
Chapter 9

Copula and semicopula

transforms

In this chapter, a method will be studied for transforming a copula into another
one via a continuous and strictly increasing function. For the first time, this method
appeared in the theory of semigroups and it was already used for triangular norms
([141, 83]). Recently, it has been studied in the theory of copulas in [49], where strong
conditions on the transformating function are given, and in [87], where the authors
are interested, in particular, in the study of the invariance of copulas under such
transformations. However, the approach presented here takes into account the ideas
presented in [7], where transformations of copulas and semicopulas are a useful tool
to investigate bivariate notions of aging.

Therefore, in section 9.1 we study first the transformation of semicopulas; then
sections 9.2 and 9.3 are devoted to a characterization of this transformation in the
class of copulas and to the study of its properties.

For the results here presented, we can also see [46].

9.1 Transformation of semicopulas

We denote by Θ the set of continuous and strictly increasing functions h : [0, 1] →
[0, 1] with h(1) = 1 and we denote by Θi the subset of Θ defined by those h ∈ Θ that
are invertible. The following theorem is basic for what follows.

Theorem 9.1.1. For all h ∈ Θ and S ∈ S, the function Sh : [0, 1]2 → [0, 1], defined,
for all x and y in [0, 1], by

Sh(x, y) := h[−1] (S(h(x), h(y))) (9.1)

is a semicopula. Moreover, if S is continuous, then also Sh is continuous.
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Proof. If t is in [0, 1], then

Sh(t, 1) = h[−1] (S(h(t), h(1))) = h[−1](h(t)) = t = Sh(1, t).

Let x, x′, y be in [0, 1] with x ≤ x′. Then

h(x) ≤ h(x′) =⇒ S(h(x), h(y)) ≤ S(h(x′), h(y))

=⇒ h[−1] (S(h(x), h(y))) ≤ h[−1] (S(h(x′), h(y))) ,

namely x 7→ Sh(x, y) is increasing; similarly, y 7→ Sh(x, y) is increasing.

The function Sh given by (9.1) is said to be the transformation of S via h, or the
h–transformation of S.

Theorem 9.1.1 introduces a mapping Ψ : S × Θ → S defined, for all x and y in
[0, 1], by

Ψ(S, h)(x, y) := h[−1] (S(h(x), h(y))) .

We shall often set Ψh S := Ψ(S, h).
The set {Ψh, h ∈ Θ} is closed with respect to the composition ◦. Moreover, given

h, g ∈ Θ, for all S ∈ S we have

(Ψg ◦Ψh) (S(x, y)) = Ψ (Ψ(S, h), g) (x, y) = g[−1] (Ψh S (g(x), g(y)))

= g[−1]
(
h[−1] S ((h ◦ g)(x), (h ◦ g)(y))

)
= (h ◦ g)[−1] (S ((h ◦ g)(x), (h ◦ g)(y))) = Ψh◦gS(x, y).

The identity mapping in S, which coincides with Ψid[0,1] , is, obviously, the neutral
element of the composition operator ◦ in {Ψh, h ∈ Θ}. Moreover, if h ∈ Θi, then Ψh

admits an inverse function given by Ψ−1
h = Ψh−1 and the mapping Ψ : S×Θi → S is

the so–called action of the group Θi on S.
Notice that, given the copula Π, for all h ∈ Θ ΨhΠ is an Archimedean and continu-

ous t-norm with additive generator ϕ(t) = − ln(h(t)) (see Theorem 1.4.2). Moreover,
for all h ∈ Θ, we have ΨhM = M and ΨhZ = Z.

Definition 9.1.1. A subset B of S is said to be stable (or closed) with respect to (or
under) Ψ if the image of B×Θ under Ψ is contained in B, ΨhB ⊆ B for every h ∈ Θ.

It is easily proved that the subsets of commutative and continuous semicopulas
are closed under Ψ. Moreover, the following result can be proved (see also [141, 83]).

Proposition 9.1.1. The class T of all t–norms is closed under Ψ.

Proof. For each h ∈ Θ and T ∈ T, it suffices to show that the function Th := ΨhT ,
defined by

Th(x, y) := h[−1] (T (h(x), h(y))) for all x, y ∈ [0, 1] ,
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is associative. Set δ := h(0) ≥ 0. For all s, t and u all belonging to [0, 1], simple
calculations lead to the two expressions

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)) ∨ δ, h(u)]}

Th [s, Th(t, u)] = h[−1] {T [h(s), T (h(t), h(u)) ∨ δ]} .

If T (h(s), h(t)) ≤ δ, then

Th [Th(s, t), u] = h[−1] (T (δ, h(u))) ≤ h[−1](δ) = 0,

and either

Th [s, Th(t, u)] = h[−1] (T (h(s), T (h(t), h(u))))

= h[−1] (T (T (h(s), h(t)), h(u)))) ≤ h[−1] (T (δ, h(u)) ≤ h[−1](δ) = 0,

or
Th [s, Th(t, u)] = h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0.

