2.20) relative to the choice of S = {s, 1, 4}.

Constraints (2.21) ensure that at most one power value is assigned to each

node and, finally, (2.22) are the binary restrictions on the variables.

We now show that constraints (2.21) in the last formulation are redun-

dant for defining any optimal solution of the linear relaxation of the formu-

lation as the objective value coefficients are non negative.

Proposition 2.4.2. Let x be an optimal solution of (2.19) satisfying con-

straints (2.20) and the linear relaxation of constraints (2.22). Then we have:

∑

j∈V \{i}

xij ≤ 1 ∀i ∈ V.

Proof. Assume that there exists h ∈ V such that

∑

j∈V \{h}

xhj > 1. (2.23)

Let l ∈ {1, ..., n} be the smallest index such that:

n
∑

j=l+1

x̄hvhj ≤ 1,

let R denote the set {vhl , v
h
l+1, . . . , v

h
n} and r = vhl . By setting, for all

j ∈ V \ {h},

x∗hj =



















xhj if j ∈ R \ {r},

1−
∑

j∈R\{r}

xhj if j = r,

0 otherwise,
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we have that: x∗hr = 1−
∑

j∈R\{r}

xhj < xhr and, thus,

∑

j∈V \{h}

phjx
∗
hj <

∑

j∈V \{h}

phjxhj.

Let, for any node i ∈ V \ {h} and for any node j ∈ V \ {i}, x∗ij = xij.

Then, the new solution x∗ is feasible, since constraints (19) are still satisfied.

Moreover, we have that:

∑

(i,j)∈A

pijx
∗
ij <

∑

(i,j)∈A

pijxij.

This leads to a contradiction, since x is by assumption an optimal solution.

By the above Proposition, we can remove constraints (2.21) from the for-

mulation. Moreover, since all the powers are positive values, we notice that,

in any optimal solution, no node is assigned the power to reach exactly the

source, so that all the incoming arcs of A in the source s can be eliminated

from the graph:

A := A \ {(i, j) ∈ A : i ∈ V, j = s}.

The final formulation of the problem, that we propose is a Set Covering

formulation:

min
∑

(i,j)∈A

pijxij (2.24)

s.t.
∑

i∈S

∑

j∈Ki(S)

xij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.25)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.26)
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Table 2.1: Average gap for (2.3)-(2.5) and for (2.25)-(2.26)

(2.3)-(2.5) (2.25)-(2.26)

n m gap gap

5 1 0.21183 0

5 2 0.27884 0

5 3 0.19820 0

5 4 0.17085 0

10 1 0.36262 0

10 2 0.41995 0

10 3 0.34237 0

10 4 0.35768 0.00009

10 5 0.32836 0.00028

10 6 0.32093 0.00390

10 7 0.30090 0.00626

10 8 0.29403 0.00971

10 9 0.24807 0.00666

(2.3)-(2.5) (2.25)-(2.26)

n m gap gap

15 1 0.48164 0

15 2 0.49797 0

15 3 0.44208 0

15 4 0.40148 0.00002

15 5 0.38226 0.00002

15 6 0.35043 0.00708

15 7 0.33496 0.00952

15 8 0.28470 0.01015

15 9 0.29569 0.01280

15 10 0.28654 0.01123

15 11 0.27004 0.01793

15 12 0.26053 0.01835

15 13 0.24193 0.01835

15 14 0.23624 0.02104

Constraints (2.25) are the connectivity constraints and constraints (2.26)

are the domain definition constraints.

Since the number of constraints (2.25) is 2n−1 − 2n−m−1, the main dif-

ficulty of this problem, beyond the fact that it is an integer problem, is

caused by the huge number of such constraints. Moreover, it is evident

that the broadcasting version of this problem has the maximum number of

constraints of type (2.25). Notice, however, that in general many of the

constraints (2.25) are redundant and can be removed from the formulation

because they are dominated by other constraints in (2.25).

Remark 2.4.3. The optimal solution of the linear relaxation of the Set

Covering formulation provides a lower bound that is more effective than

the lower bound produced by the optimal solution of the linear relaxation

of the formulation (2.2)− (2.5).

In order to compare the two formulations we have done several experi-
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ments. In Table 2.1 each column reports the average value of the gap be-

tween the optimal value OPT of the integer problem and the optimal value

LB of the linear relaxation of the two formulations for 20 randomly gener-

ated problems for each combination of the number of nodes/destinations.

We indicate with gap the value (OPT−LB)/LB. From the results reported

in Table 2.1, it is highlighted firstly that the lower bound of the Set Cov-

ering formulation is much better than the lower bound of the formulation

(2.2)−(2.5), secondly that for problems with few nodes and few destinations

the optimal solution of the linear relaxation of our proposed formulation is

already an integer solution.

2.5 Logic inequalities

We present some inequalities that can be added to the problem and that

can be found just considering logic properties of the MPM problem.

Remark 2.5.1. The following inequalities:

(i) xij + xji ≤ 1 ∀ i ∈ V, j ∈ δ+(i);

(ii)
∑

i∈V \{j}

xij ≤ 1 ∀ j ∈ V ;

are inequalities that reduce the feasible region of the MPM problem but

they do not cut off any fractional optimal solution of the linear relaxation

of (2.24)− (2.26).

Remark 2.5.2. The number of the arcs of an optimal integer solution of

the MPM problem (that is the number of the transmissions in an optimal

solution) should be at most the number of arcs in an acyclic graph spanning

all the nodes of the network and hence
∑

(i,j)∈A xij ≤ n− 1. We can notice

that if the power assigned to the source is exactly the power necessary to
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reach its most distant destination, placed in the kth position of the array

vs, then all the destinations are reached by the signal generated by the

source and no other transmission must be performed in order to create the

connection. This remark can be expressed with the constraint:

∑

(i,j)∈A\{(s,vs
k
)}

xij ≤ (n− 1)(1− xsvs
k
). (2.27)

In an optimal solution, if the source s transmit to the node vsk then the right

hand side of (2.27) is zero and this force all the other variable xij to be zero

otherwise it holds:
∑

(i,j)∈A\{(s,vs
k
)}

xij ≤
∑

(i,j)∈A

xij ≤ n − 1 and the constraint

(2.27) is fulfilled.

Remark 2.5.3. The inequalities

∑

j∈δ−(i)

xji ≤
∑

j∈δ+(i)

xij ∀ i ∈ V \ (R ∪ {s}) (2.28)

are the flow-balance constraints (see e.g. [47]). If i is a router and i is

directly reached by a communication originated by a node j in the network,

constraint (2.28) forces node i to transmit. In no optimal integer solution a

router i is a leaf of the arborescence, indeed, if it exists j ∈ δ−(i) such that

xji = 1 and for each k ∈ δ+(i) the variables xik are all equal to zero, the

cost pji paid for this type of solution can be reduced making j transmit to

a node h closer to j than i without disconnecting any destination.

2.6 Multicasting problem andMinimum Steiner

Arborescence

Minimum Power Multicast problem on the directed graph G = (V,A) can

be reduced into a Minimum Steiner Arborescence problem ([14], [55]) on a
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directed graph G′ = (V ′, A′). The graph G′ = (V ′, A′) can be constructed

as follows: for each node i ∈ V , consider the set of the outgoing arcs from i

(see Definition 1.3.5), δ+(i). For each arc (i, j) ∈ δ+(i) \ {(i, vi2)} a node u

should be inserted into the graph and the arc (i, j) should be split into the

arcs (i, u) and (u, j). The cost of the arc (i, j) is assigned to the arc (i, u),

whereas a zero cost is assigned to (u, j). Furthermore, all the arcs (u, k)

with pik ≤ pij should be added to the graph with a zero cost.

Figure 2.5: The graph for a Multicast problem in wireless network and the

graph for the equivalent Steiner Arborescence problem

With this transformation (n− 2) + (n− 1)(n− 3) new nodes are added to

the original graph so that in total |V ′| = (n − 1)2, whereas the (n − 1)2

arcs of G are substituted by (n3 − n2 − 2n)/2, i.e. |A′| = (n3 − n2 − 2n)/2.

The cardinality of V ′ is O(n2) and the cardinality of A′ is O(n3); the size

of the problem, thus, grows very rapidly as the size of the original problem

increases.

Example 2.6.1. Figure 2.5 is a little example of a graph G = (V,A) for the

Multicasting problem with 4 nodes and of the graph G′ = (V ′, A′) on which
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the Steiner Arborescence problem has the same optimal solution value as

the optimal solution value of the Multicast problem. All the arcs in red are

arcs with strictly positive costs, while the arcs in black have costs zero.

2.7 Solution Methods

As discussed before, the main difficulty for the solution of the Set Cov-

ering formulation is represented by the set of constraints (2.25), but a con-

siderable help may be given by the structure of the formulation. Here, we

propose two solution methods that exploit such structure.

In the first procedure, we generate the whole constraint matrix, but we

take into account only a subset of its rows. Indeed, initially, we create a

submatrix by selecting n − 1 rows and we perform a preprocessing on this

submatrix in order to erase dominated rows and columns, then we solve the

integer problem and finally, we check whether violated constraints exist.

If all the constraints (2.25) of the problem are satisfied, the procedure is

interrupted since the optimal solution has been found, otherwise, we add at

most n2 violated rows at a time and we repeat the iterative process for the

new submatrix until an optimal solution is found.

We specify that among the first n − 1 rows of the initial submatrix,

we select the row corresponding to the inequality relative to the subset

S = {s} and all the rows corresponding to the inequalities relative the

subsets S such that |Sc| = 1. Moreover, whenever we find a row which is

dominated in the current submatrix, we label it and we do not admit the

possibility of reintroducing it in any subsequent matrix; only at the end of

the procedure, before electing the optimal solution we check whether all the

erased constraints are satisfied, otherwise we add the violated ones and the
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whole process is repeated.

In our second method, violated constraints are generated iteratively on

the basis of the current solution looking at its support (see Definition 1.1.9).

We start with the inequalities (2.25) generated by the sets S := {s} and

S := {s, vs2} and we solve the resulting linear relaxation of the problem. On

the basis of the optimal solution, we define the related variables y using the

equality in the Remark 2.3.2 and we construct the connected component

of the network starting with the source. The connected component of the

source is the set of the nodes of the graph such that there exists a directed

path from the source to these nodes using the arcs in which the values of

the variables y are not zero. While at least one destination is not connected

to the source, the cut (2.25), generated by the set S of the nodes belonging

to the connected component of the source, is added to the formulation and

the linear relaxation of the problem is solved again until all the destinations

are in the connected component of the source. At this point, if the current

solution is integer, then the procedure is interrupted, otherwise a maximum

flow problem from the source to each destination with the current y values as

capacities is solved (see Definition 1.4.3). If all the maximum flow values are

at least one and the current optimal solution is fractional, then the current

integer problem is solved and if all the destinations are connected to the

source the procedure is interrupted, otherwise the cut (2.25) generated by

the set S of the nodes connected to the source is generated and the integer

problem is solved again. If at least one maximum flow value is less than

one, then we define the set S corresponding to the cuts with minimum

capacity (see Proposition 1.4.1), we add these constraints to the current

formulation and we solve again the linear relaxation of the current problem.

Every time a set of rows is added to the current submatrix, we perform the

preprocessing (see Proposition 1.2.1). The procedure sketched above can

be formalized by means of the following procedure:
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Step 0: Let F be a formulation for problem MPM with only the constraints

generated by S = {s} and S = {s, vs2} among the constraints (2.25);

Step 1: Solve the linear relaxation of F , and let x be the optimal solution;

Step 2: Define variable y as in Remark 2.3.2 and find the connected component

of the source;

Step 3: If there is at least one destination that is not connected to the source,

define S, the set of the nodes connected to the source, add the con-

straint (2.25) relative to S to the current formulation, perform the

preprocessing of the constraint matrix and go to Step 1;

Step 4: If all the destinations are connected to the source and the current

solution is integer; Stop.

Step 5: If all the destinations are connected to the source and the current

solution is fractional go to Step 6;

Step 6: For each source-destination pair, solve the maximum flow problem

with the current y as capacities;

Step 7: If all the values of the maximum flow problems are greater than or

equal to 1, solve the integer problem, x is the optimal solution and go

to Step 2;

Step 8: If at least one value of the maximum flow problems is lower than 1;

define S corresponding to the minimum capacity cut; add the con-

straints (2.25) relative to S to the current formulation, perform the

preprocessing of the constraint matrix, solve the linear relaxation of

the problem and go to Step 6.

The preprocessing of the matrix, used in both methods, consists in finding

and erasing the dominated columns and rows. We take advantage of the
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fact that the matrix is composed by only ones and zeros and we use the com-

mon preprocessing techniques for the Set Covering problem (see Proposition

1.2.1). A dominated column is either a null column or a column whose cost

(power) is not smaller than that of another column which is, component-

wise, not greater, while a row is dominated if there exists another row of

the matrix which is, component-wise, not greater. The convergence of both

the procedures is guaranteed because the number of inequalities (2.25) is,

albeit huge, finite.

2.8 Experimental Results

We have implemented the solution algorithms in C and we have run the

codes on a Dual Intel Xeon 3.2GHz machine with 4 GB RAM memory using

the version 9.1 of Cplex as solver.

The experiments have been performed on a set of test problems with

increasing number of nodes and of possible destinations; for each problem

size, 20 different instances are generated. The nodes of the networks have

been uniformly generated on a grid of size 10000 × 10000 and the source

and the destinations have been randomly selected among the generated

nodes as well. To obtain the power values from the distances we have set

the coefficient κ to 2, while we have set to 3600 seconds the maximum

resolution time, after which the solution process is interrupted.

Our computational results have been summarized in Tables 2.2, 2.3 and

2.4 in which we indicate with Cplex 9.1 the solution by the integer cplex

solver of the entire problem (including all the constraints), withmethod I the

method of choosing violated inequalities among all the generated constraints

and with method II the method in which we generate violated constraints
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Table 2.2: Average computational times for randomly generated problems with

up to 15 nodes

Cplex 9.1 method I method II

n m T σ T σ It T σ It

5 1 0.0000 0.000 0.0005 0.000 2.1 0.001 0.002 2.8

5 2 0.0000 0.000 0.0002 0.000 2.2 0.002 0.004 3.6

5 3 0.0000 0.000 0.0002 0.000 2.4 0.001 0.003 4.1

5 4 0.0000 0.000 0.0002 0.000 2.6 0.002 0.004 4.5

10 1 0.010 0.005 0.000 0.000 2.7 0.003 0.006 5.5

10 2 0.016 0.005 0.003 0.004 2.8 0.008 0.009 8.0

10 5 0.025 0.004 0.002 0.012 2.9 0.015 0.718 12.3

10 9 0.022 0.004 0.004 0.005 3.0 0.024 0.014 15.3

15 1 1.207 0.171 0.073 0.047 3.4 0.015 0.022 10.1

15 5 3.849 0.522 0.127 0.046 4.1 0.079 0.054 28.5

15 10 4.859 2.217 0.134 0.077 3.6 0.127 0.054 36.7

15 14 5.171 2.615 0.115 0.061 5.7 0.143 0.058 38.5

on the basis of the nodes reachable by the signal spread by the source. All

the methods use Cplex to solve the resulting LP or IP problems.

