
Chapter 4

On the domain of some ordinary

differential operators in spaces of

continuous functions

The present chapter is devoted to the study of the following second order ordinary differential
operator

Au = au′′ + bu′

in spaces of continuous functions. In particular, we are interested in a precise description of
the domain on which A generates a semigroup. In Chapter 1 we have computed explicitly the
domain of the generator in the framework of Lp spaces, for 1 < p < ∞, in higher dimensions.
In Chapters 2 and 3 we have studied parabolic problems with Neumann or Dirichlet boundary
conditions in an open set Ω of RN and, by means of gradient estimates, we have obtained some
information on the domains of the generators of the semigroups yielding the classical solutions to
the above problems. But we did not come to a complete description of such domains. Also in the
literature, one can find more results concerning Lp spaces, with 1 < p < ∞ (see [11], [12], [37],
[41]), rather than spaces of continuous functions. In [41] a complete description of the domain is
given in C0(RN ) when the operator contains a potential term which balances the growth of the
drift coefficient. We refer to [34] for the case of Hölder spaces.

In this chapter we limit ourselves to the special case N = 1 and we deal with Cb(R) and with
C(R), the space of continuous functions having finite limits at ±∞. Here a detailed theory has
been developed in the fifties by W. Feller who gave an explicit description of all the boundary
conditions under which A generates a semigroup of positive contractions. An introduction to
Feller’s theory which is sufficient for our purposes can be found in [21, Subsection VI.4.c].

We consider A with its maximal domain in Cb(R)

Dmax(A) := {u ∈ Cb(R) ∩ C2(R) | Au ∈ Cb(R)}

and we assume that

(H0) λ−A is injective on Dmax(A) for some λ > 0.

This is equivalent to saying that (A,Dmax(A)) generates a semigroup of positive contractions in
Cb(R), which is not however strongly continuous (see Proposition 5.2.3).

If (H0) holds, then λ − A is injective on Dmax(A) for all λ > 0. Moreover it turns out that
λ−A is injective on Dmax(A) if and only if it is injective on Dm(A), where

Dm(A) := {u ∈ C(R) ∩ C2(R) | Au ∈ C(R)}
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is the maximal domain in C(R), see Proposition 4.1.1 below. Then, from [21, Theorem VI.4.15],
it follows that (A,Dm(A)) generates a strongly continuous semigroup of positive contractions in
C(R).

We point out that (H0) is equivalent to requiring that ±∞ are inaccessible boundary points
according to Feller’s terminology, which means that, if W (x) := exp

(
−
∫ x

0
b(t)
a(t) dt

)
, the function

R(x) := W (x)
∫ x

0

1
a(t)W (t)

dt

is not summable either in (−∞, 0) or in (0,+∞). In many cases verifying these integral conditions
is not by any means an easy task. A sufficient condition, which has the advantage to be easy
to handle, is the existence of a positive function V ∈ C2(R) such that lim|x|→∞ V (x) = ∞ and
AV ≤ λV for some λ > 0, see again Proposition 4.1.1.

Our main results show that, under suitable conditions,

Dmax(A) = {u ∈ C2
b (R) | au′′, bu′ ∈ Cb(R)}

and, if a is bounded,
Dm(A) = {u ∈ C2(R) | bu′ ∈ C(R)}.

In this way, requiring that Au ∈ Cb(R) (resp. C(R)) is the same to requiring that the two terms
au′′ and bu′ separately belong to Cb(R) (resp. C(R)).

Let us state our main assumptions:

(H1) a ∈ C(R) and a ≥ δ for some δ > 0.

(H2) b ∈ C1(R) and there exist constants c1 ∈ R and c2 < 1 such that

a(x)b′(x) ≤ c1 + c2b
2(x), x ∈ R .

We shall keep hypothesis (H1) and (H2) throughout Sections 4.1 and 4.2 together with (H0), but
we shall need stronger assumptions in Subsection 4.2.2. In fact, to describe the domain in C(R)
we assume that a ∈ Cb(R) and that b satisfies |b′| ≤ c(1 + |b|).

