
Chapter 10

Copulas and Schur–concavity

The notion of Schur–concavity (and the closely related concept of Schur–convexity)
has a great importance in the recent applications of statistics; witness of this is the
recent monograph of Spizzichino [152] where Schur–concavity is one of the central
themes in the Bayesian models of aging. However, the study of Schur–concavity of
copulas does not seem to have yet received any attention in the literature, although
twenty years ago Alsina studied the same question for t–norms (see [1]). To this topic
this chapter is devoted.

In section 10.1 we present some results about the class of Schur–concave copulas
and several examples are given in section 10.2. The concept of Schur–concavity,
moreover, allows us to discuss an open problem on the classes of copulas and triangular
norms (section 10.3).

The presented resulted are also contained in [44, 33].

10.1 The class of Schur–concave copulas

At the beginning of the study on Schur–concavity of copulas, we recall some prop-
erties that can be directly derived from section 1.2.

Proposition 10.1.1. Let C : [0, 1]2 → [0, 1] be a semicopula.

(a) If C is Schur–concave (or Schur-convex), then it is symmetric.

(b) If C is Schur–concave (or Schur–convex) on ∆+ := {(x, y) ∈ [0, 1]2 : x ≥ y},
then C is Schur–concave (or Schur–convex) on [0, 1]2.

Proposition 10.1.2. A semicopula C : [0, 1]2 → [0, 1] is Schur–concave if, and only
if, for all x, y and λ in [0, 1]

C(x, y) ≤ C(λx+ (1− λ)y, (1− λ)x+ λy).
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Proof. It suffices to consider the definition of Schur–concavity and Corollary 1.2.1.

Example 10.1.1. Consider the copula M . For every x ≥ y, we have y ≤ λx+(1−λ)y
and y ≤ (1− λ)x+ λy, so that

M(x, y) ≤M(λx+ (1− λ)y, (1− λ)x+ λy);

and, analogously, we have the same result for x < y. Therefore M is Schur–concave.

Proposition 10.1.3. Let C be a continuously differentiable semicopula. Then C is
Schur–concave on [0, 1]2 if, and only if,

(i) C is symmetric;

(ii) for all (x, y) ∈ ∆+, ∂1C(x, y) ≤ ∂2C(x, y).

As a consequence, it is easily proved that the copula Π is Schur–concave. Note
that not every symmetric copula is Schur–concave, as the following example shows.

Example 10.1.2. Let C be the absolutely continuous copula defined by

C(x, y) :=


xy/2, if (x, y) ∈ [0, 1/2]× [0, 1/2];

x (3y − 1)/2, if (x, y) ∈ [0, 1/2]× [1/2, 1];

y (3x− 1)/2, if (x, y) ∈ [1/2, 1]× [0, 1/2];

(xy + x+ y − 1) /2, if (x, y) ∈ [1/2, 1]× [1/2, 1].

This copula is symmetric and has a density c given by

c(x, y) :=

1/2, if (x, y) ∈ [0, 1/2]2 ∪ [1/2, 1]2;

3/2, otherwise.

The three points x = (6/10, 4/10), y = (7/10, 3/10) and z = (8/10, 2/10) are such
that x ≺ y ≺ z, but

C

(
6
10
,

4
10

)
=

32
200

<
33
200

= C

(
7
10
,

3
10

)
,

C

(
7
10
,

3
10

)
=

33
200

>
28
200

= C

(
8
10
,

2
10

)
.

Therefore C is not Schur–concave.

The following result allows us to investigate only on the class of Schur–concave
copulas.

Proposition 10.1.4. The copula W is the only Schur–convex (quasi–)copula.
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Proof. Let C be a Schur–convex copula. Given x, y ∈ [0, 1] such that x + y ≤ 1, we
have (x, y) ≺ (x+ y, 0), from which

C(x, y) ≤ C (x+ y, 0) = 0.

