Notation

Let Ω be an open set of $\mathbb{R}^{N}, 1 \leq p<+\infty, k, N \in \mathbb{N}, 0<\alpha<1, T>0, a<b$.

$\|x\|$	euclidean norm of $x \in \mathbb{R}^{N} ;$
$\langle x, y\rangle$	euclidean inner product in $\mathbb{R}^{N} ;$
$B(x, r)$	open ball in \mathbb{R}^{N} centered in x with radius $r>0 ;$
B_{r}	$B(0, r) ;$
Q	$(0, T) \times \Omega ;$
$\partial^{\prime} Q$	$(0, T) \times \partial \Omega \cup\{0\} \times \bar{\Omega} ;$
$\partial_{t x} Q$	$\{0\} \times \partial \Omega ;$
card J	cardinality of a given set $J ;$
$\|J\|$	Lebesgue measure of a given set $J ;$
J^{c}	complementary set of $J ;$
χ_{J}	characteristic function of a set J, that is the function defined as
	$\chi_{J}(x)=1$ if $x \in J$ and $\chi_{J}(x)=0$ if $x \notin J ;$
characteristic function of $\mathbb{R}^{N} ;$	
1	support of a given function $u ;$
supp u	partial derivative with respect to the variable $t ;$
D_{t}	partial derivative with respect to $x_{i} ;$
D_{i}	$D_{x_{i} x_{j}} ;$
$D_{i j}$	space gradient of a real-valued function $\quad u$ with norm
$D u$	$\|D u\|^{2}=\sum_{i=1}^{N}\left(D_{i} u\right)^{2} ;$

$D^{2} u \quad$ Hessian matrix of a real-valued function u with respect to the space variables with norm $\left|D^{2} u\right|^{2}=\sum_{i, j=1}^{N}\left(D_{i j} u\right)^{2}$;
space of real-valued C^{∞} functions with compact support in Ω;
$C_{b}(\bar{\Omega})$ space of bounded continuous functions in $\bar{\Omega}$;

$C_{b}^{k}(\bar{\Omega})$	space of real-valued functions with derivatives up to order k in $C_{b}(\bar{\Omega})$;										
$C_{0}(\Omega)$	space of functions in $C_{b}(\bar{\Omega})$ vanishing at $\partial \Omega$ and at infinity;										
$C_{0}\left(\mathbb{R}^{N}\right)$	space of functions in $C\left(\mathbb{R}^{N}\right)$ vanishing at infinity;										
$C^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$	space of functions $F=\left(F_{1}, \ldots, F_{N}\right)$ such that $F_{i} \in C^{1}\left(\mathbb{R}^{N}\right)$, for every i;										
$C^{1,2}((a, b) \times \Omega)$	space of functions $u(t, x)$ which are continuous in $(a, b) \times \Omega$ with their indicated derivatives (not necessarily bounded);										
$C^{k+\alpha}(\Omega)=C^{k+\alpha}(\bar{\Omega})$	space of functions such that the derivatives of order k are α-Hölder continuous in Ω;										
$C^{1+\alpha / 2,2+\alpha}((a, b) \times \Omega)$											
$=C^{1+\alpha / 2,2+\alpha}([a, b] \times \bar{\Omega})$	space of functions $u=u(t, x)$ such that $D_{t} u$ and $D_{x_{i} x_{j}} u$ are α-Hölder continuous in $(a, b) \times \Omega$ with respect to the parabolic distance $d((t, x),(s, y))=\|t-s\|^{1 / 2}+\|x-y\|$;										
$C_{\text {loc }}^{1+\alpha / 2,2+\alpha}((0,+\infty) \times \bar{\Omega})$	space of functions u such that $u \in C^{1+\alpha / 2,2+\alpha}\left([\varepsilon, T] \times \bar{\Omega}^{\prime}\right)$, for all $0<\varepsilon<T$ and bounded open $\Omega^{\prime} \subseteq \Omega$;										
$C_{\text {loc }}^{1+\alpha}(\bar{\Omega})$	space of the functions which belong to $C^{1+\alpha}\left(\bar{\Omega}^{\prime}\right)$, for all bounded open set $\Omega^{\prime} \subseteq \Omega$;										
$C^{k}(\overline{\mathbb{R}})$	space of continuous functions with finite limits at $\pm \infty$ together with their derivatives up to order k;										
$\\|\cdot\\|_{\infty}$	sup-norm;										
$\\|u\\|_{[a, b]}$	$\sup _{x \in[a, b]}\|u(x)\| ;$										
$\\|u\\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)}$	$\\|u\\|_{\infty}+[u]_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)} ;$										
$[u]_{C}{ }^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)$	$\sup _{\substack{t \in 00, T[, x, y \in \Omega, x \neq y}} \frac{\|u(t, x)-u(t, y)\|}{\|x-y\|^{\alpha}}+\sup _{\substack{t, s \in] 0, T[, t \neq s, x \in \Omega}} \frac{\|u(t, x)-u(s, x)\|}{\|t-s\|^{\frac{\alpha}{2}}} ;$										
$\\|u\\|_{1,2}$	$\\|u\\|_{\infty}+\left\\|u_{t}\right\\|_{\infty}+\\|D u\\|_{\infty}+\left\\|D^{2} u\right\\|_{\infty} ;$										
$[u]_{1+\frac{\alpha}{2}, 2+\alpha}$	$\left[u_{t}\right]_{\frac{\alpha}{2}, \alpha}+\left[D^{2} u\right]_{\frac{\alpha}{2}, \alpha} ;$										
$\\|u\\|_{1+\frac{\alpha}{2}, 2+\alpha}$	$\\|u\\|_{1,2}+[u]_{1+\frac{\alpha}{2}, 2+\alpha} ;$										
$\left(L^{p}(\Omega),\\|\cdot\\|_{p}\right)$	usual Lebesgue space;										
$\left(W^{k, p}(\Omega),\\|\cdot\\|_{k, p}\right)$	usual Sobolev space;										
$W_{\text {loc }}^{k, p}(\Omega)$	space of functions belonging to $W^{k, p}\left(\Omega^{\prime}\right)$ for all bounded open set Ω^{\prime} such that $\overline{\Omega^{\prime}} \subset \Omega$;										
$W_{0}^{k, p}(\Omega)$	closure of $C_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$;										
$\mathcal{M}\left(\mathbb{R}^{N}\right)$	set of all Borel probability measures in \mathbb{R}^{N}.										