4.1 Preliminary results

In this section we collect some preliminary results which will be useful for the sequel. We start
by studying the injectivity of the operator λ−A on Dmax(A) and Dm(A), i.e. the uniqueness of
the solution in Dm(A) and Dmax(A) of the elliptic equation λu−Au = f .

Proposition 4.1.1 The following assertions are equivalent:

(i) (H0) holds.

(ii) λ−A is injective on Dmax(A) for all λ > 0, hence (A,Dmax(A)) generates a semigroup of
positive contractions in Cb(R).

(iii) λ−A is injective on Dm(A) for all λ > 0, hence (A,Dm(A)) generates a strongly continuous
semigroup of positive contractions in C(R).

Moreover, if there exists a positive function V ∈ C2(R) such that lim|x|→+∞ V (x) = +∞ and
AV ≤ λV for some λ > 0, then the above conditions are satisfied.

96



Proof. For (i)⇔ (ii) see [38, Proposition 3.5]. Implication (ii)⇒ (iii) is obvious, see also [21,
Theorem VI.4.15].

Now we prove that (iii) implies (ii). Let u ∈ Dmax(A) be such that λu − Au = 0. From
[21, Theorem VI.4.14] it follows that there exist two linearly independent solutions v1 and v2 of
(λ−A)v = 0 such that v1 (resp. v2) is bounded (resp. unbounded) at +∞ and unbounded (resp.
bounded) at −∞. Then u = k1v1 + k2v2, for some constants k1, k2 ∈ R. Since u is bounded,
k1 = k2 = 0, which means u = 0.

Finally if there exists a function V as above then (ii) holds as a consequence of Proposition
5.2.3.

Now we prove some estimates which will be the main tool for the description of Dmax(A).

Proposition 4.1.2 Assume that a > 0 and that (H2) holds. Let M > 0 and v be a function in
C1([−M,M ]) such that v(−M) = v(M) = 0. Then

(4.1.1) ‖bv‖[−M,M] ≤
1

1− c2
‖av′ + bv‖[−M,M] +

√
c+1

1− c2
‖v‖[−M,M] ,

where c+1 = max{c1, 0}.

Proof. Set f = av′ + bv. Let x0 ∈ [−M,M ] be a maximum point of the function bv. We may
suppose that x0 ∈] −M,M [ and b(x0) 6= 0, otherwise b(x0)v(x0) = 0 and estimate (4.1.1) is
trivially satisfied. Moreover, without loss of generality we assume that ‖bv‖[−M,M] = b(x0)v(x0).
Then (bv)′(x0) = 0 and from hypothesis (H2) it follows that

a(x0)v′(x0) = −a(x0)b′(x0)
v(x0)
b(x0)

≥ −c1
v(x0)
b(x0)

− c2b(x0)v(x0)

and consequently

‖f‖[−M,M] ≥ f(x0) = a(x0)v′(x0) + b(x0)v(x0) ≥ (1− c2)b(x0)v(x0)− c1
v(x0)
b(x0)

.

Multiplying by b(x0)v(x0) = ‖bv‖[−M,M] both sides of the previous inequality we get

‖bv‖[−M,M]‖f‖[−M,M] ≥ (1− c2)‖bv‖2[−M,M] − c1v2(x0) ≥ (1− c2)‖bv‖2[−M,M] − c+1 ‖v‖2[−M,M] .

If x := ‖bv‖[−M,M], we have x2 ≤ αx + β with α =
1

1− c2
‖f‖[−M,M], β =

c+1
1− c2

‖v‖2[−M,M]. It

follows that x ≤ α+
√
β, that is

‖bv‖[−M,M] ≤
1

1− c2
‖f‖[−M,M] +

√
c+1

1− c2
‖v‖[−M,M] ,

which is the statement.