Furthermore, given x, y ∈ [0, 1] such that x + y > 1, we have (x, y) ≺ (1, x+ y − 1),
from which

C (x, y) ≤ C (1, x+ y − 1) = x+ y − 1.

Then, for all x, y ∈ [0, 1]

C (x, y) ≤ max (x+ y − 1, 0) = W (x, y) ,

but, from the Fréchet–Hoeffding bounds inequalities (1.13) it follows that C = W .

Notice that W is also the only Schur–constant (semi–)copula, as showed in Propo-
sition 2.2.2.

Now, we give some results about the class CSC of Schur–concave copulas.

Proposition 10.1.5. The class CSC is a compact subset of C with respect to the
topology of uniform convergence.

Proof. It is known that C is compact space with respect to the topology of uniform
convergence. But, if (Cn)n∈N is a sequence in CSC , then the pointwise limit

C (x, y) = lim
n→+∞

Cn (x, y)

is Schur–concave. It follows that the set CSC is a closed subset of C, and therefore it
is also compact.

Proposition 10.1.6. The class CSC is a convex subset of C.

Proof. Let (x1, x2) and (y1, y2) be two points in [0, 1]2 such that (x1, x2) ≺ (y1, y2)
and suppose that C1 and C2 are Schur–concave copulas. Then, for every λ ∈ [0, 1]

C(x1, x2) = λC1(x1, x2) + (1− λ)C2(x2, y2)

≥ λC1(y1, y2) + (1− λ)C2(y1, y2) = C(y1, y2),

which concludes the proof.

Proposition 10.1.7. A copula C is Schur–concave if, and only if, the survival copula
Ĉ associated with C is Schur–concave.

Proof. If C is Schur–concave, then, given (x1, x2), (y1, y2) two points in ∆+ such that
(x1, x2) ≺ (y1, y2), we have

(1− x1, 1− x2) ≺ (1− y1, 1− y2),
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from which
C(1− x1, 1− x2) ≥ C(1− y1, 1− y2),

and
x1 + x2 − 1 + C(1− x1, 1− x2) ≥ y1 + y2 − 1 + C(1− y1, 1− y2),

Then Ĉ is Schur-concave. The same argument applies if Ĉ is assumed to be Schur–
concave

In view of Sklar’s Theorem, given a copula C and two univariate d.f.’s F and G, it
is possible to construct a bivariate d.f. H(x, y) := C(F (x), G(y)) for every (x, y) ∈ R2.
Now, it is useful to stress the fact that, with suitable marginal d.f.’s, Schur–concave
copulas may yield Schur–concave, –convex or constant bivariate d.f.’s (see [115]).

10.2 Families of Schur–concave copulas

Theorem 10.2.1. Every associative copula is Schur–concave.

In order to prove this result, first we establish the following two lemmas.

Lemma 10.2.1. An ordinal sum of Schur–concave copulas is a Schur–concave copula.

Proof. Let {Ji = [ai, bi]}i∈I be a partition of the unit square and let {Ci}i∈I be a
family of Schur–concave copulas. Let C be the ordinal sum of {Ci}i∈I with respect
to {Ji}i∈I, viz.

C(x, y) :=

ai + (bi − ai) Ci

(
x− ai
bi − ai

,
y − ai
bi − ai

)
, if (x, y) ∈ J2

i ;

M(x, y), otherwise.

Notice that C is symmetric and we shall show that, if every Ci is Schur–concave, then
C is Schur–concave. Let (x1, x2), (y1, y2) be two points in ∆+ such that (x1, x2) ≺
(y1, y2). Suppose that there exists an index i0 ∈ I such that (x1, x2), (y1, y2) ∈ J2

i0
.