In the Tables 2.2, 2.3 and 2.4, we report the number of nodes of the

network n, the number of destinations m, the average execution time T , its

standard deviation σ and the average number of iterations It required to

solve the problem. Moreover, in Table 2.4 we report the percentage NS%

of the not solved instances within the time limit.

The best solution average time among the solving procedures is high-

lighted with a bold character. The results in Table 2.2 are related to net-

works with 5, 10 and 15 nodes combined with all the possible numbers of

destinations. It is clear that for networks with 5 and 10 nodes, all the

procedures solve the MPM problem quite quickly; Cplex seems to be more

efficient only when n = 5, whereas the first method works better when

n = 10. When we increase the value of n the second method has the best
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Table 2.3: Average computational times for randomly generated problems with

20 nodes

method I method II

n m T σ It T σ It

20 1 2.628 1.606 5.8 0.057 0.059 19.1

20 5 4.923 2.030 6.4 0.306 0.228 45.4

20 10 4.828 2.086 5.4 0.694 0.392 62.0

20 15 4.207 1.684 4.9 0.779 0.412 65.0

20 19 4.034 1.328 4.1 0.904 0.678 66.6

Table 2.4: Average computational times for randomly generated problems with

30, 50 and 100 nodes

method II

n m T σ It NS%

30 1 1.288 1.315 61.4

30 10 8.930 6.086 111.7

30 15 7.789 4.609 108.4

30 29 9.077 5.325 106.4

50 1 6.647 7.588 74.7

50 10 512.223 401.593 294.2 10

50 25 640.236 889.187 248.0 30

50 49 712.714 646.270 214.5 10

100 1 348.916 375.378 143.0

100 5 927.537 606.565 212.8 60

performance. For networks with 15 nodes, the first method is the most

efficient when the number of destination is greater than 10 and so for the

broadcasting version of the problem.

In Table 2.3, we present the results for the MPM problem on networks

with 20 nodes; while it is not possible to solve any of these problems gener-

ating the whole matrix of constraints, the second method outperforms the

first method even when m = n− 1.
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A different situation is shown in Table 2.4. For the MPM problems

on networks with more than 30 nodes, the first method fails to solve the

problem because of the memory required to generate the whole constraint

matrix. On the contrary, the second method is still able to solve the MPM

problem on networks with up to 50 nodes, but presently there are still some

instances not solved within the time limit of an hour. Instances with 100

nodes have been solved, by now, for just a limited number of destination.

2.9 Concluding Remarks

We have proposed a Set Covering–based formulation for the Minimum

Power Multicasting problem in Ad-Hoc networks, and we presented two pos-

sible algorithms for its solution. We carried out an experimental study by

using a set of test problems randomly generated having a number of nodes

ranging from 5 to 100. While we think that the presented formulation rep-

resents an original and effective approach to the problem, we are conscious

that some improvements should be done. The theoretical and polyhedral

properties of the model may be investigated together with a better way of

generating violated constraints. In this direction goes the following chapter.



Chapter 3

Chvátal-Gomory cuts for the

Multicast polytope

In this chapter, we want to highlight some properties of the polytope

of the Set Covering formulation (see Proposition 1.2.2) for the Multicasting

problem in the wireless Ad-Hoc networks. The inequalities in section 2.5 can

be added to the problem to reduce the feasible region of the MPM problem,

but in general they are not able to cut off any optimal fractional solution

of the linear relaxation of the problem. The purpose here is to propose

heuristics that generate valid inequalities for the Set Covering polytope

that cut off fractional optimal solutions of the linear relaxation of the MPM

problem. In particular, in section 3.2 we propose two heuristics that find

violated inequalities with right hand side two belonging to the first Chvátal

closure of the MPM problem’s polytope. The optimal value of the linear

relaxation of the problems with the cuts generated with the heuristics is

compared in section 3.4 with the optimal value obtained by solving the

problems over the first Chvátal closure polytope (see section 3.3).



46 Chap. 3 Chvátal-Gomory cuts for the Multicast polytope

3.1 Introduction

First of all, we give here the definition of a Chvátal-Gomory cut and of

the first Chvátal closure polyhedron for a general IP problem. Given the

Integer Programming problem:

min cTx

s.t.

Ax ≥ b

x ≥ 0,

x integer

(3.1)

where A is a m × n real matrix, c and b are a n-dimensional and a m-

dimensional vectors respectively and x is a n-dimensional vector of variables

that take integer values, a Chvátal-Gomory cut, indicated by CG cut, is

defined as follows ([19], [35]):

Definition 3.1.1 (Chvátal-Gomory cut). A Chvátal-Gomory cut is a

valid inequality for PI(A) of the form:

⌈

uTA
⌉

x ≥
⌈

uT b
⌉

where u ∈ Rm
+ is the CG multiplier vector and d..e is the upper integer part.

The first Chvátal closure polyhedron is the polyhedron obtained by in-

tersecting the relaxed polyhedron P(A) with all the CG cuts.

Definition 3.1.2 (First Chvátal closure). The first Chvátal closure of

P (A) is the polyhedron P1(A) defined as follows [19]:

P1(A) := {x ∈ R
n
+ : Ax ≥ b,

⌈

uTA
⌉

x ≥
⌈

uT b
⌉

∀u ∈ R
m
+}.
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The three polyhedrons are related by the relations

PI(A) ⊆ P1(A) ⊆ P (A)

therefore, P1(A) is a better approximation of PI(A) than P (A).

For this reason, we try to find violated CG cuts to cut off fractional

solution of the linear relaxation of the Set Covering formulation for the

MPM problem.

The Minimum Power Multicast problem can be expressed in a general

form:

min pTx

s.t.

Bx ≥ 1 (3.2)

x ∈ {0, 1}|A|

where B = (bij)i∈M,j∈N is a 0−1 matrix, p ∈ R|A| is the array of the powers

and A is the set of the arcs of the network and M and N are the index

sets of the rows and the columns respectively of the matrix B. The Set

Covering polytope is denoted by PI(B) and the relaxed polytope by P (B).

We denote once more by n the number of nodes of the wireless network and

m the number of destinations.

For the results ([7], [8], [22]) reported in the first introductive chapter

(see Proposition 1.2.2), we can make here some remarks about the polytope

of the Minimum Power Multicasting problem.

Remark 3.1.1. The polytope PI(B) is always nonempty (if n ≥ 2 and

m ≥ 1, then |Ni| ≥ 1 for all i ∈ M) and it is full-dimensional if n ≥ 3.
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Indeed, in this case, |M | ≥ 2 and for each i ∈M the cardinality of N i is at

least equal to two.

Remark 3.1.2. If n ≥ 4, then for each j ∈ N the inequality xj ≥ 0 is a

facet of PI(B). In fact, for each i ∈M and j ∈ N the cardinality of N i \{j}

is at least equal to two. Furthermore all the inequalities xj ≤ 1 with j ∈ N

are facets of PI(B).

The heuristics that we propose, generate valid inequalities with right

hand side equal to two and the principle of construction of these inequalities

is the following method proposed in ([7], [8]).

Chvátal Gomory cuts can be generated considering positive linear com-

bination of the rows of the matrix and rounding up to the nearest integer

all the coefficients of the obtained inequality. In particular, positive linear

combinations can be built selecting a subset U of the set of the row indices

M , adding all the inequalities of the problem with index in U , then dividing

all the coefficients by |U |−ε for a certain positive small enough ε and finally

rounding all the coefficients up.

Remark 3.1.3. The CG cut relative to a selected U ⊆M can be obtained

by adding all the inequalities bTi x ≥ 1 with i ∈ U and dividing the resulting

inequality by |U | − ε:

1

|U | − ε

∑

i∈S

bTi x ≥
|U |

|U | − ε

and finally rounding both members of the inequality up:

⌈

1

|U | − ε

∑

i∈S

bTi

⌉

x ≥ 2

for 0 < ε < 1.
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Looking at the columns of the submatrix of B constituted by all the rows

whose index belong to U , it is easy to give a value to the coefficients of the

new inequality, indeed, we have ([7], [8]):

Remark 3.1.4. For each U ⊆ M the coefficients of a CG cut can be

obtained in this manner:

πUj =















0 if bij = 0 for all i ∈ U,

2 if bij = 1 for all i ∈ U,

1 otherwise,

(3.3)

so that the inequality πU x ≥ 2 is the CG cut relative to the choice of U .

Remark 3.1.5.

(i) If U = {i}, then the inequality πU x ≥ 2 reduces to the original row

bTi x ≥ 1.

(ii) If U = M and the Multicast problem is a Broadcast problem (m =

n−1), then the inequality generated by the previous method becomes:
∑

(i,j)∈A\{(s,vsn)}

xij + 2xsvsn ≥ 2.

This inequality means that either the source communicates with its

most distant node vsn or, in order to satisfy the “wireless” connec-

tion with all the other destinations, there must be at least another

transmitting node in the network in addition to the source.

(iii) If U = M and m < n−1 and k is the position of the most distant des-

tination with respect to the source in the array vs, then the inequality

generated by the previous method becomes:

∑

(i,j)∈A\{(s,vsj ): 1≤j<k}

xij + 2
n
∑

j=k

xsvsj ≥ 2

that means that either the source is assigned the power to reach vsk or

at least there are two hops in the network.
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Before going on, we want to insert here two valid inequalities, one for

the Broadcast problem and one for the more general Multicast problem in

wireless networks. These inequalities have both right hand side equal to

two.

The first inequality is for the Broadcast problem. We recall that vs2 and

vsn represent respectively the closest and the most distant node with respect

to the source and that v
vs2
n is the most distant node with respect to the node

which is the closest to the source. In this section, we indicate with w the

node vs2. Two sets A and B must be introduced. A is the set of all the arcs

of A outgoing from a node i, different from the source s and the node w

and incoming in a node j which is different from w and furthermore, which

is more distant with respect to i than the node vwn , i.e.

A := {(i, j) ∈ A : i ∈ V \ {s, w}, j ∈ V \ {w}, dij ≥ di vwn }.

Analogously B is the set of all the arcs of A outgoing from a node i which is

different from the source s and the node w and incoming in a node j which

is more distant with respect to i than the node vsn, i.e.

B := {(i, j) ∈ A : i ∈ V \ {s, w}, j ∈ V, dij ≥ divsn}.

Proposition 3.1.1. The following inequality:

∑

i∈V \{vs1, v
s
2, v

s
n}

xsi + 2xs vsn +
∑

i∈V \{vw1 , v
w
n }

xw i + 2xw vwn
+

+
∑

(i,j)∈A

xij +
∑

(i,j)∈B\A

xij ≥ 2 (3.4)

is a valid inequality for PI(B).

In the multicasting case, denoting by vsk the most distant destination

from the source and by vwh the most distant destination with respect to w,
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A is the set of all the arcs of A outgoing from a node i which is different

from the source s and the node w and incoming in a node j, different from

w, which is more distant with respect to i than the node vwh , i.e.

A := {(i, j) ∈ A : i ∈ V \ {s, w}, j ∈ V \ {w}, dij ≥ divw
h
},

and B is the set of all the arcs of A outgoing from a node i which is different

from the source s and the node w and incoming in a node j, which is more

distant with respect to i than the node vsk, i.e.

B := {(i, j) ∈ A : i ∈ V \ {s, w}, j ∈ V \ {s}, dij ≥ divs
k
}.

Proposition 3.1.2. The inequality:

∑

2<i<k

xs vsi + 2
n
∑

i=k

xs vsi +
∑

2<i<h

xw vwi
+ 2

n
∑

i=h

xw vwi
+

∑

(i,j)∈A

xij +
∑

(i,j)∈B\A

xij ≥ 2 (3.5)

is a valid inequality for PI(B).

Figure 3.1: An inequality with right hand side two

Naturally, inequality (3.4) is a particular case of inequality (3.5); we give

here a simple example for explaining how to construct inequality (3.5).
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Example 3.1.1. For the network in Figure 3.1 the distance arrays are

the following: vs = (s, 1, 2, 3, 4), v1 = (1, s, 2, 4, 3), v2 = (2, 3, s, 4, 1), v3 =

(3, 2, s, 4, 1), v4 = (4, 2, 1, 3, s), hence, the set A =: {(2, 3), (2, 4), (2, 1), (4, 3)}

and B := {(2, 4), (2, 1), (3, 4), (3, 1)}, and the inequality (3.5) is:

xs2 + xs3 + 2xs4 + x12 + x14 + 2x13 + x23 + x24 + x21 + x43 + x34 + x31 ≥ 2

In fact inequality (3.5) forces the source either to reach directly its most

distant destination 4 (the green arc in Figure 3.1) or to communicate with

a node placed between 1 and 4 and at this point, it is required another

transmission to cover node 4. If the source transmits toward its closest

node 1, the latter is forced to reach directly its most distant destination 3

(the green arc in Figure 3.1) or to communicate with another node and, in

this case, the constraint forces another communication to cover node 3.

3.2 Heuristics for generating a CG cut with

right hand side two

The aim of the heuristics is to find CG cuts with right hand side equal to

two that cut off fractional optimal solutions of the linear relaxation of the

Multicasting problem. Starting with the support of the optimal solution

for the LP problem two propositions can be useful. According to Definition

1.1.9, if x∗ is an optimal solution of the linear relaxation of the Multicasting

problem, its support is the set Supp := {j ∈ N : x∗j > 0}, moreover, the

set of the column indices j such that x∗j = 1 can be denoted by I , i.e.

I := {j ∈ N : x∗j = 1}.

Proposition 3.2.1. ([7], [8]) Let πTx ≥ 2 be an inequality that cuts off the

fractional optimal solution x∗, then πUj = 0 for all j ∈ I.
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The above proposition suggests a first criterion for selecting the subset

U of M , indeed, we have:

Remark 3.2.1. The set U does not contain any row i of the matrix B such

that exists at least a j ∈ I with bij = 1.

The second proposition is the following:

Proposition 3.2.2. Let πUx ≥ 2 be an inequality that cuts off x∗, then for

all i ∈ U it holds that bTi x
∗ < 2.

Hence another rule for selecting the subset U is:

Remark 3.2.2. The set U does not contain any row i of the matrix B such

that
∑

j∈M

bij x
∗
j ≥ 2.

The inputs of the heuristics are a current fractional solution x∗ of the

linear relaxation of the problem (see 3.2) and the constraint matrix B. The

goal is to find a subset U ⊂M such that πU x∗ < 2 and, initially, U is set to

be equal to M . Using Propositions 3.2.2 and 3.2.1, the heuristics eliminate

from U , first of all, all the row indices i such that bTi x∗ ≥ 2 and then all

the row indices i such that bij = 1 and x∗j = 1.