Therefore Th is associative.
If T (h(s), h(t)) > δ, then

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)), h(u)]}

and either

Th [s, Th(t, u)] = h[−1] (T (h(s), T (h(t), h(u))))

= h[−1] (T (T (h(s), h(t)), h(u)))) = Th [Th(s, t), u] ,

or
Th [s, Th(t, u)] = h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0,

but, in this case, we have also

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)), h(u)]}

= h[−1] (T (h(s), T (h(t), h(u)))) ≤ h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0;

which is the desired assertion.

A t–norm T is said to be isomorphic to a t–norm T ′ if, and only if, there exists
h ∈ Θi such that T ′ = Th, viz. T ′ is the h–transformation of T . The following result
characterizes in terms of transformations two important subsets of t–norms (see [83]).

Theorem 9.1.2. Let T be a function from [0, 1]2 to [0, 1].

(i) T is a strict t–norm if, and only if, T is isomorphic to Π.

(ii) T is a nilpotent t–norm if, and only if, T is isomorphic to W .
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9.2 Transformation of copulas

Given a copula C and a function h ∈ Θ, let Ch be the h–transformation of C,

Ch(x, y) := h[−1] (C(h(x), h(y))) . (9.2)

From Theorem 9.1.1, it follows that Ch is a semicopula for all h ∈ Θ and for every
copula C ∈ C. However, it is easily checked that Ch need not be a copula, as the
following example shows.

Example 9.2.1. Let h be in Θ defined by h(t) := t2. Then

Wh(x, y) = h−1 (W (h(x), h(y))) =
√

max{x2 + y2 − 1, 0},

namely

Wh(x, y) =

0, if x2 + y2 ≤ 1,√
x2 + y2 − 1, otherwise.

And we have

Wh

(
1,

6
10

)
−Wh

(
6
10
,

6
10

)
=

6
10

>
4
10
.

Thus Wh is not 1–Lipschitz, therefore neither the class of copulas nor the class of
quasi–copulas are stable under Ψ.

In the following result, we characterize the transformations of copulas.

Theorem 9.2.1. For each h ∈ Θ, the following statements are equivalent:

(a) h is concave;

(b) for every copula C, the transform (9.2) is a copula.

Proof. (a) =⇒ (b) In view of Theorem 9.1.1, it suffices to show that Ch satisfies the
rectangular inequality (C2). To this end, let x1, y1, x2, y2 be points of [0, 1] such that
x1 ≤ x2 and y1 ≤ y2. Then the points si (i = 1, 2, 3, 4), defined by

s1 = C(h(x1), h(y1)), s2 = C(h(x1), h(y2)),

s3 = C(h(x2), h(y1)), s4 = C(h(x2), h(y2)),

satisfy

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4 and s1 + s4 ≥ s2 + s3, (9.3)

viz. (s3, s2) ≺w (s4, s1). Because h[−1] is convex, continuous and increasing, it follows
from Tomic’s theorem 1.2.3 that

h[−1](s3) + h[−1](s2) ≤ h[−1](s4) + h[−1](s1).
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Therefore we have

h[−1](C(h(x2), h(y1))) + h[−1](C(h(x1), h(y2)))

≤ h[−1](C(h(x2), h(y2))) + h[−1](C(h(x1), h(y1))),

namely Ch satisfies (C2).
(b) =⇒ (a) It suffices to show that h[−1] is mid–convex, that is

∀s, t ∈ [0, 1] h[−1]

(
s+ t

2

)
≤ h[−1](s) + h[−1](t)

2
, (9.4)

because, then, h[−1] is convex and, hence, h is concave.
Without loss of generality consider the copula W and s and t in [0, 1] with s ≤ t.

If (s+ t)/2 is in [0, h(0)], then (9.4) is immediate. If (s+ t)/2 is in ]h(0), 1], then we
have

W

(
s+ 1

2
,
s+ 1

2

)
= s, W

(
t+ 1

2
,
t+ 1

2

)
= t

W

(
s+ 1

2
,
t+ 1

2

)
=
s+ t

2
= W

(
t+ 1

2
,
s+ 1

2

)
.

There are points x1 and x2 in [0, 1] such that

h(x1) =
1 + s

2
and h(x2) =

1 + t

2
.

Since Wh is a copula, we have

Wh(x1, x1)−Wh(x1, x2)−Wh(x2, x1) +Wh(x2, x2) ≥ 0;

and, as a consequence

h[−1] (s)− h[−1]

(
s+ t

2

)
− h[−1]

(
s+ t

2

)
+ h[−1] (t) ≥ 0,

which is the desired conclusion.

Remark 9.2.1. In a special case, an interesting probabilistic interpretation of formula
(9.2) is presented in [59, Theorem 5.2.3]: if h(t) = t1/n for some n ≥ 1, then Ch

is the copula associated with componentwise maxima, X = max{X1, . . . , Xn} and
Y = max{Y1, . . . , Yn}, of a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of i.i.d.
random vectors with the same copula C. Power transformations of copulas are useful
in the theory of extreme value distributions ([104, 14, 20, 87]).