Remark 4.1.3 Assume (H1) and (H2). If u ∈ C2([−M,M ]) is such that u′(−M) = u′(M) = 0
then Proposition 4.1.2 implies

‖bu′‖[−M,M] ≤
1

1− c2
‖Au‖[−M,M] +

√
c+1

1− c2
‖u′‖[−M,M] .

Now, if ε > 0 is sufficiently small, there exists a constant Cε, independent of M , such that

‖u′‖[−M,M] ≤ ε‖u′′‖[−M,M] + Cε‖u‖[−M,M] .
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Moreover we have that

‖u′′‖[−M,M] ≤
1
δ
‖au′′‖[−M,M] ≤

1
δ

(‖bu′‖[−M,M] + ‖Au‖[−M,M]) .

Taking into account these estimates and choosing ε small enough we get

(4.1.2) ‖bu′‖[−M,M] ≤ C (‖Au‖[−M,M] + ‖u‖[−M,M])

where C depends only on c1, c2 and δ.
Estimate (4.1.2) still holds for every function u ∈ C2(R) with compact support; indeed, it is

sufficient to consider an interval containing the support of u. The next step is to show that if a is
bounded then this estimate extends to every function u ∈ C2

b (R). This will be used in Subsection
4.2.2.

Proposition 4.1.4 If a ∈ Cb(R), a ≥ δ > 0 and (H2) holds, then for every u ∈ C2
b (R) we have

(i) ‖bu′‖∞ ≤ C(‖Au‖∞ + ‖u‖∞) ;

(ii) ‖u′′‖∞ ≤ C (‖Au‖∞ + ‖u‖∞),

where C = C(c1, c2, δ).

Proof. Let u ∈ C2
b (R). We prove that

(4.1.3) ‖bu′‖∞ ≤
1

1− c2
‖Au‖∞ +

√
c+1

1− c2
‖u′‖∞.

Let v = u′ and η ∈ C∞c (R) be such that 0 ≤ η ≤ 1, η ≡ 1 in [−1, 1] and η ≡ 0 in R \ [−2, 2].
Set ηn(x) = η(x/n). Then a(v ηn)′ + b(v ηn) = (av′ + bv)ηn + a v η′n and applying (4.1.1) to
v ηn ∈ C1

c (R) we have

‖b v ηn‖∞ ≤
1

1− c2
‖av′ + bv‖∞ +

‖a‖∞
1− c2

‖v η′n‖∞ +

√
c+1

1− c2
‖v‖∞ .

Letting n→∞ it follows that

‖bv‖∞ ≤
1

1− c2
‖av′ + bv‖∞ +

√
c+1

1− c2
‖v‖∞ ,

which is just estimate (4.1.3). Now, (i) follows from (4.1.3) as in Remark 4.1.3.
Estimate (ii) easily follows from (i).

4.2 Characterization of the domain

4.2.1 The case of Cb(R)

In this subsection we show that Dmax(A) is given by

Dmax(A) = {u ∈ C2
b (R) | au′′, bu′ ∈ Cb(R)}.

The crucial point is to prove that λ−A is surjective from the right-hand side above onto Cb(R).
This is done through an approximation procedure by considering the solutions of the equation
λu−Au = f in bounded intervals with Neumann boundary conditions and applying the estimates
of Section 4.1.
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Proposition 4.2.1 Assume that (H0), (H1) and (H2) hold. Then

Dmax(A) = {u ∈ C2
b (R) | au′′, bu′ ∈ Cb(R)}.

Proof. Set D(A) := {u ∈ C2
b (R) | au′′, bu′ ∈ Cb(R)}. Let λ > 0 and f ∈ Cb(R) be fixed. For

every n ∈ N consider the problem{
λu−Au = f in [−n, n]
u′(−n) = u′(n) = 0

It is well known that there exists a unique solution un ∈ C2([−n, n]) which satisfies the following
estimate

(4.2.1) ‖un‖[−n,n] ≤
1
λ
‖f‖∞

(see e.g. [21, Theorem VI.4.16]). The equality λun −Aun = f implies that

(4.2.2) ‖Aun‖[−n,n] ≤ 2‖f‖∞.