Given a subset U of M , we denote by value the quantity:

value(U) :=
∑

j∈Supp

πUj x∗j ,

where the coefficients πU are computed using the definition (3.3).
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3.2.1 Row-criterion

The elements of the support are ordered in an increasing way with respect

to the x∗j ’s value, and, then, if there exist j and k in Supp such that x∗j = x∗k

the elements of the support are ordered in an increasing way with respect to

the number of ones present in the corresponding column in the submatrix

whose row indices are in U .

Until a cut is found or all the rows whose indices are in U have been

explored,

Step 0: We select a row i ∈ U and we set W := ∅;

Step 1: While value(U \W ) ≥ 2 and |W | < |U | − 1, iteratively we select a

column j in the ordered support such that bij = 0 and we update W ,

W := W ∪ {k ∈ U : bkj = 1};

Step 2: If value(U \ W ) < 2 we have found a cut that cuts off the current

fractional solution x∗ and we add it to the MPM formulation, if, oth-

erwise, |W | = |U |−1 we select a new row h ∈ U setting again W := ∅

and we come back to Step 1.

3.2.2 Greedy-criterion

The column j corresponding to the greatest value of x∗j is selected and

the element j is eliminated from the set Supp (that is Supp := Supp \ {j}).

All the indices i of the current U such that bij = 1 are eliminated from U ,

U is updated (U = U \{i ∈ U : bij = 1}) and value(U) is computed. While

value(U) ≥ 2 and |U | > 1, we choose the column k ∈ Supp such that the

coefficients πU relative to U \ {i ∈ U : bik = 1} give the smallest value of
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value among all the possible choices of an element in the current set Supp.

We updated Supp and U , Supp := Supp\{k} and U := U\{i ∈ U : bik = 1}

respectively and we check again the value of value and the cardinality of

U . If value(U) < 2, the cut whose coefficients are πU has been found

and we add it to the Set Covering formulation for the MPM problem; if

value(U) ≥ 2 and |U | ≤ 1 with this heuristic no more cuts can be added.

3.3 Most violated inequality over the first

Chvátal closure

The heurists find a violated inequality with right hand side equal to

two. If one wants to find the most violated inequality over the first Chvátal

closure, then a MIP problem which has been proved to be an NP− hard

problem [30] must be solved.

Formally the Multicasting problem is:

min pTx

s.t.

Bx ≥ 1

−Ix ≥ −1

x ≥ 0, x integer.

(3.6)

If x∗ is the optimal solution for the linear relaxation of this problem, then

the separation problem, is the problem of finding u ∈ R
|M |
+ and v ∈ R

|N |
+ such

that
⌈

uTB − vT I
⌉

x <
⌈

uT1− vT1
⌉

or proving that no cut is violated, that

is, no such u and v exist. If a cut can be found, minimizing the difference:
⌈

uTB − vT I
⌉

x−
⌈

uT1− vT1
⌉

produces the most violated CG cut.
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Remark 3.3.1. The vectors u and v can be assumed to have each com-

ponent less than one [31] as each coefficient of the problem is integer. In

fact, suppose for axample that ui ≥ 1 for an i ∈M . The CG cut associated

with ui is dominated, since it can be obtained as the sum of buic times the

constraint bTi x ≥ 1 and the CG cut associated with the fractional part of

ui.

Denoted by π :=
⌈

uTB − vT I
⌉

and by π0 :=
⌈

uT1− vT1
⌉

for a certain

u ∈ R
|M |
+ and v ∈ R

|N |
+ , the separation model [31] can be formulated as

follows:

minπTx∗ − π0

s.t.

πj ≥ uTBj − vj ∀j ∈ {1, .., |N |}

π0 < uT1− vT1+ 1

0 ≤ ui ≤ 1− ε ∀i ∈ {1, .., |M |}

0 ≤ vk ≤ 1− ε ∀k ∈ {1, .., |N |}

π, π0 integer

(3.7)

Naturally, even in this case ε is a positive, but small enough, real number

that has been set to 0.01 as recommended in [31]. To reduce the number of

integer variables π one can observe that all the variables xi with x∗i = 0 do

not give any contribution to the objective function value of the separation

problem and so, the separation problem itself can be constructed only on

the support of the solution x∗. Indeed, for any j ∈ N \Supp the value of the

corresponding πj can be computed using the optimal value of the variables

u and v, that is πj =
⌈

uTBj − vj
⌉

.

The separation problem can be, thus, reduced to the following MIP prob-

lem [31]:
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min
∑

j∈Supp

πjx
∗
j − π0

s.t.

sj + πj − uTBj + vj = 0 ∀j ∈ Supp

s0 + π0 − uT1+ vT1 = 0

0 ≤ ui ≤ 1− ε ∀i ∈ {1, .., |M |}

0 ≤ vk ≤ 1− ε ∀k ∈ {1, .., |N |}

0 ≤ sj ≤ 1− ε j ∈ Supp ∪ {0}

πj integer j ∈ Supp ∪ {0}

(3.8)

where the variables sj =
⌈

uTBj − vj
⌉

− uTBj + vj are slack variables.

3.4 Preliminary computational results

The two heuristics and the exact separation problem have been imple-

mented in C and the codes have run on a Opteron 246 machine with 2 GB

RAM memory using the version 9.1 of Cplex as solver.

The experiments have been performed on the set of test problems with

increasing number of nodes and of possible destinations generated in chapter

2, whose linear relaxation do not provide an integer solution. While the

linear relaxation of the MPM problem provides a fractional solution and a

CG cut can be found using the heuristic processes in sections 3.2.1 or 3.2.2

or solving the separation problem (3.8) it is added to the current formulation

and the problem is solved again. In the Table 3.1, we want to present the

preliminary results obtained with networks with up to 15 nodes. We report

there the number of nodes n, the number of destinations m and the seed

from which the problem has been generated seed.
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Table 3.1: Heuristics-Exact problem of generating CG cuts

3.2.1 3.2.2 3.8

n m seed
OP T−LP

LP
CG Gap T CG Gap T CG Gap T

10 7 1 0.007 3 0 0.01 1 0.007 0.01 5 0 4

10 8 1 0.007 3 0 0.03 1 0.007 0 5 0 3

10 9 1 0.012 4 0 0.01 2 0.005 0.02 2 0 0.8

15 5 14 0.002 1 0 0.03 1 0 0.04 1 0 0.03

15 6 14 0.002 1 0 0.05 1 0 0.04 1 0 0.03

15 7 14 0.002 1 0 0.03 1 0 0.04 1 0 0.04

15 8 20 0.000 1 0 0.08 1 0 0.06 1 0 0.03

15 9 10 0.139 23 0.024 1.76 9 0.093 0.84 - - > 600

15 9 20 0.000 1 0 0.09 1 0 0.07 1 0 0.04

15 10 2 0.005 4 0 1.11 1 0.005 0.15 2 0 123

15 10 10 0.139 23 0.024 1.77 9 0.093 0.83 - - > 600

15 10 20 0.033 16 0 0.75 1 0.033 0.19 - - > 600

15 11 2 0.005 4 0 1.12 1 0.005 0.13 2 0 125

15 11 10 0.139 33 0.006 3.01 1 0.139 0.17 - - > 600

15 11 20 0.034 19 0 0.96 1 0.034 0.19 - - > 600

15 12 2 0.005 4 0 1.12 1 0.005 0.14 2 0 425.18

15 12 10 0.152 31 0.001 3.04 1 0.152 0.18 - - > 600

15 12 20 0.032 11 0 0.6 1 0.032 0.24 - - > 600

15 13 2 0.005 4 0 1.12 1 0.005 0.14 2 0 425.91

15 13 3 0.019 4 0 0.35 1 0.019 0.08 6 0 146.03

15 13 10 0.152 32 0.036 4.86 4 0.128 0.32 - - > 600

15 13 18 0.010 7 0 0.42 1 0.010 0.07 - - > 600

15 13 20 0.032 11 0 0.61 1 0.032 0.24 - - > 600

15 14 2 0.005 4 0 1.11 1 0.005 0.13 2 0 442.75

15 14 3 0.019 6 0 0.36 1 0.019 0.08 6 0 145.65

15 14 10 0.152 34 0.020 2.05 4 0.128 0.31 - - > 600

15 14 18 0.004 2 0 0.28 1 0.004 0.11 4 0 86.10

15 14 20 0.032 11 0 0.61 1 0.032 0.23 - - > 600
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The column (OPT − LP )/LP reports the gap between the optimal so-

lution OPT of the integer problems and the optimal value of their linear

relaxations LP . Gap is the ratio (OPT − LP )/LP where OPT is the opti-

mal value of the integer problem (3.6) while LP is the optimal value of the

linear relaxation of the problem with the addition of the CG cuts that can

be generated with the different methods. For each problem, we report the

number CG of the CG cut generated, the Gap and the computational time

T . The computational time T does not include the preprocessing time of

the matrix but only the time for solving the linear relaxations of the prob-

lems and the time for generating the cuts. If T is greater than 600 seconds,

then the computation is interrupted.

Obviously, finding the most violated inequalities in the first Chvátal clo-

sure on the basis of the current fractional solutions and inserting them to

the formulation, gives the best value of the lower bounds but it is also true

that it is too time consuming even for small networks (15 nodes); there are

several cases in which the whole problem is not solved within the time limit.

The heuristic of section 3.2.1 provides cuts that reduce strongly the gap

and, in most of the considered cases, the optimal solution of the linear

relaxation of the problems with the generated CG cuts is integer. However,

it generates more cuts than the other approaches and it is not as fast as the

procedure with the heuristic in section 3.2.2.

The heuristic in section 3.2.2 is the fastest and it provides few cuts that

reduce the gap but not so strongly as for the cuts found with the procedure

in section 3.2.1 or solving the problem (3.8); in many cases, also with graphs

with 10 nodes, inserting the CG cuts of heuristic in 3.2.2 to the linear

relaxation of the problems does not reduce to zero the value Gap.
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3.5 Concluding remarks

The row-based heuristic is able to generate CG cuts that improve the

lower bounds of the linear relaxation of the Set Covering polytope for the

Multicasting problems in wireless networks in a reasonable time, but two

steps can still be done: the first is to find facet defining inequalities not

necessarily belonging to the first closure and the second is to generate facet

defining inequalities without scanning, in the worst case, all the rows of the

current matrix U (as in the heuristic procedure in section 3.2.1).

The programs Porta [17] (POlyhedron representation transformation al-

gorithm) and cdd [34] have been run on the randomly generated MPM prob-

lem in order to obtain an explicit description of the Set Covering polytope.

Unfortunately, it is not possible to terminate the programs for the prob-

lems whose linear relaxations have a fractional optimal solution, because

neither of them is able to provide (in days of computation) the description

of the polytope for networks with more than 5 nodes. At present, all the

generated graphs with 5 nodes (more than 500 problems have been gener-

ated) can be solved just with the linear relaxation of the problem and no

more constraints than those that are in the formulations are required in the

description of their polytopes.

The effectiveness of the Set Covering formulation (2.25)-(2.26) for the

Minimum Power Multicast problems, has been also checked using the tool

in [5]. No coefficient of the constraint matrix is strengthened by the code

that Andersen et al. propose.



Chapter 4

MIP formulations for a

probabilistic Broadcasting

Minimum Power problem

In this chapter, we consider a new variant of the Minimum Energy Broad-

cast (MEB) problem: the Probabilistic MEB (PMEB) [63]. As seen in

chapter 2, the objective of the classic MEB problem is to assign transmis-

sion powers to the nodes of a wireless network is such a way that the total

energy used in the transmission is minimized, while a connected broad-

casting structure is guaranteed. In the new variant of the problem pre-

sented in section 4.1, we take into account a concept of reliability for the

nodes with the goal of guaranteeing the broadcasting structure satisfying

a chosen reliability level. Three mixed integer linear programming formu-

lations for the new problem are presented in section 4.4, whereas efficient

formulation-dependent methods for the solution of the different formula-

tions are described in section 4.5. Computational results, aiming at ranking

the proposed approaches, depending on the characteristics of the problems

61
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under investigation, are proposed in section 4.6.

4.1 Introduction

We recall that in Ad-Hoc wireless networks, one terminal can commu-

nicate through wireless channels with another terminal using a single hop

if the second terminal is within the transmission range of the first one,

otherwise a multi-hop communication is required.

A crucial issue in this context consists in assigning a transmission power

to each node in order to ensure connectivity of the network, while mini-

mizing the total power expenditure over the network. We consider in this

chapter the case of the Broadcast problem, in which a designated source

terminal has to communicate with all the other nodes, and we assume to

operate on a static network, i.e. distances among terminals are known in

advance, together with the characteristics of the environment in which the

terminals are operating. However, even if many contributions have been

given to the deterministic models for the MEB problem none has consid-

ered nodes’ reliability. The deterministic assumption represents a poor ap-

proximation of the reality; the terminals are, indeed, electronic devices that

may be subject to a temporary damage or a permanent failure. This re-

mark suggests the appropriateness of solving the problem as an optimization

problem that takes into account the uncertain nature of nodes availability.

This is a salient characteristic that makes the problem much more complex

to solve than its classic, fully deterministic counterpart. To the best of our

knowledge, no mathematical models explicitly incorporating the uncertain

availability of the nodes have been proposed so far. We want to provide an

original contribution in this direction. More specifically, we present three

mixed integer linear programming formulations for a variant of the MEB
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problem in which nodes failure is taken into account, and the optimal solu-

tion not only minimizes the total transmitting power over the network, but

also guarantees a certain reliability level for the whole network, based on as-

sumption about the reliability of the single terminals. The rationale is that

in the reality one implicitly accepts that failures will happen in the devices

and, therefore, the goal of the PMEB problem is to provide broadcasting

structures robust enough to guarantee, in case of failure of some terminals,

a reliable connectivity for the remaining terminals.

4.2 Related works

The Minimum Energy Broadcast (MEB) problem and its variants have

already been the subject of many works. Both Cagalj et al. and Clementi

et al. have shown its NP-hardness in [13] and [20], respectively. Althaus

et al. have proposed a mixed integer linear programming model and have

developed an exact approach, based on branch and bound, for its solution

[1]. Alternative formulations have been suggested and solved to optimality

by Das et al. in [25]. Montemanni et al. have proposed in [60] two mixed

integer programming formulations together with a preprocessing rule and

some valid inequalities [62]. Several heuristic methods have been also pro-

posed in the literature. Wieselthier et al. have developed in [4] the well

known BIP (Broadcast Incremental Power) algorithm. Metaheuristic ap-

proaches have been suggested by Marks et al. in [42] and by Das et al. in

[23]. More recently, Lagrangian relaxation procedures have been proposed

by Altinkemer et al. in [3] and by Yuan in [88]. Montemanni et al. have used

the simulated annealing paradigm to find a near-optimal solution [61]. The

cross-entropy metaheuristic has been also employed by Li et al. in [54] to

define a new probabilistic approach called the RTO (Randomized Tree Op-
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timization) algorithm. Another method has been proposed in [42] in which

the initial solution is determined by means of a random tree generation

within an evolutionary approach.

4.3 Network Model

The mathematical formulation of the MEB problem can be given con-

sidering the network as a directed complete graph G = (V,A) where V

represents the set of nodes corresponding to the terminals of the network

and A is the set of arcs. As in chapter 2, a cost pij that corresponds to the

power required to establish a link from node i to j is associated with each

arc (i, j) ∈ A.