We observe that (
x1 − ai0
bi0 − ai0

,
x2 − ai0
bi0 − ai0

)
≺
(
y1 − ai0
bi0 − ai0

,
y2 − ai0
bi0 − ai0

)
,

that implies

Ci0

(
x1 − ai0
bi0 − ai0

,
x2 − ai0
bi0 − ai0

)
≥ Ci0

(
y1 − ai0
bi0 − ai0

,
y2 − ai0
bi0 − ai0

)
,

since Ci0 is Schur–concave, and it follows C(x1, x2) ≥ C(y1, y2). Similarly, if (x1, x2)
and (y1, y2) does not belong to J2

i for all i ∈ I, since M is also Schur–concave, it
follows C(x1, x2) ≥ C(y1, y2). Finally, suppose that exists an index i0 such that
(x1, x2) ∈ J2

i0
and (y1, y2) 6∈ J2

i for all i ∈ I. We set k := x1 + x2 = y1 + y2 and we
distinguish two cases.
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Case 1. If 2ai0 ≤ k ≤ ai0 + bi0 , then (x1, x2) ≺ (k − ai0 , ai0) and

C(x1, x2) ≥ C(k − ai0 , ai0) = ai0 ≥M(y1, y2) = C(y1, y2);

hence C is Schur–concave.
Case 2. If ai0 + bi0 < k < 2bi0 , then (x1, x2) ≺ (bi0 , k − bi0) and

C(x1, x2) ≥ C(bi0 , k − bi0) = k − bi0 ≥M(y1, y2) = C(y1, y2),

from which it follows that C is Schur–concave.

Lemma 10.2.2. Every Archimedean copula is Schur–concave.

Proof. Let (x1, x2) and (y1, y2) two points in [0, 1]2 such that (x1, x2) ≺ (y1, y2). It
follows from Corollary 1.2.1 that there exists α ∈ [0, 1] such that, if α := 1− α, then

x1 = α y1 + α y2, x2 = α y1 + α y2.

Let Cϕ be an Archimedean copula with additive generator ϕ. Since ϕ is convex and
strictly decreasing

C(x1, x2) = C(α y1 + α y2, αy1 + α y2)

= ϕ[−1] (ϕ(α y1 + α y2) + ϕ(α y1 + α y2))

≥ ϕ[−1] (αϕ(y1) + αϕ(y2) + αϕ(y1) + αϕ(y2))

= ϕ[−1] (ϕ(y1) + ϕ(y2)) = C(y1, y2),

which concludes the proof.

Proof. (Theorem 10.2.1) It was shown that M and every Archimedean copula are
Schur–concave, moreover the ordinal sum of two Schur–concave copulas is Schur–
concave too. In view of Representation Theorem for associative copulas (Theorem
1.6.9), the assertion follows.

Here we give some other examples of Schur–concave copulas.

Example 10.2.1 (The Fréchet family). Every copula Cα,β belonging to the Fréchet
family (see Example 1.6.2), defined by

Cα,β(x, y) = αM(x, y) + (1− α− β) Π(x, y) + βW (x, y)

is Schur–concave, because it is a convex sum of Schur–concave copulas.

Example 10.2.2 (The FGM family). For all x, y ∈ [0, 1] and θ ∈ [−1, 1]

Cθ(x, y) = xy + θxy (1− x) (1− y)
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is a member of the FGM family (see Example 1.6.3). For every x, y ∈ [0, 1] we have

∂1Cθ(x, y) = y + θy (1− x) (1− y)− θxy (1− y),

∂2Cθ(x, y) = x+ θx (1− x) (1− y)− θxy (1− x).

As a consequence of the inequality |1− x− y + 2xy| ≤ 1, which holds for all x and y
in [0, 1], if x ≥ y we have

∂2Cθ(x, y)− ∂1Cθ(x, y) = (x− y)[1 + θ(1− x− y + 2xy)] ≥ 0.

Thus, it follows from Proposition 10.1.3 that Cθ is Schur–concave.

Example 10.2.3 (The Plackett family). For all u, v ∈ [0, 1] and θ > 0, θ 6= 1,

Cθ(u, v) =
[1 + (θ − 1) (u+ v)]−

√
[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
2 (θ − 1)

is a family of copulas, known as Plackett family (see [130]). For all x, y ∈ [0, 1], we
have

∂1Cθ(u, v) =
1
2
− 1 + (θ − 1) (u+ v) − 2θv

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
,

∂2Cθ(u, v) =
1
2
− 1 + (θ − 1) (u+ v) − 2θu

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
.