Taking into account estimate (4.1.2) we have

(4.2.3) ‖bu′n‖[−n,n] ≤ C
(
‖Aun‖[−n,n] + ‖un‖[−n,n]

)
≤ C ‖f‖∞,

where C = C(c1, c2, δ, λ). Moreover

(4.2.4) δ‖u′′n‖[−n,n] ≤ ‖au′′n‖[−n,n] ≤ ‖Aun‖[−n,n] + ‖bu′n‖[−n,n] ≤ C1 ‖f‖∞

and, by interpolation

(4.2.5) ‖u′n‖[−n,n] ≤ C2(‖Aun‖[−n,n] + ‖un‖[−n,n]) ≤ C2 ‖f‖∞

with C1 and C2 depending only on c1, c2, δ, λ. Now fix k ∈ N and consider n ≥ k. Then the
previous estimates imply that ‖un‖C2([−k,k]) is bounded by a constant independent of n and k.
It follows that the sequences (un), (u′n) are bounded and equicontinuous, then by Ascoli-Arzelà
Theorem there exists a subsequence of (un) which converges in C1([−k, k]). Using a diagonal
procedure we can construct a subsequence, still denoted by (un), and a function u ∈ C1(R) such
that un converges to u together with the first derivatives uniformly on every compact subset
of R. It follows that bu′n converges to bu′ uniformly on compact sets and, using the equation
λun − Aun = f , it turns out that au′′n and consequently u′′n converge, too. Therefore u ∈ C2(R)
and λu−Au = f . Writing estimates (4.2.3), (4.2.4) and (4.2.5) for the function un in [−k, k] with
n ≥ k and letting first n→∞ and then k →∞ we obtain that u ∈ C2

b (R) with au′′, bu′ ∈ Cb(R),
i.e. u ∈ D(A).

This shows that λ − A : D(A) → Cb(R) is surjective. Since D(A) ⊂ Dmax(A) and λ − A :
Dmax(A)→ Cb(R) is bijective we deduce that D(A) = Dmax(A), as claimed.

4.2.2 The case of C(R)

As in the previous subsection we show that the domain Dm(A) on which A generates a strongly
continuous semigroup in C(R) is given by

Dm(A) = {u ∈ C2(R) | bu′ ∈ C(R)}.

To this aim we require that
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(H′0) there exist positive constants d1, d2 such that

b(x)x ≤ d1(1 + x2) log(1 + x2) + d2, x ∈ R.

(H′1) a ∈ Cb(R) and a ≥ δ for some δ > 0.

(H′2) b ∈ C1(R) and |b′(x)| ≤ c(1 + |b(x)|), for some constant c > 0 and for all x ∈ R.

Since a is bounded one easily verify that the function V (x) = 1+log(1+x2) satisfies the hypothesis
of Proposition 4.1.1. Hence (A,Dm(A)) generates a semigroup in C(R). Clearly (H′1) and (H′2)
imply (H1) and (H2), thus we may use the results of Subsection 4.2.1.

Proposition 4.2.2 Assume that (H0
′), (H1

′) and (H2
′) hold. Then

Dm(A) = {u ∈ C2(R) | bu′ ∈ C(R)}.

Proof. Set D := {u ∈ C2(R) | bu′ ∈ C(R)}. Since λ − A : Dm(A) → C(R) is bijective and
D ⊂ Dm(A), it is sufficient to prove that λ−A : D → C(R) is surjective.