The MEB problem consists, therefore, in defining a range assignment r

minimizing
∑

i∈V r(i), subject to the constraints that a directed path exists

from a source node s to all the other nodes in the network.

Another definition of the MEB problem can be given in terms of the

optimal arborescence rooted at node s: for a node i and an arborescence T of

G, let (i, iT ) be the maximum cost arc originated from i in T , i.e. (i, iT ) ∈ T

and piiT ≥ pij, for all (i, j) ∈ T . Due to the broadcasting property, the

power cost of an arborescence T is then c(T ) =
∑

i∈V piiT . It is now easy

to observe that an arborescence rooted at s is contained (not necessarily

strictly contained) in any valid broadcasting structure. The MEB problem

can, therefore, be described as the problem of finding the arborescence T

with the minimum power cost c(T ).

In reality, some nodes of the network may fail due to technical prob-

lems or battery draining. This important aspect is neglected in the models
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presented so far in the literature. We aim at starting to close this gap

by presenting a model where a concept of reliability, connected with node

failures, is taken into account.

In order to consider node failures, we associate with each node i of the

network a value qi ∈]0, 1] representing the probability that node i will re-

main active (i.e. it will not fail) for the whole operating time of the network.

The value of qi has to be assigned by the decision makers, and reflects the

reliability of each node. Typically it will depend on the physical charac-

teristics of the area where each node is deployed. For example, in military

applications a node i close to the enemy will have a high probability to be

destroyed, and consequently a small value for qi. Based on the same idea,

a node i deployed in an impervious territory will have again a small value

for qi.

We can now formally define the Probabilistic Minimum Energy Broadcast

(PMEB) problem as a MEB problem where a given minimum reliability level

α ∈]0, 1] has to be achieved. Specifically, the reliability level of the paths

from s to each other node i of the network will have to be at least α. A

more formal definition of the PMEB problem will be given in the remainder

of this section, after some important remarks.

The uncertain events characterizing our problem (i.e. node failures) are

independent from each other, that is, if a node happens to fail, this does

not affect the correct functioning of the other terminals of the network. It

is also possible to observe that if nodes i and j have a probability values

of functioning qi and qj respectively, then link (i, j) has a probability value

of being available equal to the product qiqj. The same reasoning can be

extended to paths: the probability of a multi-hop transmission path from

node i to node j is equal to the product of the probabilities qk associated
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with the nodes involved in the path. In mathematical terms:

P(Pij) :=
∏

v∈Pij

qv,

where Pij represents the path connecting i to j under investigation, and P

is the probability function.

Finally, we would like to observe that, since P(Psj) ≤ qsqj for each j ∈

V \ {s} (because s and j will be the extremes of each path from s to j),

a feasible solution to the PMEB problem can exist if and only if qsqj ≥ α

for each j ∈ V \{s}. We suppose again that there are no limits in the

transmission power that can be assigned to the nodes, so that the arcs

(s, j) are always elements of A.

4.4 Mixed integer linear programming for-

mulations

For the PMEB problem, the decision variables are a set of continuous

variables y representing the transmission power of each node, i.e. yi := r(i)

for each i ∈ V , and a second set of integer variables z, that describe the

optimal arborescence structure, and that are defined as follows:

zij :=







1 if (i, j) ∈ T,

0 otherwise,

where T represents the arborescence connecting the source s with all the

other nodes of the network.
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4.4.1 F1: Path-Based formulation

Let U represent the set of all infeasible paths originated in s. The generic

element P of U verifies the condition that the product of the probabilities

of the nodes involved in path P is less than the reliability level α, i.e.

U := {P : P is an s− k path for k ∈ V \ {s}, such that
∏

i∈P

qi < α}. (4.1)

Notice that the set U potentially has a huge cardinality and for this

reason, it will be used in an implicit way in the method we propose, as

described in the following sections.

The first MIP formulation F1 that we propose for the PMEB is as follows:

min
∑

i∈V

yi (4.2)

s.t.

yi ≥ pijzij ∀ (i, j) ∈ A (4.3)
∑

(i, j) ∈ A,

i ∈ S, j ∈ V \ S

zij ≥ 1 ∀S ⊂ V, s ∈ S (4.4)

∑

(i,j)∈P

zij ≤ |P | − 1 ∀P ∈ U (4.5)

zij ∈ {0, 1} ∀ (i, j) ∈ A (4.6)

yi ∈ IR+ ∀ i ∈ V. (4.7)

Constraints (4.3) establish the relation between variables z and y. Con-

straints (4.4) represent the connectivity requirements: for each partition



68 Chap. 4 MIP formulations for a PMEB problem

(S, Sc) such that s ∈ S and Sc 6= ∅, there must be at least an arc out-

going from S and incoming in Sc. Inequalities (4.5), ensure the reliability

constraints across all the source-destination paths: if the source s and a

destination t are connected by the path P ∈ U, and, hence, by a path that

do not respect the reliability level, then constraint (4.5) excludes the path

P from any feasible solution. Finally, constraints (4.6) are the binary re-

strictions on the variables and constraints (4.7) define the domain definition

for the continuous y variables.

Since the cardinality of U will be large already for small values of |V |,

handling U efficiently becomes a critical issue. For this reason in our method

for solving F1, we will initially omit constraints (4.5), and we will generate

them in a dynamic way only when they are violated. An analogous reasoning

can be applied also to constraints (4.4), that are present again in a huge

number. The procedure will be explained in details in section 4.5.1.

4.4.2 F2: Cumulative Probability formulation

The idea behind our second PMEB model is to get rid of set U used in

formulation F1 and to introduce a new variable associated with each node k

of the network expressing the probability value accumulated till that node

along the arborescence. Such a variable can be defined as the product of

the probability values of the nodes along the s − k path. Instead, we will

use here a continuous variable τk, for k ∈ V equivalently defined as the sum

of the logarithm of the probability values of the nodes along the s−k path.

The use of the logarithm will be clarified in a formal way in the next section

4.4.3.

It is worth noting that variables τk are, indeed, state variables since they

depend on the values assumed by variables z, that are still present in this
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formulation with the same meaning as in section 4.4.1. Also variables y

have the same meaning as in 4.4.1.

The model F2 can be, thus, formulated as follows:

min
∑

i∈V

yi (4.8)

s.t.

yi ≥ pijzij ∀ (i, j) ∈ A (4.9)
∑

(i, j) ∈ A,

i ∈ S, j ∈ V \ S

zij ≥ 1 ∀S ⊂ V, s ∈ S (4.10)

τi ≤ τj + log qi +M(1− zji) ∀ (i, j) ∈ A (4.11)

τs = log qs (4.12)

τi ≥ logα ∀ i ∈ V (4.13)

τi ≤ 0 ∀ i ∈ V (4.14)

yi ∈ IR+ ∀ i ∈ V (4.15)

zij ∈ {0, 1} ∀ (i, j) ∈ A. (4.16)

While most of the constraints are common with the model presented in

subsection 4.4.1, some others are specific for the Cumulative Probability

model and deserve some description. For each arc (i, j) ∈ A constraint

(4.11) updates, through a recursive process, the value of τi whenever node

i is reached directly from node j. Clearly, such a constraint should be

meaningful only if arc (i, j) belongs to the arborescence, otherwise it should

become redundant. This is guaranteed by means of the term M(1−zji), that

appears in the right hand side of the constraint. It dominates the inequality

whenever zji = 0 for a big enough coefficient M (it suffices for M to take

the value in (4.17)), and vanishes otherwise. Constraint (4.12) initializes
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the recursive process by assigning log qs to τs. The set of constraints (4.13)

imposes the reliability requirement on each terminal of the network. Finally,

constraints (4.14), (4.15) and (4.16) define variables domains. We notice

that variables τi take nonpositive values since they are sums of logarithms

of values belonging to the ]0, 1] interval.

This formulation uses, within constraints (4.11), a constant M whose

value must be sufficiently big. In this specific context, it is possible to show

that M can be set, for example, to

M := −(n+ 1)min
i∈V

log qi (4.17)

in order to guarantee the reliability level satisfaction.

It is possible, however, to strengthen constraints (4.11) by defining a

specific constant M for each node i, in such a way that constraints (4.11)

become redundant when arcs (j, i) do not belong to the arborescence T. A

choice for these constants, using constraints (4.13), can be the following:

Mi := − logα− log qi ∀i ∈ V. (4.18)

By setting these constants to the previous values, constraints (4.11) of the

Cumulative Probability formulation can be replaced by the constraints:

τi ≤ τj + log qi +Mi(1− zji) ∀ (i, j) ∈ A. (4.19)

This latter strengthened version of the constraints will be, thus, used in

the formulation and for the experiments presented in section 4.6.

4.4.3 F3: Multicommodity Flow formulation

The formulation presented in this section is based on a Multicommodity

Flow model as described, for example, in [57]. It includes into the model an
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explicit representation of all the paths connecting the source s to each node

d ∈ V . For this goal, we do not use the spanning arborescence variables

z and we introduce, for each node d ∈ V and each arc (i, j) ∈ A, a new

variable denoted by tdij that takes value 1 if arc (i, j) is on the path from s

to d, and 0 otherwise, in fact, it represents the value of the commodity d

flowing through the arc (i, j). Variables y remains the same as before, and

have the same meaning as in sections 4.4.1 and 4.4.2.

The model F3 can be thus summarized as:

min
∑

i∈V

yi (4.20)

s.t.

yi ≥ pijt
d
ij ∀ (i, j) ∈ A,∀ d ∈ V \ {s} (4.21)

∑

j∈V \{s}

tdsj = 1 ∀ d ∈ V \ {s} (4.22)

∑

i∈V \{d}

tdid = 1 ∀ d ∈ V \ {s} (4.23)

∑

i∈V \{j}

tdij −
∑

i∈V \{j}

tdji = 0 ∀ d ∈ V \ {s}, ∀ j ∈ V \ {s, d} (4.24)

qd
∏

i∈V

q
∑

j∈V \{i} t
d
ij

i ≥ α ∀ d ∈ V \ {s} (4.25)

tdij ∈ {0, 1} ∀ (i, j) ∈ A, ∀ d ∈ V \ {s} (4.26)

yi ∈ IR+ ∀ i ∈ V (4.27)

The objective function (4.20) of this model remains unchanged with re-

spect to the other formulations F1 and F2. Constraints (4.21) regulates

the power emitted by node i based on the value of variables t. The sets

of constraints (4.22)–(4.24) are the usual multicommodity flow equations
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that guarantee, for each possible source-destination pair, the flow conserva-

tion on the source node, on the destination node, and on any intermediate

node, respectively. We remark that
∑

j∈V \{i} t
d
ij = 1 if node i is on the

active path from s to d. Constraints (4.25) are the reliability requirements,

and finally, constraints (4.26) and (4.27) are the limitations on the decision

variables. The Multicommodity Flow formulation F3 is a non-linear pro-

gramming model because of the presence of the set of reliability constraints

(4.25). Such constraints could be, however, linearized by making use of the

logarithmic properties, as follows:

log

(

qd
∏

i∈V

q
∑

j∈V \{i} t
d
ij

i

)

= log qd +
∑

i∈V

log

(

q
∑

j∈V \{i} t
d
ij

i

)

= log qd +
∑

i,j∈V, j 6=i

tdij log qi. (4.28)

Constraints (4.25) can be, thus, replaced by the following linear con-

straints:
∑

i,j∈V, j 6=i

tdij log qi + log qd ≥ logα ∀d ∈ V \ {s} (4.29)

These considerations above are the motivations on the use of the cumula-

tion of the logarithms of the probability values for the nodes in formulation

F2 instead of the product of the probability values accumulated along the

paths.

4.5 Algorithms for the MIP formulations

Here we present the methods for solving the different formulations pre-

sented in section 4.4.
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4.5.1 Algorithm for F1

The drawback of formulation F1 is represented by the sets of constraints

(4.4) and (4.5) that are in an intractable number, from a practical point of

view. However, since only a small fraction of these constraints is saturated

at optimality, we choose to solve the problem by means of an iterative

approach. Namely, constraints (4.4) and (4.5) are initially not considered,

and a subset of them will be inserted into the formulation only in case the

current optimal solution violates them. This iterative mechanism will be

repeated until a solution that respects all constraints (4.4) and (4.5) (both

those explicitly added to the formulation and those implicitly checked) is

found.

The procedure sketched above can be formalized by means of the follow-

ing procedure:

Step 0: Let F ′1 be formulation F1 for problem PMEB without constraints

(4.4) and (4.5);

Step 1: Solve F ′1, and let (y, z) be the optimal solution;

Step 2: If z violates a constraint ctr4 of type (4.4) (the separation routine will

be described later), then add ctr4 to F ′ and go to Step 1;

Step 3: If z violates a constraint ctr5 of type (4.5) (the separation routine will

be described later), then add ctr5 to F ′ and go to Step 1;

Step 4: (y, z) is the optimal solution of F1 (and not only of F ′1).

Notice that the procedure converges after a limited number of iterations

since the number of inequalities (4.4) and (4.5) is, albeit significant, finite.
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It is important to observe that a speed-up may be obtained by first con-

sidering the linear relaxation of F ′1 in Step 2, and adding the corresponding

violated constraints of type (4.4). In this way, many of the constraints might

be added before considering the (more time consuming) integer program F ′
1.

In section 4.6 some results that confirm the correctness of this idea will be

presented.

We however did not implement the speed-up since the computation times

reported in section 4.6.3 indicate that the method based on F1 is already

the fastest one for some types of problems (without considering the linear

relaxation first). On the other hand, the method is far from being the best

one on problems with different characteristics.

Separation of inequalities (4.4) Once a solution (y, z) of F ′
1 is available,

the presence of violated inequalities of type (4.4) of F1 not inserted into F ′1

can be easily detected. We use a set L containing all the nodes of the

connected component of the source, that is for each node i ∈ L the exists a

directed path from the source to i using the arcs in which the values of the

variables z are equal to 1. Two situations are possible at this point:

(i) if |L| = |V |, then no violated constraint of type (4.4) exists in the

current solution (y, z);

(ii) if |L| < |V |, then a violated constraint of type (4.4) has been identified.

Therefore, we can add the following violated inequality to F1:

∑

i∈L,j∈V \L

zij ≥ 1.

Separation of inequalities (4.5) Once a solution (y, z) of F ′
1 is available,

the presence of violated inequalities of type (4.5) of F1 not inserted into
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F ′1 can be detected as follows. Since variables z define an arborescence

(no violated constraint of type (4.4) exists because of the structure of the

algorithm), it is enough to calculate, for each k ∈ V \ {s}, the following

value:

Rz
sk :=

∏

i∈P z
sk

qi

where P z
sk is the set of nodes encountered along the (unique) path from s to k

on the arborescence defined by variables z. In our current implementation of

the algorithm, we visit the arborescence defined by variables z, and as soon

as we identify a path from s to k (with k possibly not a leaf) with Rz
sk < α,

we add the constraint of type (4.5) corresponding to P z
sk to model F ′1. After

a constraint has been added, we do not stop the separation procedure, but

we seek for other violated constraints, i.e. more than one constraint can be

added at each invocation of the separation routine.