Moreover, for u ≥ v, it follows that

∂2Cθ(u, v)− ∂1Cθ(u, v) =
θ (u− v)

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
≥ 0.

Thus Cθ is Schur–concave.

10.3 Solution of an open problem for associative

copulas

Recently, E.P. Klement, R. Mesiar and E. Pap ([85]) posed some open problems
concerning triangular norms and related operators. In particular, the following prob-
lem was formulated:

Problem 10.3.1. Let T be a continuous Archimedean t–norm. Prove or disprove
that:

T (max{x− a, 0},min{x+ a, 1}) ≤ T (x, x) (10.1)

holds for all x ∈ [0, 1] and for all a ∈ ]0, 1/2[.
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In particular, the authors added that “a positive solution of this problem would
induce a new characterization of associative copulas”. This comment spurs us to
investigate inequality (10.1) in the class of copulas: to this end, the notion of Schur–
concavity will be useful.

First, notice that inequality (10.1) is not true for every copula.

Example 10.3.1. Let C be the copula given in [114, Example 3.3],

C(x, y) :=


x, if 0 ≤ x ≤ y

2
≤ 1

2
;

y

2
, if 0 ≤ y

2
< x < 1− y

2
;

x+ y − 1, if
1
2
≤ 1− y

2
≤ x ≤ 1.

Then

C

(
4
10
,

6
10

)
=

3
10

> C

(
1
2
,
1
2

)
=

1
4
.

Note that C is not associative:

C

(
C

(
1
2
,
1
2

)
,
1
2

)
= C

(
1
4
,
1
2

)
=

1
4
6= 1

8
= C

(
1
2
, C

(
1
2
,
1
2

))
.

But, in general, we have

Lemma 10.3.1. Let A be a semicopula. If A is Schur–concave, then A satisfies
(10.1).

Proof. Let a be in ]0, 1/2[. We distinguish three cases. If x ≤ a, then (10.1) follows
since A is positive. If a < x ≤ 1 − a, then (10.1) is equivalent to A(x − a, x + a) ≤
A(x, x), which is a direct consequence of the Schur–concavity. If x > 1 − a, then
(10.1) is equivalent to x − a ≤ A(x, x) and this last inequality follows from the fact
that

A(x, x) ≥ A(2x− 1, 1) = 2x− 1 > x− a.

Lemma 10.3.1 and Theorem 10.2.1 together yield:

Theorem 10.3.1. If C is an associative copula, then C satisfies (10.1).

Notice that, if a copula C satisfies (10.1), then it need not be associative.

Example 10.3.2. We consider the FGM family of copulas given, for all x, y ∈ [0, 1]
and θ ∈ [−1, 1], by Cθ(x, y) = xy + θxy (1 − x) (1 − y). From Example 10.2.2, Cθ is
Schur–concave, and thus satisfies (10.1), but, if θ 6= 0, Cθ is not associative.

Notice also that, if a copula C satisfies (10.1), then it need not be Schur–concave.
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Example 10.3.3. Let C be the copula defined by

C(x, y) :=



1
3M(3x, 3y − 2), if (x, y) ∈

[
0, 1

3

]
×
[
2
3 , 1
]
;

1
3M(3x− 1, 3y − 1), if (x, y) ∈

[
1
3 ,

2
3

]
×
[
1
3 ,

2
3

]
;

1
3M(3x− 2, 3y), if (x, y) ∈

[
2
3 , 1
]
×
[
0, 1

3

]
;

W (x, y), otherwise.

This copula is obtained by using the block–based construction method introduced
in [28]. Simple, but tedious, calculations show that C satisfies (10.1), but C is not
Schur–concave. In fact, given the points (2/10, 7/10) and (3/10, 6/10), we have

C

(
3
10
,

6
10

)
= 0 <

1
30

= C

(
2
10
,

7
10

)
,

which implies that C is not Schur–concave.