Step 1 : We assume first that a ≡ 1. Let λ > 0 and f ∈ C(R) be fixed. From Proposition 4.2.1
we know that there exists u ∈ Dmax(A) = {u ∈ C2

b (R) | bu′ ∈ Cb(R)} such that λu − Au = f .
On the other hand, since (A,Dm(A)) generates a strongly continuous semigroup of contractions,
there is w ∈ Dm(A) which solves the same equation. By uniqueness u = w. This means that
u ∈ C2

b (R) ∩ C(R) with Au ∈ C(R), bu′ ∈ Cb(R) and λu − Au = f . It remains to prove
that u′, u′′, bu′ ∈ C(R). Since u′ is uniformly continuous and u admits finite limits at ±∞ we
deduce that lim|x|→∞ u′(x) = 0. In order to use the same argument for u′′ we first assume
f ∈ C(R) ∩ C1

b (R). Then we may differentiate the equation

(4.2.6) λu− u′′ − bu′ = f

obtaining
λv − v′′ − bv′ = f ′ + b′v ,

where v = u′. (H′2) implies that g := f ′ + b′v ∈ Cb(R). Therefore v ∈ Dmax(A) and Proposition
4.2.1 implies that v ∈ C2

b (R). This means that u ∈ C3
b (R) and as before it implies that u′′ ∈ C(R),

with lim|x|→∞ u′′(x) = 0.
Now take f ∈ C(R). Set fε := Φε ∗ f ∈ C(R) ∩ C1

b (R) for ε > 0, where (Φε) is a family
of standard mollifiers. From the previous computations, for every ε > 0 the solution uε of
the equation λuε − Auε = fε belongs to D. Let u ∈ Dmax(A) be the solution of λu − Au =
f and consider the difference u − uε. Then u − uε ∈ C2

b (R) with A(u − uε) ∈ Cb(R) and
λ(u− uε)−A(u− uε) = f − fε. Moreover

‖u− uε‖∞ ≤
1
λ
‖fε − f‖∞ ,

thus from the equation we get

‖Au−Auε‖∞ ≤ 2‖fε − f‖∞

and from Proposition 4.1.4(ii) it follows that

‖u′′ − u′′ε‖∞ ≤ C(‖Au−Auε‖∞ + ‖u− uε‖∞) .

Since fε converges uniformly to f as ε → 0, we obtain that u′′ε converges uniformly to u′′ as
ε → 0. Since each u′′ε tends to 0 as |x| → ∞, we conclude that lim|x|→∞ u′′ = 0. Therefore
u ∈ C2(R) and bu′ ∈ C(R), i.e. u ∈ D.
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Step 2: Now we consider a generic function a satisfying (H′1). We endow the domain D with
the canonical norm

‖u‖D = ‖u‖C2(R) + ‖bu′‖∞ ,

and we apply the method of continuity to the operators

At := (ta+ 1− t) d
2

dx2
+ b

d

dx
, t ∈ [0, 1] .

Let u ∈ D ⊂ Dmax(A). We observe that the constants c1, c2 in (H2) and δ in (H′1) are independent
of t ∈ [0, 1], so, applying Proposition 4.2.1 with At instead of A and letting n→∞ in estimates
(4.2.1), (4.2.3), (4.2.4) and (4.2.5), we obtain for λ > 0

‖u‖D ≤ C‖(λ−At)u‖∞ ,

where the constant C is independent of t ∈ [0, 1].
Since λ−A0 : D → C(R) is bijective from step 1, we conclude that λ−A1 = λ−A is bijective,

too.

4.2.3 Examples

Assume for simplicity that a ≡ 1. If b is given by b(x) = −|x|rx, with r ≥ 0, then it is
readily seen that the function V (x) = 1 +x2 satisfies AV ≤ λV for λ > 0 sufficiently large. Then
Proposition 4.1.1 holds and A endowed with its maximal domain is a generator both in Cb(R)
and in C(R). The corresponding semigroup is differentiable for r > 0, but never analytic in
Cb(R) (see [40, Propositions 4.4 and 3.5]). Since (H′1) and (H′2) are satisfied, Propositions 4.2.1
and 4.2.2 hold.

Condition (H2) is satisfied by all polynomials and functions like eP with P a polynomial. But
if b oscillates too fast then (H2) is not true and Dmax(A) is not contained in general in C1

b (R) as
shown in Example 2.4.7.

As far as hypothesis (H′2) is concerned, we remark that it holds for example for ex but not
for ex

2
. In this last situation we do not know whether Proposition 4.2.2 still holds.
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