4.5.2 Algorithm for F2

Similarly to what happens in the Path-Based formulation (see section

4.5.1), subtour elimination constraints (4.10) are in a very large number,

too. Therefore, in order to solve the problem F2, we need to run an iterative

approach, starting with a relaxation of this formulation. The procedure we

use, which is formally defined in the reminder of this section, is very similar

to that described in section 4.5.1 for the Path-Based formulation. The main

difference between the two solution approaches is that in this case we have

only one set of critical inequalities to be added whenever violated (instead

of the double set in case of the Path-Based formulation). The procedure

can be formalized by means of the following procedure:

Step 0: Let F ′2 be formulation F2 for problem PMEB without constraints
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(4.10);

Step 1: Solve F ′2, and let (y, z, τ) be the optimal solution;

Step 2: If z violates a constraint ctr10 of type (4.10) (the separation routine

is analogous to that described in section 4.5.1 for the separation of

inequalities (4.4)), then add ctr10 to F ′2 and go to Step 1;

Step 3: (y, z, τ) is the optimal solution of F2 (and not only of F ′2).

Notice that the procedure converges after a limited number of iterations

since inequalities (4.10) are in finite, although often huge, number.

An observation analogous to that reported in section 4.5.1 for the method

based on formulation F1 can be done here. In particular, a theoretical

speed-up for the method might be obtained by considering first the linear

relaxation of F ′2 in step 3, for the generation of violated constraints (4.10).

However, the results we will report in section 4.6, clearly indicate that this

is not the case for the method based on formulation F2.

4.5.3 Algorithm for F3

The Multicommodity Flow formulation may have a large number of vari-

ables but it does not have critical constraints (like (4.4) and (4.5) in F1 and

(4.10) in F2) that impose the development of a specific solution technique.

Formulation F3 can be, thus, directly solved by any mixed integer linear

programming solver.



Chap. 4 MIP formulations for a PMEB problem 77

4.6 Experimental Results

This section presents the computational experience carried out with the

exact methods described in section 4.5. Two different types of experiments

will be discussed, covering the following aspects:

• how many constraints of type (4.4) and (4.5) (respectively (4.10)) are

generated during the execution of the method based on formulation

F1 (respectively F2);

• computation times of the three methods: we want to estimate the

largest problem which is possible to solve with the methods we pro-

pose, and at the same time understand which is the most promising

approach, depending on the characteristics of the problem under in-

vestigation.

First of all, we describe the characteristics of the benchmarks used for

the experiments.

4.6.1 Benchmark description

No benchmark is available from the literature, being the problem treated

here for the first time. We have, therefore, generated a set of random

instances, trying to produce realistic scenarios.

The nodes have been chosen uniformly in a 5000 × 5000 grid and the

probability that any of the nodes is functioning is assumed to be uniformly

distributed in the interval [0.85, 0.95]. These values should be reasonable

for real-life applications. Moreover, the value of the coefficient κ, which

models signal propagation, has been set to 2.
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The three methods described in section 4.5 have been implemented in

C and the experiments have been carried out on an Intel Celeron 1.3 GHz

/ 256 MB machine. The callable library version of CPLEX 9.0 has been

used as mixed integer programming solver. Ten random instances have been

generated for each problem considered, and a maximum computation time

of 3600 seconds has been allowed for each instance.

Table 4.1: Average number of constraints generated while solving the Path-Based

formulation F1 and the Cumulative Probability formulation F2.

F1 F2

|V | α (4.4) (4.5) (4.10)

10 0.50 2.75 0.50 0.00

10 0.60 7.75 4.10 0.00

10 0.70 28.50 39.60 0.00

10 0.80 94.00 46.60 0.00

15 0.50 11.50 0.60 0.00

15 0.60 42.75 44.60 0.00

20 0.50 17.00 23.00 0.00

20 0.60 43.75 82.40 0.00

4.6.2 Number of constraints added

In Table 4.1, we present, for a subset of the problems we will consider

in section 4.6.3, the number of constraints (4.4) and (4.5) generated while

solving the Path-Based formulation F1 as described in section 4.5.1, and the

number of constraints (4.10) generated while solving the Cumulative Prob-

ability formulation F2 as described in section 4.5.2. In Table 4.1, we report,

for each problem considered, the average number of constraints generated.
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From Table 4.1, it can be observed how, during the solution of formula-

tion F1, a considerable number of constraints (4.4) and (4.5) are generated.

Moreover, a weak correlation seems to exist among the number of con-

straints generated for the two families. This result suggests that a speed-up

for the solution method described in section 4.5.1 may be obtained by con-

sidering the linear relaxation of F1 for the generation of constraints (4.4)

(as suggested in section 4.5.1).

Table 4.2: Computational results for the methods in section 4.5.

Path–Based F1 Cumulative Probability F2 Multicommodity Flow F3

|V | α T (sec) σ (sec) OOT T (sec) σ (sec) OOT T (sec) σ (sec) OOT

10 0.50 0.58 0.71 - 4.67 10.92 - 1.56 1.54 -

10 0.60 1.55 2.14 - 3.11 5.71 - 2.26 2.08 -

10 0.70 41.38 52.21 - 14.67 18.71 - 0.46 0.70 -

10 0.80 309.84 536.32 - 54.55 51.43 - 0.05 0.04 -

15 0.50 4.64 3.02 - 65.68 91.15 - 58.10 28.78 -

15 0.60 237.11 540.40 - 459.35 593.40 - 109.66 80.38 -

15 0.70 2338.25 1558.93 5 2097.16 1580.71 4 4.02 5.56 -

15 0.80 - - 10 2935.27 1330.43 8 0.074 0.01 -

20 0.50 365.95 626.78 - 2017.29 1630.16 5 2863.30 952.29 5

20 0.60 2032.40 1555.29 5 2710.02 1367.56 7 2267.56 1370.81 5

20 0.70 3364.93 964.74 9 3269.61 991.38 9 93,72 200.91 -

20 0.80 - - 10 - - 10 0.21 0.01 -

25 0.70 - - 10 - - 10 949.33 1240.36 1

25 0.80 - - 10 - - 10 0.42 0.02 -

30 0.70 - - 10 - - 10 1809.67 1791 5

30 0.80 - - 10 - - 10 0.78 0.05 -

Even more interesting is the situation for constraints (4.10), generated

while solving formulation F2: none of these constraints is generated dur-

ing the experiments summarized in Table 4.1. The results suggest that

considering the linear relaxation of F2 first, to generate constraints (4.10)

in the algorithm discussed in section 4.4.2, would not improve the overall
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computation times of the method.

4.6.3 Computation times

Computational results for the algorithms discussed in section 4.5 are

summarized in Table 4.2. For each method and for each problem consid-

ered we report the average T and standard deviation σ for the execution

time (in seconds) and the number of instances not solved to optimality in

the given time limit (OOT , out of time). When not all the problems are

solved to optimality, only the instances solved to optimality concur to the

computation of T and σ. Different values for the reliability threshold of

the network α are finally considered. For each problem considered, the best

value for T is in bold.

From the results reported in Table 4.2, the exact method based on the

Path-Based formulation F1 appears to be the most efficient approach for

small networks (i.e. with at most 15 nodes) and for low values of the re-

liability threshold α. On the other hand, as the value of α increases, the

approach based on the Multicommodity Flow formulation F3 outperforms

by far the other methods, reaching the point of becoming the only method

able to solve many of the problems in the given time limit.

It is also interesting to observe how, for most of the problems, the average

computational time required to solve the Multicommodity Flow model F3

decreases as the value of α increases. When α increases, several paths are

preliminarily discarded because the product of the probabilities associated

with their nodes does not reach the threshold.

A final remark is about the potential speed-up for the method based on

model F1, achievable by considering the linear relaxation of the formulation
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Table 4.3: Additional computational results for the Multicommodity Flow for-

mulation F3.

|V | α T OOT

25 0.75 2.923 -

30 0.75 47.47 -

35 0.75 90.59 -

40 0.75 936.22 2

45 0.75 1810.50 3

50 0.75 2788.13 5

first while generating violated constraints (4.4). Even if such a speed-up is

likely to exist (see section 4.6.2), it would definitely not close the gap be-

tween the performance of the methods based on F1 and F3 for the problems

where the latter is the fastest method.

This attractive performance of the Multicommodity Flow model F3 sug-

gests to solve larger problems. Indeed, Table 4.3 summarizes the average

computational times (and number of instances not solved to optimality) for

test problems with up to 50 nodes by setting a constant value of 0.75 for

α. The results show how both the computational times T and the number

of instances not solved within the required amount of time OOT increase

quite drastically as the number of nodes increases. This is related to the ex-

plosion in size of formulation F3. Nevertheless, the method based on model

F3 remains the only one, among those considered, which is able to handle

problems with up to 50 nodes in the given time.
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4.7 Conclusions

In this chapter we have studied the Minimum Broadcast problem for

Ad-Hoc wireless and sensor networks in probabilistic settings. The possible

failure of any node in the network is considered explicitly within the math-

ematical representation of the problem, in order to provide more robust

solutions with a given level of reliability. We proposed three different mixed

integer linear programming formulations for the problem, and we developed

an efficient solution approach for each of them.

Experimental results, aiming at understanding how the different methods

perform, have finally been presented. These experiments, carried out on

instances with up to 50 nodes, suggest that one method dominates the

other two, when reasonable reliability levels are considered.



Chapter 5

Delay-constrained Steiner Tree

problem

The problem we want to deal with in this chapter is the minimum Steiner

Tree with Delay constraints which has been proved to be an NP–Complete

problem. In Multicast problems, indeed, one of the crucial aspects can be

the Quality of Service requirement, in particular in communications not only

the costs should be minimized but a time limit warranty in the reception of

the forwarded messages should be considered. For this reason, we address

here a Delay-constrained version of the Steiner Tree problem [51] that may

find immediate application in Ad-Hoc wireless networks introducing, also

in this context, the Quality of Service requirements ([37], [43]). We present

several valid MIP formulations in section 5.2 comparing the respective LP

relaxation (in section 5.5). In section 5.6 we describe some preprocessing

procedures to reduce the size of the problems. We present exact procedures

for solving the problems and some computational results in section 5.7 and

5.9 respectively.

83
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5.1 Introduction and Related works

The Steiner Tree problem is an NP-Hard problem with a long history

([29], [41]) and in the last 20 years it has been well studied and solved

([2], [47], [57], [69]), since several practical problems can be modelled as a

Steiner Tree problem. Recently some variants of the classical Steiner Tree

problem have been taken into account on the influence of new problems

in communications with the introduction of the Quality of Service (QoS)

requirement or with the restriction on the maximum degree of the nodes

(Degree-constrained Steiner Tree problem). The pure Steiner Tree problem

(see Definition 1.5.1) on the graph G = (V,E) is the problem of finding

a tree with the minimum total cost connecting a required set of nodes R,

subset of V , making possibly use of the other nodes of the graph. The

Steiner Tree problem can be extended taking into account the concept of

the QoS requirement. Indeed, it could be useful and appreciable in practice

to guarantee the connection of a source with the nodes in R within a time

limit. In particular in communication networks, messages sent by a source

towards all the members of a multicast group can be required to be deliv-

ered within a maximum delay ([49], [66]). Naturally, the QoS constraints

and, specifically, the maximum delay constraints impose a restriction on

an acceptable multicast tree. Only recently, the Delay-constrained Steiner

Tree problem has been object of study, specially, with the developments of

the multimedia technology. In fact, real-time applications need to transmit

information within a certain amount of time and so a message generated by

one source of the network has to reach a set of target devices for delivering

the same information in a fixed delay limit.

Many heuristics for solving the problem have been proposed for both

static and dynamic networks ([49], [50], [79], [80]). Kompella et al. in [49]

present greedy heuristics where they find a spanning tree of the closure
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graph of the constrained shortest path between the source and the required

nodes, while Sriram et al. in [79] propose two algorithms for sparse and static

communication groups divided into two phases: the first computes all the

possible shortest paths from the source to each terminal respecting the max-

imum delay requirement and the second uses these paths for constructing

the multicast tree. Zhu et al. [89] propose a heuristic based on a feasible

search optimization method that starts with the minimum delay tree and

then decrease the costs of the delay-bounded tree. An integer programming

formulation together with an exact solution technique can be found in [65]

by Noronha et al.. In Tseng et al. [80], a genetic algorithm and a mixed

integer formulation for the Delay and Degree-constrained Broadcast prob-

lem is presented, whereas a simulated annealing method is proposed in [50]

for a distributed multicast routing in Delay-constrained Steiner Tree prob-

lem. The problem of the QoS in a Minimum Energy Multicast problem in

wireless Ad-Hoc networks has been already considered and mixed integer

programming formulations for the QoS-MPM problem have been proposed

in [37] and [43].

5.2 Mixed integer programming formulations

Let G = (V,E) be an undirected graph. With each edge e = {i, j} ∈ E,

two nonnegative real numbers are associated: the cost ce and a delay dele

which represents the time needed to run along the edge e. The directed

graph associated with G = (V,E) is denoted by G = (V,A), where the

set A is the set of the directed arcs (i, j) and (j, i) corresponding to the

undirected edge e = {i, j} ∈ E. We suppose that both the costs and the

delays are symmetric, i.e. for every (i, j) and (j, i) in A we have c(i,j) = c(j,i)

and del(i,j) = del(j,i). For simplifying the notation we write cij and delij
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instead of c(i,j) and del(i,j), respectively. A source node s and a set R of

destinations are selected among the elements of V ; all the other nodes of

the network (different from the source an not belonging to R) are the Steiner

nodes.

The Delay–constrained Minimum Steiner Tree problem consists in finding

a tree T connecting the source s with every terminal node in R (possibly

making use of the Steiner nodes) with the minimum total cost c(T ), while

respecting a fixed maximum delay ∆ ∈ R
+. For each t ∈ R, if P(s,t) is a

feasible path connecting the source s to the terminal t, then it must hold:

∑

(i,j)∈P(s,t)

delij ≤ ∆.

Given a path P(i,j) from i to j, we denote by Del(P(i,j)) the sum of the

delays of the arcs of P(i,j):

Del(P(i,j)) :=
∑

(k,h)∈P(i,j)

delkh.

In order to model the problem the state link variables y are introduced.

For each arc (i, j) ∈ A, the boolean variable yij indicates whether or not

the arc (i, j) belongs to the arborescence T connecting the source with the

destinations, i.e.

yij :=

{

1 if (i, j) ∈ T,

0 otherwise.