Remark 10.3.1. A geometrical interpretation can be given of the difference between
inequality (10.1) and Schur–concavity. If z = C(s, t) is the surface associated with
a copula C that satisfies (10.1), the intersections of the surface with all the vertical
planes of the form s+ t = 2x, for all x ∈ [0, 1] and s ∈ [0, x], are curves that take the
maximum value in the point (x, x). But, if C is Schur–concave, we have the stronger
condition that such curves are also decreasing from (x, x) to (2x, 0) (resp. (2x−1, 1)).

10.3.1 Discussion in the class of triangular norms

In the class of continuous Archimedean t–norms, inequality (10.1) was character-
ized in [67] (see also [98, 127]).

Theorem 10.3.2. Let T be a continuous Archimedean t–norm with additive generator
t. Let ξ be defined by ξ := t−1 (t(0)/2). Then T satisfies (10.1), for all a ∈ ]0, 1/2[
and x ∈ [0, 1], if, and only if, the two following statements hold:

(a) for all z ∈ ]0,min{ξ, 1− ξ}[, t(ξ − z) + t(ξ + z) ≥ 1;

(b) t is convex on [ξ, 1].

In particular, if T is strict (viz. t(0) = +∞), then the following statements are equiv-
alent:

(a’) T satisfies (10.1), for all a ∈ ]0, 1/2[ and x ∈ [0, 1];

(b’) t is convex on [0, 1].

On the other hand, we have also the characterization of continuous Archimedean
t–norms that are Schur–concave (see [1]).

Theorem 10.3.3. Let T be a continuous Archimedean t–norm with additive generator
t. Then we have:
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(a) if T is strict, then T is Schur–concave if, and only if, t is convex;

(b) if T is nilpotent, then T is Schur–concave if, and only if, t satisfies the following
inequality:

t (αx+ (1− α)y) + t ((1− α)x+ αy) ≤ t(x) + t(y)

for every α in [0, 1] and for all x, y in [0, 1] such that t(x) + t(y) ≤ 1.

From the two previous results, we derive

Theorem 10.3.4. Let T be a strict Archimedean t–norm with additive generator t.
The following statements are equivalent:

(i) T is a copula;

(ii) T is Schur–concave;

(iii) T satisfies (10.1).

Proof. From Theorem 1.6.6, T is a copula if, and only if, the additive generator t
is convex and, then, T is Schur–concave (Theorem 10.3.3). Moreover, from Lemma
10.3.1, (ii) implies (iii), which, in its turn, is equivalent to the convexity of t (Theorem
10.3.2), which concludes the proof.

Remark 10.3.2. The previous result also holds in the case of a continuous t–norm
T which is jointly strictly monotone, i.e. T (x, y) < T (x, z) whenever x > 0 and y < z

(see [88]).

Looking at Theorem 10.3.4 in the class of nilpotent t–norm, we have (i) =⇒
(ii) =⇒ (iii). But, there exists a Schur–concave nilpotent t–norm T , which is not
a copula: consider, for example, a t–norm additively generated by t(x) := 1+cos(πx)

2

(see [1, Example 2.1]). Moreover, in the class of nilpotent t–norms, inequality (10.1)
does not imply Schur–concavity as the following example shows.

Example 10.3.4. Consider a t–norm T with additive generator t given by

t(x) :=


1− x

10 , if x ∈
[
0, 1

10

]
;

− 49
√

2

10(9
√

2−10)
(
x− 1

10

)
+ 99

100 if x ∈
]

1
10 , 1−

1√
2

]
;

(1− x)2, otherwise.

Then T satisfies the assumptions of Theorem 10.3.2, and thus the inequality (10.1),
but

T (5/100, 95/100) = 25/1000 > 0 = T (1/10, 9/10),

which implies that T is not Schur–concave.