In the following subsections, we present four different mixed integer pro-

gramming formulations for the minimum Steiner Tree problem with Delay

constraints.
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5.2.1 F1: Degree-constrained Minimum Spanning Tree

formulation with Delay constraints

As done in [57] for the Steiner Tree problem, the first formulation finds a

Degree-constrained Minimum Spanning Tree T0 respecting the Delay con-

straints on a modified network G0 = (V0, A0) obtained introducing another

node 0 in the graph G = (V,A). The set V0 is the set of all the elements of

V with the addition of the node 0, that is, V0 := V ∪ {0} and the set A0

is the set of all the arcs in A and of all the arcs (0, i) with i ∈ V \ R, that

is, A0 := A ∪ {(0, i) : i ∈ V \ R}. All the new directed arcs (0, i) ∈ A0 \ A

have costs c0i and delays del0i equal to zero. On the graph G0 = (V0, A0),

we want to find the Degree-Delay-constrained Minimum Spanning Arbores-

cence T0 such that the new node 0 is directly connected to the source and

all the Steiner nodes i ∈ V \ (R ∪ {s}) adjacent to 0 have degree 1 (i.e. if

the arc (0, i) ∈ T0, then for every (j, i) or (i, k) belonging to A neither (j, i)

nor (i, k) are in the arborescence T0) and all the required nodes are reached

within the maximum time limit ∆.

Moreover, with each node of the graph i ∈ V is associated a continuous

variable ti which represents the time when the node i is reached in the

arborescence from s to each terminal in R. These variables are bounded to

take positive values not greater than ∆ i.e.:

ti ∈ [0,∆] ∀i ∈ V \ {s},

and naturally ts := 0.

The formulation, that we refer to as F1, can be expressed as follows:
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min
∑

(i,j)∈A

cijyij (5.1)

s.t.
∑

(i,j)∈δ−(j)

yij = 1 ∀ j ∈ V (5.2)

∑

(i,j)∈δ+(i)

yij ≥ 1− y0i ∀ i ∈ Rc (5.3)

y0j + yij + yji ≤ 1 ∀ j ∈ Rc \ {s}, (j, i) ∈ δ+(j)

(5.4)

y0s = 1 (5.5)

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀ (i, j) ∈ A (5.6)

0 ≤ ti ≤ ∆ ∀ i ∈ V \ {s} (5.7)

ts = 0 (5.8)

yij ∈ {0, 1} ∀ (i, j) ∈ A0. (5.9)

Constraints (5.2) together with constraints (5.9) build a spanning ar-

borescence rooted at 0 in G0: in every feasible solution there is exactly one

arc of the graph incoming in each node of V . Constraints (5.3) together with

(5.4) are the requirements on the degree of the Steiner nodes and constraint

(5.5) forces the new node 0 to be connected to the source in G0. Finally,

constraints (5.7) and (5.8) are the time limitation constraints for the time

variable ti. For each (i, j) ∈ A, Mij and αji are suitable parameters that

will be defined in section 5.3 where constraints (5.6) will be analysed.
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5.2.2 F2: Delay-constrained Steiner Tree formulation

with directed cuts

The following formulation is a directed cut formulation for the Steiner

Tree problem [87] with the addition of the delay constraints. Even in this

formulation, with each node of the graph i ∈ V \ {s} is associated a contin-

uous variable ti ∈ [0,∆] and ts is set to zero. We refer to the formulation

as F2:

min
∑

(ij)∈A

cijyij (5.10)

s.t.
∑

(i,j)∈δ+(S)

yij ≥ 1 ∀S ⊂ V, s ∈ S,R ∩ Sc 6= ∅ (5.11)

∑

(j,i)∈δ−(i)

yji ≤
∑

(i,j)∈δ+(i)

yij ∀ i ∈ V \ (R ∪ {s}) (5.12)

yij + yji ≤ 1 ∀ (i, j) ∈ A (5.13)

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀ (i, j) ∈ A (5.14)

0 ≤ ti ≤ ∆ ∀ i ∈ V \ {s} (5.15)

ts = 0 (5.16)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.17)

Constraints (5.11) are the directed cut constraints, for each cutset S

separating the source from some required nodes inR, there should be at least

one outgoing arc. The classical directed cut formulation did not consider the

Flow–Balance constraints (5.12) introduced in [47] in order to strengthen

the original formulation. These constraints force each Steiner node with one

incoming arc to have at least one outgoing arc. Moreover, constraints (5.15),
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(5.16) and (5.17) are the variable domain restrictions and again constraints

(5.14) will be considered in section 5.3.

5.2.3 F3: Multicommodity Flow formulation

The following formulation F3 is a generalization of the Multicommodity

Flow formulation for the minimum Steiner Tree problem [87] including the

delay constraints. For each required node k ∈ R and arc (i, j) ∈ A, the

variable xkij takes value one if the arc (i, j) is in the directed path connecting

the source to k, zero otherwise.

min
∑

(i,j)∈A

cijyij (5.18)

s.t.
∑

(i,s)∈A

xkis −
∑

(s,i)∈A

xksi = −1 ∀ k ∈ R (5.19)

∑

(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = 0 ∀k ∈ R, ∀ j ∈ V \ {k, s} (5.20)

∑

(i,k)∈A

xkik −
∑

(k,i)∈A

xkki = 1 ∀ k ∈ R (5.21)

0 ≤ xkij ≤ yij ∀(i, j) ∈ A, ∀ k ∈ R (5.22)
∑

(i,j)∈A

delij x
k
ij ≤ ∆ ∀ k ∈ R (5.23)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.24)

The variable xkij represents the quantity of commodity k flowing through

the arc (i, j). Constraints (5.19), (5.20) and (5.21) are the flow conservation

constraints that guarantee that there is a flow of one unit outgoing from the
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source and incoming in each node of R. Constraints (5.23) are the delay

constraints, whereas constraints (5.22) are the relation between the x and

y variables.

5.2.4 F4: Multi-cut formulation

The following formulation F4 is a multi-cut formulation with delay con-

straints. Even in this formulation, we introduce variables xkij that are defined

as in formulation F3.

min
∑

(ij)∈A

cijyij (5.25)

s.t.
∑

(i,j)∈δ+(S)

xkij ≥ 1 ∀ k ∈ R, ∀S ⊂ V, s ∈ S, k ∈ Sc (5.26)

0 ≤ xkij ≤ yij ∀ (i, j) ∈ A, ∀ k ∈ R (5.27)
∑

(i,j)∈A

delij x
k
ij ≤ ∆ ∀ k ∈ R (5.28)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.29)

Constraints (5.26) force the existence of an arc for each cut (S, Sc) sep-

arating the source from each element of R. The remaining constraints have

the same meaning of formulation F3: (5.28) are the delay constraints, (5.27)

are the relation between the x and y variables and (5.29) are the variable

domain constraints.
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5.3 Cumulative-delay constraints

Constraints (5.6) and (5.14) of formulations F1 and F2, respectively, are

at the same time subtour–elimination constraints and cumulative-delay con-

straints.

The classical Miller-Tucker-Zemlin constraints (MTZ, see e.g. [58]) have

been introduced for providing a polynomial formulation for the Traveling

Salesman problem (TSP). In our case, these constraints that include the

cumulative delays can be expressed as:

ti − tj + delij ≤Mij(1− yij) ∀(i, j) ∈ A. (5.30)

For these constraints, if the variable yij takes value one, then the value of

tj is forced to the value of ti plus the delay value on the arc (i, j), if yij = 0,

then constraints (5.30) are fulfilled just defining a sufficiently big value of

Mij. This value has to make the inequality ti − tj ≤Mij − delij redundant

whenever yij = 0 and so it suffices to set Mij := ∆ + delij.

A possible improvement that can be performed is to lift [26] the con-

straints (5.30) adding a nonnegative term αjiyji, with a sufficiently big value

of αji, namely αji := ∆− delji, so that constraints (5.30) become:

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀(i, j) ∈ A. (5.31)

If variable yji = 0, then the added term does not give any contribution,

if the variable yji takes value one, then yij = 0 in view of (5.4) or (5.13).

Using the inequality (5.31) applied to the arc (j, i) ∈ A and setting yji to

1 in (5.31), it is easy to see that the value of ti is forced to the value of tj

plus the delay value on the arc (j, i).



Chap. 5 Delay-constrained Steiner Tree problem 93

5.4 Improved cumulative delay constraints

It is possible to strengthen the coefficients Mij and αji of constraints

(5.31) and the lower and upper bounds for (5.7) and (5.15).

The delays on the arcs can define, for every nodes i ∈ V \ {s}, a time

window during which the communication should be received and forwarded

by the nodes in order to respect the maximum delay ∆ on the nodes of R. A

message forwarded by the source s can not reach any node i of the network

in a time that is lower than the shortest path value considering the delays

as costs. For every node i ∈ V , we denote by λi ∈ R
+ the value of the

shortest path between s and i with the delays as costs: λi = min{Del(P ) :

P is an s−i path}. The cumulated delay ti at the node i should be greater

than or equal to λi and obviously, if λi > ∆ for a required node i ∈ R, the

Delay-constrained Steiner Tree problem is infeasible.

Moreover, we can reduce the upper bound for the variables ti associated

with a Steiner node i. Indeed, a Steiner node i is in any feasible solution

and, hence, in a feasible arborescence T only if there exists a destination

t ∈ R such that ti+Del(P(i,t)) ≤ ∆, where P(i,t) is the path from i to t in the

arborescence T . For this reason, if we denote by ζi the value of the Shortest

Path from i to the nearest destination in R with the delays as costs, the

variables ti must be at most equal to µi, where µi := ∆− ζi. If i ∈ R, then

obviously µi = ∆.

Constraints (5.7) and (5.15) become, thus:

λi ≤ ti ≤ µi ∀i ∈ V \ {s} (5.32)

Naturally, these new extremes of the time window [λi, µi] can be used to
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perform a first delay-based preprocessing (see section 5.6) so that all the

Steiner nodes with an empty time window can be eliminated from the graph

since they will never be in a feasible solution respecting the maximum delay

∆ (see Proposition 5.6.2).

Furthermore, with the introduced limitations on the values of the vari-

ables ti, and after eliminating the Steiner nodes with an empty time window,

the coefficients Mij and αji of constraints (5.31) can be lowered.

Remark 5.4.1. For each (i, j) ∈ A in constraints (5.31) the coefficients

Mij and αji can be set to Mij := µi − λj + delij and αji := µi − λj − delji

respectively. Indeed, let (i, j) ∈ A. If yij = yji = 0, then constraint (5.31)

becomes ti − tj ≤Mij − delij which is easy to see that is always fulfilled. If

yij = 1, then in view of constraints (5.4) or (5.13), it holds that yji = 0 and

so constraint (5.31) is:

ti − tj +Mij ≤Mij − delij,

so that tj ≥ ti + delij. If yji = 1, then yij = 0 and so constraint (5.31)

becomes:

ti − tj + αji ≤Mij − delij.

Substituting the value of αji and Mij, we have:

ti − tj + µi − λj − delji ≤ µi − λj.

This last constraint with the addition of constraint (5.31) for the arc (j, i) ∈

A force ti to assume the value tj + delji.

5.5 Comparison of LP relaxations

In this section, given a set S ⊂ V , we denote by δ−G(S) and by δ−G0
(S),

respectively, the set of the arcs of the graph G = (V,A) and of the graph



Chap. 5 Delay-constrained Steiner Tree problem 95

G0 = (V0, A0) incoming in S. In an analogous way, δ+
G(S) and δ+

G0
(S) are,

respectively, the set of the arcs of the graph G = (V,A) and of the graph

G0 = (V0, A0) outgoing from S.

Proposition 5.5.1. The value of an optimal solution of the linear relax-

ation of F2 is not smaller than the value of an optimal solution of the linear

relaxation of formulation F1.

Proof. First of all we need to augment formulation F2 with the variables

associated with the arcs (0, i) with i ∈ Rc in order to compare the optimal

values of the linear relaxations of the two formulations. Given an optimal

solution (y∗, t∗) for the linear relaxation of formulation F2, as in [69], we

define yij := y∗ij for each (i, j) ∈ A and for the arcs (0, j) with j ∈ Rc we

set y0j := 1−
∑

(i,j)∈δ−
G

(j) y
∗
ij. The solution (y, t∗) is still an optimal solution

for the linear relaxation of F2 since the costs associated with the arcs (0, j)

with j ∈ Rc are zero. We should show that the augmented optimal solution

(y, t∗) is a feasible solution for the linear relaxation of F1.

Since (y∗, t∗) is an optimal solution for the linear reaxation of F2 and the

costs of the arcs are nonnegative, it follows that:

∑

(j,s)∈δ−
G

(s)

y∗js = 0.

Constraint (5.5) is fulfilled by y, since:

y0s = 1−
∑

(j,s)∈δ−
G

(s)

y∗is = 1.

In [69] it is shown that the variables y∗ verify the following two inequalities:

∑

(k,j)∈δ−
G

(j),k 6=i

y∗kj ≥ y∗ji ∀j ∈ V \ {s}, (j, i) ∈ A, (5.33)
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and
∑

(i,j)∈δ−
G

(j)

y∗ij ≤ 1 ∀j ∈ V \ {s}. (5.34)

Let j ∈ Rc\{s} and (j, i) ∈ δ+
G0
(j), in view of constraints (5.33) it follows

that:

y0j + yij + yji = 1−
∑

(k,j)∈δ−
G

(j)

y∗kj + y∗ij + y∗ji = 1−
∑

(k,j)∈δ−
G

(j), k 6=i

y∗kj + y∗ji ≤ 1,

and, hence, constraints (5.4) are fulfilled.

Furthermore, let k ∈ R, in view of constraints (5.11) with S = V \ {k}

and of constraints (5.34), it holds that:

1 ≤
∑

(i,k)∈δ+
G

(S)

y∗ik =
∑

(i,k)∈δ−
G

(k)

y∗ik =
∑

(i,k)∈δ−
G0

(k)

yik ≤ 1

and, hence, constraints (5.2) with k ∈ R are fulfilled. Let now k ∈ V \ R,

then

∑

(i,k)∈δ−
G0

(k)

yik =
∑

(i,k)∈δ−
G

(k)

y∗ik + y0k =
∑

(i,k)∈δ−
G

(k)

y∗ik + 1−
∑

(i,k)∈δ−
G

(k)

y∗ik = 1.

Finally we have to prove that

∑

(i,j)∈δ+
G0

(i)

yij ≥ 1− y0i ∀i ∈ Rc.

Let i ∈ Rc, for the constraints (5.12) it holds:

∑

(i,j)∈δ+
G0

(i)

yij =
∑

(i,j)∈δ+
G

(i)

y∗ij ≥
∑

(j,i)∈δ−
G

(i)

y∗ji = 1− y0i.

The other constraints of formulation F1 are obviously verified and, therefore,

(y, t∗) is feasible for the linear relaxation of F1.
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Figure 5.1: Example of an optimal solution of the linear relaxation of F1

which is infeasible for the linear relaxation of F2

The example used in [69] and reported in Figure 5.1, can be used to

show that there exist Delay-constrained Steiner Tree problems in which the

optimal solution of the linear relaxation of F1 is not feasible for the linear

realaxation of F2.

Example 5.5.1. Consider the graph in Figure 5.1, where R = {1} and

∆ = 10. The delay constraints in this case are redundant for defining any

optimal solution. The solution in the variables y: y02 = y03 = y15 = y56 =

y61 = 1
3
, y12 = y23 = y31 = y05 = y06 = 2

3
, y0s = 1 is an optimal solution

for the linear relaxation of the formulation of F1, but it is not a feasible

solution for the linear relaxation of the formulation F2, since if S = {s},

then
∑

(i,j)∈δ+(S) yij = 0.

Proposition 5.5.2. Formulation F3 is better than formulation F4.

Proof. We have to prove that every feasible solution for the linear relaxation

of formulation F3 is feasible for the linear relaxation of F4 and that there

exist Delay-constrained Steiner Tree problems in which a feasible solution

for the linear relaxation of F4 is not feasible for the linear relaxation of

F3 (see Definition 1.1.4). Let (y∗, x∗) be a feasible solution for the linear
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relaxation of formulation F3. The only constraints that should be checked

are constraints (5.26). Let k ∈ R, S ⊂ V such that s ∈ S and k ∈ Sc, the

value of the flow from s to k is 1, so that:

∑

(i,j)∈δ+(S)

xkij −
∑

(i,j)∈δ−(S)

xkij = 1;

thus
∑

(i,j)∈δ+(S)

xkij = 1 +
∑

(i,j)∈δ−(S)

xkij ≥ 1.

A case in which a feasible solution for the linear relaxation of F4 is not

feasible for F3 in given in the Example 5.5.2.

Figure 5.2: Example of a feasible solution for the linear relaxation of F4

that is not feasible for the linear relaxation of F3

Example 5.5.2. Consider the graph in Figure 5.2 which is another example

proposed in [69]. Suppose R := {1, 2} and ∆ := 10. The solution ys1 =

ys2 = y13 = y23 = y34 = y41 = y42 = x1
s1 = x1

s2 = x1
13 = x1

23 = x1
34 = x1

41 =

x1
42 = x2

s1 = x2
s2 = x2

13 = x2
23 = x2

34 = x2
41 = x2

42 = 1
2
, is a feasible solution for

the linear relaxation of the formulation of F4, but it is not feasible for the

linear relaxation of the formulation F3 since the constraint (5.20) relative

to node 3 is not fulfilled.
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5.6 Preprocessing

Preprocessing plays a very useful role in solving combinatorial and integer

programming problems. This technique, indeed, reduces the size of the

problems by means of logical implications, producing equivalent problems.

The preprocessing performed in our problem is based on the fulfilment of

the time windows request and on an adaptation of the known preprocessing

techniques (see Proposition 1.5.1) used to reduce the size of the graph in

the pure Steiner Tree problem; because of the presence of the delay on the

arcs, if we want to contract certain edges, we need to store the delays. For

this reason, we introduce mi ∈ R for each i ∈ V and initially we set mi to

zero for all i ∈ V .

5.6.1 Degree-delay preprocessing

Until no more reduction can be performed in the graph, the following

tests for reducing the size of the problem are executed:

Proposition 5.6.1 (Degree one test). For every node i ∈ V

(i) if i is a Steiner node and |δ(i)| = 1, then i is eliminated from the

graph together with the edge incident in i;

(ii) if |δ(i)| = 1, i ∈ R and δ(i) = {{i, j}}, then {i, j} is contracted, the

cost cij is stored to be added to the optimal solution and if delij > mj,

the values of µj and mj are updated: µj := µi +mj − delij and mj :=

delij, respectively.

For every node i ∈ V , the time windows [λi, µi] is empty if the time
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required to reach the node i from the source s is greater than the residual

time to reach the nearest (in terms of delays) required node.

Proposition 5.6.2 (Non–empty time windows). For every node i ∈ V

(i) If λi > µi and i is a Steiner node, then i can be removed from the

graph together with all its incident edges.

(ii) If λi > µi and i is a required node, then the Minimum Steiner Tree

problem with the delay constraints is infeasible.

Proof. (i) Suppose on the contrary that an optimal solution contains a

Steiner node i with λi > µi and let t be the nearest terminal from

i using the delays as cost. As i is a node belonging to the optimal

solution, there exists on the support of this solution at least a path

Ps,t from the source to a terminal t ∈ R passing through i. The total

delay along the path P(s,t) is such that:

Del(P(s,t)) =
∑

(i,j)∈P(s,t)

delij ≥ λi+Del(P(i,t)) ≥ λi+ζi ≥ λi−µi+∆ > ∆,

which is a contradiction.

(i) Suppose on the contrary that there exists a feasible solution, since the

shortest path value from the source to the required node i with the

delays as costs is greater than ∆ for each path P(s,i) in the graph it

holds: Del(P(s,i)) ≥ λi > ∆ which is a contradiction.

Proposition 5.6.3 (Adjacent time request). For every edge {i, j} ∈ E,

if λi + delij > µj and λj + delji > µi, then the edge {i, j} can be eliminated

from the graph.
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Proof. Suppose on the contrary that an optimal solution contains the arc

(i, j) with λi + delij > µj (the same holds for (j, i) with λj + delji > µi).

Let t be the nearest required node from j using the delays as costs. As j

is a node belonging to the optimal solution, there exists on the support of

this solution at least a path P(s,t) from the source to a terminal t passing

through j. The total delay along the path P(s,t) is such that

Del(P(s,t)) =
∑

(i,j)∈Ps,t

delij ≥ λi + delij +Del(P(j,t)) ≥ λi + delij + ζi

≥ λi + delij − µi +∆ > ∆,

which is a contradiction.

The degree two test is analogous to the test of the Steiner Tree prob-

lem (see Proposition 1.5.1), but a further condition on the delays must be

inserted in order to respect the maximum delay at the required nodes.

Proposition 5.6.4 (Degree two test). If i ∈ V is a Steiner node with

δ(i) = {{i, k}, {j, i}},

(i) if {k, j} /∈ E, then the edges {k, i} and {i, j} are substituted by a new

edge {k, j} with cost ckj = cki + cij and delay delkj = delki + delij and

i can be eliminated.

(ii) if {k, j} ∈ E, if cki + cij > ckj and delki + delij > delkj, then i can be

eliminated from the graph together with the edges {i, k} and {j, i}.

(ii) if {k, j} ∈ E, cki + cij ≤ ckj and delki + delij ≤ delkj, then node i is

removed from the graph together with its incident edges and the edge

{k, j} is given the cost ckj = cki+cij and the delay delkj = delki+delij.

All the formulations are defined on directed graphs, so that, another

reduction can be done considering the orientation of the arcs.
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Proposition 5.6.5 (Direct arcs test). Every arc incoming in the source

(i, s) ∈ A and all the directed arcs (i, j) such that λi + delij > µj can be

eliminated from the directed graph.

Proof. Because of the nonnegativity of the costs all the arcs (i, s) ∈ A can

be removed from the graph and the rest follows as in Proposition 5.6.3.

The delay-degree preprocessing consists in summary in these steps:

Step 1: Degree one test;

Step 2: Non–empty time windows test;

Step 3: Adjacent time request test;

Step 4: Degree two test;

Step 5: If at least one contraction or elimination has been executed go to Step

1 else go to Step 6;

Step 6: Consider the directed graph and perform the Direct arc elimination.

5.6.2 LP preprocessing

The LP preprocessing is based on Proposition 1.5.2, in fact, if we denote

by zLP the optimal value of the linear relaxation of the problem and by

zUB the value of the best known feasible solution of the problem, that is an

upper bound for the solution, then Proposition 1.5.2 can be applied to fix

the value of certain nonbasic variables.

If y∗ is an optimal solution of the linear relaxation of the problem, then

if y∗ij = 0 its reduced cost cij is nonnegative. Using Proposition 1.5.2, if
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zLP + cij > zUB, then fixing the variable y∗ij to one does not produce any

improvement in the optimal value of the objective function, hence, the value

of the variable y∗ij is fixed to zero, which means that it is possible to eliminate

the arc (i, j) from the graph.

Moreover, if y∗ij = 1 in the optimal solution, the reduced cost cij is

nonpositive and, using again Proposition 1.5.2, if zLP −cij > zUB, then even

in this case reducing to zero the value of y∗ij does not make any improvement

and so the variable y∗ij is fixed to take value 1, thus, the arc (i, j) is always

in an optimal solution of the IP problem.

5.7 Exact Solution strategies

In this section, we present the methods for solving the different formula-

tions presented in section 5.2.

5.7.1 Algorithm for F1

The Degree-constrained Minimum Spanning Tree formulation with Delay

constraints has a polynomial number of constraints and can be directly

solved by any mixed integer linear programming solver. The algorithm for

its solution can be summarized as follows:

Step 0: Perform the Degree-delay preprocessing;

Step 1: Solve the linear relaxation of formulation F1;

Step 2: Perform the LP preprocessing; if an edge is eliminated go to Step 0

else go to Step 3;



104 Chap. 5 Delay-constrained Steiner Tree problem

Step 3: Solve the MIP formulation F1.

5.7.2 Algorithm for F2

The drawback of formulation F2 is represented by the sets of constraints

(5.11) that are in an exponential number, but since only a small fraction of

these constraints is saturated at optimality, we choose to solve the problem

with an iterative approach. Namely, the initial constraint matrix is consti-

tuted by the constraints (5.12) and (5.13), by the Delay-constraints (5.14),

by constraints (5.15) and (5.16) and by the cuts (5.11) generated by the

subset S := {s} and by the subsets S such that |Sc| = 1. For speeding the

generation of constraints (5.11) up, we solve the linear relaxation of formu-

lation F1 with all the costs equal to 1, whose optimum value is indicated

by β. An approximation of the minimum number of arcs in the solution of

the Delay-constrained problem is given by dβe, hence we add to the initial

constraint system the inequality:

∑

(i,j)∈A

yij ≥ dβe . (5.35)

The procedure of the algorithm can be formalized as follows:

Step 0: Perform the Degree-delay preprocessing;

Step 1: Let F ′2 be the formulation F2 with only the constraints (5.11) corre-

sponding to S = {s}, and S such that |Sc| = 1 and including the new

constraint (5.35);

Step 2: Solve F ′2, and let (y, t) be the optimal solution;

Step 3: If y violates a constraint ctr12 of type (5.11) (the separation routine

will be described later), then add ctr12 to F ′2 and go to Step 2;
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Step 4: Perform the LP preprocessing, if an edge is eliminated, then go to

Step 0 else go to Step 5;

Step 5: Solve the MIP problem; let (y, t) be the optimal solution of F ′
2;

Step 3: If y violates a constraint ctr12 of type (5.11), then add ctr12 to F ′2 and

go to Step 5 otherwise the optimal solution has been found.

Notice that the procedure converges after a limited number of iterations.

Separation problem

Once a solution (y, t) of F ′2 is available, the presence of violated inequali-

ties of type (5.11) of F2 not inserted into F ′2 can be detected as follows. For

each source-destination pair the maximum flow problem with y as capaci-

ties is solved. If a maximum flow value is less than 1, then the minimum

capacity cut (S, Sc) is indentified and the corresponding constraint (5.11)

is generated.

5.7.3 Algorithm for F3

The Multicommodity Flow formulation F3 may have a large number of

variables but it does not have critical constraints that impose the use of a

specific solution technique. Formulation F3 is, thus, directly solved by any

mixed integer linear programming solver. The pseudocode of the solution

algorithm for F3 is the same as in subsection 5.7.1.
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5.7.4 Algorithm for F4

An iterative approach is used for solving the problem with formulation

F4.

The initial constraint matrix is constituted by the constraints of F4 except

constraints (5.26), indeed, among constraints (5.26) only those generated by

the subset S := {s} and by the subsets S such that |Sc| = 1 are considered

initially. For speeding the generation of constraints (5.26) up, we have

solved the shortest path problem connecting the source to each destination

k ∈ R and we have computed βk which represents the number of arcs of

each s-k path. In order to make the generation of constraints (5.26) faster,

for each node k ∈ R we add to the initial constraint system the inequalities:

∑

(i,j)∈A

xkij ≥ βk ∀k ∈ R. (5.36)

The algorithm is the same as for formulation F2 (see subsection 5.7.2),

the only difference is in the separation procedure. Indeed, when a cut (S, Sc)

is found, then all the constraints (5.26) for each k ∈ Sc are generated at the

same time, instead of the unique constraint generated for F2.

5.8 Heuristic Solution

In order to make the LP preprocessing effective, a good heuristic that

provides a feasible solution with a tight upper bound zUB in a reasonable

time should be considered. We compute the shortest paths that fulfil the

delay constraints between the source and all required nodes and we select

the path P (s, t) with the highest length. Till all the required nodes are

connected to the source, at each step, the heuristic H1 adds a new path
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that fulfils the maximum delay constraint with the lowest total cost from

one of the nodes of the current tree (initially constituted by P (s, t)) to one

of the required nodes not yet connected to the source. This heuristic is fast

but does not provide a tight upper bound. For the sake of reducing the gap

between the value of the optimal integer solution and zUB, we propose the

heuristicH ′
1 in which we repeatK times the following procedure: we perturb

the costs associated with the arcs, we perform the heuristic procedure H1

and we consider the best obtained value zUB.

The problem of finding the Shortest Path with capacity constraints has

been proved to be NP-Hard in [38]. This type of problem has been widely

studied and the case in which the capacity constraints are the delay con-

straints has been considered in [39]. The Delay-constrained Shortest Path

problem can be solved in an exact way with a dynamic approach based on

a generalization of Ford-Fulkerson and of Dijkstra algorithms ([44], [59]).

An exact solution based on the Lagrangian relaxation has been proposed

in [38]. Since we aim at using an efficient and fast heuristic, like in [59],

we find an approximate solution of the Lagrangian relaxation of the Delay-

constrained Shortest Path problem where the delay constraints are relaxed

so that the relaxed problem can be solved by Dijkstra’s algorithm.

5.8.1 Heuristic H1

Given the graph G = (V,A), we indicate by C the set of the required

nodes connected to the source. All the Delay-constrained Shortest Paths

P (s,t) that connect the source to each t ∈ R are computed, and it is selected

the path P (s, t) with the greatest cost (length) whose cost is assigned to

zUB. The set C becomes, thus, C := {t} and we assign a zero cost to all

the arcs of the path P (s,t). Unless the set C coincides with R, we add a new
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node f to the graph G and we define the set A′ of all the arcs of A with

the addition of all the arcs (i, f) for each i ∈ R \ C, whose is associated

a zero cost and a zero delay (the current graph is, thus, G′ = (V ′, A′)

with V ′ = V ∪ {f} and A′ = A ∪ {(i, f) : ∀i ∈ V \ C}); we solve the

Delay-constrained Shortest Path problem between the source and the node

f finding the path P(s,f); we update C adding the required node t such that

(t, f) ∈ P(s,f) and we set to zero the costs of the arcs of P(s,f) that belong to

A; finally we update the value zUB adding the cost of the path P(s,f), that

is, zUB := zUB + c(P(s,f)) and we repeat the process. If C coincides with R

the current value zUB is the required upper bound.

The algorithm can be summarized as follows:

(Step 0:) Set C := ∅.

(Step 1:) Compute the approximated Delay-constrained Shortest Paths between

the source and all the required nodes. Select P (s,t) the path with the

maximum cost (length).

(Step 2:) Set zUB := c(P (s,t)), C := C ∪ {t} and cij := 0 for all (i, j) ∈ P (s,t).

(Step 3:) Add a node f to the graph G = (V,A); define V ′ = V ∪ {f} and

A′ := A ∪ {(i, f) : ∀i ∈ R \ C}; set cif = delif = 0 for all (i, f) ∈ A′.

(Step 4:) Compute the approximated Delay-constrained Shortest Path P(s,f) on

the graph G′ = (V ′A′), find t ∈ R such that (t, f) ∈ P(s,f).

(Step 5:) Set zUB := zUB + c(P(s,f)), C := C ∪ {t} and cij := 0 for all (i, j) ∈

P(s,f) ∩ A. If C ⊂ R, then go to step 3 else Stop.
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5.8.2 Heuristic H ′
1

In this heuristic, we perturb the cost associated with each arc (i, j) of

the graph, that is, we generate a random number εij in the interval [0.5, 1.5]

and we assign to the arc (i, j) the cost εijcij; we solve the problem of finding

a feasible solution for the Delay constrained Steiner Tree problem with

the perturbed costs with the procedure H1 and we store the best obtained

value of zUB. We have seen on the basis of the experimental results that we

can find the best gap between the optimal value of the Delay constrained

Steiner Tree problem and the value zUB, if we perturb the costs and solve

the problem for K = 500 times.

5.9 Computational results

All the instances of the Delay-constrained Steiner Tree problem has been

solved on an Opteron 246 machine with 2 GB RAM memory using the

version 9.1 of Cplex as solver. We have set to 30 minutes the computational

time limit. By NS we indicate the number of instances not solved within

the time limit when the solution process is interrupted.

5.9.1 Description of the problem instances

To the best of our knowledge, no benchmark is available for the Delay

constrained Steiner Tree problem in literature. We have, therefore, consid-

ered the problems proposed in the SteinLib library [48] for the pure Steiner

Tree problem, in particular the problems of the class B and the first 10

instances of the class C. The instances of class B and C are randomly gen-
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erated sparse graphs with edge weights between 1 and 10; for the class B,

the size of the problems goes from graphs with |V | = 50, |R| = 9, |E| = 63

to graphs with |V | = 100, |R| = 50, |E| = 200, whereas for the considered

instances of the class C the size of the problems goes from |V | = 500, |R| =

5, |E| = 625 to |V | = 500, |R| = 250, |E| = 1000. For the classical Steiner

Tree problem these instances can be solved in few seconds with the local

preprocessing or by efficient known algorithms. We have generated ran-

domly the delays on the edges in such a way that they result correlated and

non-correlated to the costs. In the first case a random number r is gener-

ated in the interval [0.8, 1.2] and for each edge {i, j} we set delij = r ∗ cij,

in the second case the delays are simply random values belonging to the

interval [1, 100]. On the basis of the generated delays, we have computed

the value MP which is the maximum among the shortest paths with the

delays as costs between the source and each required node, then in the prob-

lems indicated with 0.1 we have set ∆ to the value ∆ := 1.1 ∗MP and in

the problems indicated with 0.5 we have set ∆ to ∆ := 1.5 ∗MP . With

these choices none of the problems is infeasible. In the following tables, we

indicate for example by B Ran 0.1 the set of the instances of the class B

with delays non-correlated with the costs and with ∆ = 1.1 ∗MP and with

C Cor 0.5 the set of the instances of the class C with delays correlated with

the costs and with ∆ = 1.5 ∗MP .

In columns Gap, we report the mean of the ratios (OPT − LP )/OPT

where OPT is the optimum value of the integer problem and LP is the

optimum value of the linear relaxation of the problem. For each class of

problems, we indicate with T the mean of the resolution times in seconds

for the instances solved within the time limit and with Tmax the maximum

computational time. If certain instances in a class are not solved within 30

minutes, then Tmax reports the number of not solved problems.
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5.9.2 Performance of the different formulations

In Table 5.1, we report the gap between the value of the optimal integer

solution of the instances and the value of an upper bound provided by the

heuristic H ′
1; gap is, indeed, the mean of the values (zUB −OPT )/OPT .

Table 5.1: Gap for the heuristic H ′
1

Problem gap× 100

B Ran 0.1 1.28

B Ran 0.5 0.66

B Cor 0.1 0.28

B Cor 0.5 0.20

Problem gap× 100

C Ran 0.1 3.06

C Ran 0.5 1.24

C Cor 0.1 2.26

C Cor 0.5 2.01

We use the value zUB of the heuristic H ′
1 to perform the LP proprocessing

of the problem.

In Table 5.2, we present the average gap and the computational time

for the different algorithms of section 5.7. All the instances of the class B

have been solved within the required time limit, whereas there are certain

instances of the class C that are unsolved. Formulation F1 is the fastest

among all the other formulations even if the optimal value of the linear

relaxation of the problems are always the worst with respect to the lower

bounds provided by the other formulations. Moreover, F3 is the formulation

with the closest optimal value of the linear relaxation to the optimal integer

value, but for example 6 over the 10 instances of the different problems of

the class C are not solved in the time limit.

Regarding to formulations F2 and F4, one provides a better gap (F4), but

the other solve the problems in a lower time (F2), but just using the MIP
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solver for solving the instances none of the two’s has interesting behaviours

if compared with F1 and F3.

Table 5.2: Average gap and computational times for the Delay-constrained

Steiner Tree problem

F1 F2

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 9.5 0.14 1.35 7.59 6.75 114.06

B Ran 0.5 6.54 0.73 3.81 3.85 4.77 45.24

B Cor 0.1 5.44 0.14 0.71 2.83 0.82 5.11

B Cor 0.5 3.81 0.42 2.14 1.02 1.55 18.17

C Ran 0.1 7.30 196.00 2NS 5.45 121.23 5NS

C Ran 0.5 5.84 82.52 3NS 2.72 38.89 5NS

C Cor 0.1 6.28 210.50 2NS 2.40 22.25 5NS

C Cor 0.5 2.47 94.73 1NS 0.04 88.80 6NS

F3 F4

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 2.11 34.61 480.88 2.32 38.82 1106.0

B Ran 0.5 1.82 44.21 637.26 2.33 212.14 1270.8

B Cor 0.1 1.54 7.35 103.40 1.76 45.94 319.90

B Cor 0.5 0.72 3.22 44.03 0.74 47.96 359.88

C Ran 0.1 4.94 0.76 6NS 4.97 0.90 6NS

C Ran 0.5 3.74 1.75 6NS 1.75 6.31 6NS

C Cor 0.1 1.84 0.50 6NS 1.92 0.72 6NS

C Cor 0.5 0.00 0.87 6NS 0.00 0.53 6NS

5.9.3 Assessment of the different components

In this section, we highlight certain of the contributions of the different

components that influence the solution of the instances. In particular, we
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report the percentage of reduction of the degree-delay preprocessing (see

section 5.6.1), the gap and the computational time of all the algorithms in

which the LP preprocessing has not been executed and the computational

comparison of the usage of the lifted constraints (5.31) and of the unlifted

constraints (5.30) for formulation F1 and F2.

Table 5.3: Gap and computational times for the algorithm without the LP

preprocessing

F1 F2

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 9.44 0.13 1.30 7.54 5.94 99.31

B Ran 0.5 6.37 0.77 2.34 3.83 4.46 43.22

B Cor 0.1 5.27 0.21 1.27 2.79 1.97 15.23

B Cor 0.5 3.52 0.45 2.69 0.97 0.83 17.52

C Ran 0.1 7.60 189.90 2NS 5.44 68.02 5NS

C Ran 0.5 5.84 82.52 3NS 2.48 127.14 4NS

C Cor 0.1 6.28 210.50 2NS 2.39 22.25 5NS

C Cor 0.5 2.46 94.73 1NS 0.04 88.80 6NS

F3 F4

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 4.02 27.47 24.46 4.66 163.9 1210.2

B Ran 0.5 2.28 43.55 549.3 2.33 212.1 1270.8

B Cor 0.1 1.45 4.62 36.14 1.76 45.94 319.90

B Cor 0.5 0.64 2.72 21.18 0.74 47.96 359.88

C Ran 0.1 4.93 1.14 6NS 4.97 4.37 6NS

C Ran 0.5 1.39 315.30 5NS 2.04 7.57 6NS

C Cor 0.1 1.87 173.00 5NS 2.09 1.68 6NS

C Cor 0.5 0.47 0.54 6NS 0.00 0.55 6NS

In Table 5.4, we present the mean percentage of reduction of the num-
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Table 5.4: Degree-delay preprocessing reduction

Problem %n %m %arc

B Ran 0.1 45.85 15.50 49.97

B Ran 0.5 38.32 13.87 31.99

B Cor 0.1 46.98 15.48 47.50

B Cor 0.5 34.06 12.25 28.78

C Ran 0.1 61.94 14.09 59.51

C Ran 0.5 51.32 12.65 45.06

C Cor 0.1 60.08 12.81 56.00

C Cor 0.5 51.94 12.65 45.49

ber of nodes, destinations and arcs performed only using the degree-delay

preprocessing (the LP preprocessing is not performed in this case) for the

different instances we have generated. If n is the original number of nodes

and n′ the number of nodes in the reduced problem in column %n we report

the mean of the percentage of the values (n−n′)/n over all the instances be-

longing to the same class of problems (similarly for column %m and %arcs).

The number of nodes is almost halved and there is a consistent reduction

on the number of arcs, the reduction is more effective on the class C than

on the class B and the effect of the preprocessing based on the delay can be

noticed in the higher percentage of reduction of the size of the problem when

∆ is only ten percent more than the value that make the problem feasible

(∆ = 1.1 ∗MP ). When only the delay-degree preprocessing is performed

to reduce the size of the problem, the relations among the formulations in

terms of gap and computational time do not change as it is easy to see in

Table 5.3. In most of the problems the gap is slightly reduced. We have

not reported here another table to show the solution time of the different

algorithms on the original graph (that is on the graph where no preprocess-
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Table 5.5: Improvement of the lifted constraints (5.31) with respect to the un-

lifted constraints (5.30)

(5.31) (5.30)

Problem Gap× 100 T Gap× 100 T

B Ran 0.1 F1 9.44 0.12 14.78 0.12

B Ran 0.5 F1 6.37 0.77 13.60 1.06

B Cor 0.1 F1 5.28 0.21 12.84 0.14

B Cor 0.5 F1 3.52 0.45 12.12 0.47

B Ran 0.1 F2 7.54 5.94 7.85 10.31

B Ran 0.5 F2 3.83 4.46 3.93 14.73

B Cor 0.1 F2 2.79 1.98 2.92 2.76

B Cor 0.5 F2 0.97 1.77 0.98 2.57

ing is performed), because even some of the instances of the class B are not

solved within the time limit.

In Table (5.5), we compare the impact of the lifted constraints (5.31)

with respect to the unlifted constraints (5.30). For formulation F1, the

usage of constraints (5.31) strongly reduces the value of Gap, but they do

not improve the solution time, whereas for formulation F2 constraints (5.31)

reduce the computational time, but do not decrease significantly the Gap.

Table 5.6: Computational time of the class B and C for the Steiner Tree problem

Problem T Tmax

B 0.47 2.68

C 104.14 827.53
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Finally, taking a sufficiently big value of ∆ the delay constraints be-

come redundant for the optimal solution and in this case we have solved

the Steiner Tree problem on the graph reduced by using only the degree

preprocessing; the mean and the maximal computational time for the class

B and C with formulation F1 are reported in Table 5.6. All the instances

of the Steiner Tree problem are solved within the time limit.

5.10 Conclusions

In this chapter, in order to guarantee a Quality of Service in the commu-

nications, we have considered the Delay-constrained Steiner Tree problem.

We have proposed four different formulations for modelling the problem to-

gether with a preprocessing based on the degree-delay characteristics and

on the reduced costs properties, for reducing the size of the problems. The

computational results, we have provided, suggest the usage of different tech-

niques for solving those problems that are not solved so far. Another inter-

esting problem to deal with is to apply the delay constraints to the wireless

Ad-Hoc networks.



List of symbols

• R: the set of real numbers

• R+: the set of nonnegative real numbers

• Z: the set of integer numbers

• {0, 1}n: is the cartesian product of n copies of the set {0, 1}

• Let a ∈ R, bac := max{c ∈ Z : c ≤ a}

• Let a ∈ R, dae := min{c ∈ Z : c ≥ a}

• 1 is a vector with all the components equal to 1

• |U | is the number of elements beloging to the set U

• Let V be a set and S ⊆ V , define Sc := V \ S.
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[82] P.-J. Wan, G. Călinescu, X.-Y. Li, and O. Frieder. Minimum energy

broadcast routing in static ad hoc wireless networks. In Proceedings of

the IEEE Infocom, pages 1162–1171, 2001.

[83] R. Wattenhofer, L. Li, P. Bahl, and Y.M. Wang. Distributed topol-

ogy control for power efficient operation in multihop wireless ad hoc

networks. In Proceedings of the Infocom, pages 1388–1397, 2001.

[84] J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of

energy-efficient broadcast and multicast trees in wireless networks. In

Proceedings of the IEEE INFOCOM, pages 585–594, 2000.

[85] J.E. Wieselthier, G. Nguyen, and A. Ephremides. Algorithms for

energy-efficient multicasting in static ad hoc networks. Mobile Net-

works and Application, 6:251–263, 2001.

[86] L.A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

[87] R.T. Wong. A dual ascent approach for Steiner tree problems on a

directed graph. Mathematical programming, 28:271–287, 1984.

[88] D. Yuan. An integer programming approach for the minimum-energy

broadcast problem in wireless networks. In Proceedings of the INOC,

pages B2.643–B2.650, 2005.



128 References

[89] Q. Zhu, M. Parsa, and J.J. Garcia-Luna-Aceves. A source-based algo-

rithm for the delay-constrained minimum cost multicasting. In INFO-

COM, pages 377–385, 1995.



Acknowledgments

At the end of this dissertation, I would like to express my gratitude to

all the people who have helped me during my Ph.D studies.

First of all, I would like to thank my supervisor Prof. Paolo Nobili, for

his assistance and encouragement during these years.

Thanks to Dr. Chefi Triki and to all the other people in the research

group of Operations Research at the University of Lecce for many fruitful

discussions and suggestions.

My gratitude goes to Prof. Yves Pochet and Prof. Laurence Wolsey

for their kind hospitality during my stay in Louvain-la-Neuve and for their

assistance in my research activities at CORE.

Thanks to Prof. Mohamed Haouari for giving me the opportunity of

collaborating with him and for his friendly hospitality at the Ecole Polytec-

nique de Tunis.

Thanks to Dr. Roberto Montemanni for many fruitful discussions.

Thanks to all my colleagues at the Department of Mathematics in Lecce

and to all people that I met in the laboratory of Tunis and at CORE.

And, finally, I would like to thanks for their patience and support Fabrizio

and my family.

Valeria Leggieri

April 2007