Remark 9.2.2. Let H be a bivariate distribution function with marginals F and G
and let h be a concave and strictly increasing function. From the proof of Theorem
9.2.1, it is easily proved that the function H̃ given, for every (x, y) ∈ R2

, by

H̃(x, y) = h(H(x, y)) (9.5)
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is a bivariate distribution function with margins h(F ) and h(G). Moreover, if the
margins are continuous, the copula of H̃ is Ch−1 . Transformations of type (9.5) were
used in the field of insurance pricing ([58, 156]) and they are also called distorted
probability measure in the context of non–additive probabilities ([30]).

9.3 Properties of the transformed copula

We denote by ΘC the set of concave functions in Θ. These properties can be easily
proved:

Proposition 9.3.1. Let h and g be two functions in ΘC . Then

(a) λh+ (1− λ)g is in ΘC for every α ∈ [0, 1];

(b) h ◦ g is in ΘC ;

(c) h(tα) and (h(t))α are in ΘC for all α ∈ ]0, 1[.

h(x) h[−1](x) Parameter

x1/α xα α ≥ 1

1−e−αx

1−e−α − 1
α log (1− x(1− e−α)) α > 0

bx
bx+a(1−x)

ax
ax−bx+b 0 < a < b

sin(πx/2) (2/π) arcsinx

(4/π) arctanx tan(πx/4)

Table 9.1: Examples of functions in ΘC

Example 9.3.1. Let C be a copula and let r be a function defined on [0, 1] by
r(t) = at + b, with a, b ∈ ]0, 1[, a + b = 1. Then r[−1](t) = max{0, (t − b)/a} and we
have

Cr(x, y) =

 1
a [C(ax+ b, ay + b)− b] , if C(ax+ b, ay + b) ≥ b;

0, otherwise.

The copula Cr is said to be linear transformation of C.
In particular, given r(t) = (t+1)/2, let C ′ be an ordinal sum of type (〈0, 1/2, C〉).

Then Cr = M .

Remark 9.3.1. Let h and g be in ΘC . Given a copula C, the transformations Ch
and Cg may be equal, Ch = Cg, even though the functions h and g are not equal,
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h 6= g. For instance, we consider the copula W and let h be the function defined on
[0, 1] by h(t) = (t+ 1)/2. Then Wh = W and Wid = W , but id 6= h.

Conversely, Let C and D be copulas. Given h ∈ ΘC , we may have Ch = Dh even
though C 6= D. In fact, Ch(x, y) = Dh(x, y) if, and only if,

max{h(0), C(h(x), h(y))} = max{h(0), D(h(x), h(y))},

viz. it suffices C = D on [h(0), 1]2.

Theorem 9.2.1 introduces, for all h ∈ ΘC , a mapping

Ψh : C → C, C 7→ ΨhC := Ch,

which verifies the properties given in the proposition below.

Proposition 9.3.2. For every h and g in ΘC , we have

(a) Ψh ◦Ψg = Ψg◦h;

(b) if {Cn} is a sequence of copulas that converges pointwise to the copula C, then
{ΨhC

n} converges pointwise to ΨhC;

(c) Ψh is continuous, in the sense that, for every ε > 0 there exists δ > 0 such that

∀A,B ∈ C ‖A−B‖∞ < δ =⇒ ‖ΨhA−ΨhB‖∞ < ε.

(d) Ψh is convex, in the sense that, for every A,B ∈ C and λ ∈ [0, 1]

Ψh(λA+ (1− λ)B) ≤ λΨhA+ (1− λ)ΨhB.

Proof. Let h and g be in ΘC .
(a) For every copula C, we have

Ψh ◦Ψg(C) = Ψh

(
g[−1] (C(g(x), g(y)))

)
= h[−1]

(
g[−1] (C(g(h(x)), g(h(y)))

)
= Ψg◦hC,

and, from Proposition 9.3.1, g ◦ h is in ΘC .
(b) For every (x, y) in [0, 1]2, we have

Cn(x, y)
n→+∞−−−−−→ C(x, y);

and, in particular,

Cn(h(x), h(y))
n→+∞−−−−−→ C(h(x), h(y)).

Now, the assertion follows from the continuity of h[−1].
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(c) Given two copulas A and B, since h[−1] is convex, we obtain

Ψh (λA(x, y) + (1− λ)B(x, y))

= h[−1] (λA(h(x), h(y)) + (1− λ)B(h(x), h(y)))

≤ λh[−1] (A(h(x), h(y))) + (1− λ)h[−1] (B(h(x), h(y)))

= λΨhA(x, y) + (1− λ)ΨhB(x, y),

which concludes the proof.

As in section 9.1, a subset B of C is said to be stable with respect to Ψ if the image
of B×ΘC under Ψ is contained in B, Ψ(B×ΘC) ⊆ B.

Proposition 9.3.3. The following class of copulas are stable with respect to Ψ:

(a) the Archimedean family;

(b) the class of associative copulas;

(c) the Archimax family.

Proof. (a) Let C be an Archimedean copula additively generated by ϕ. For every
h ∈ ΘC , the h–transformation of C is given by

Ch(x, y) = h[−1]
(
ϕ[−1] (ϕ(h(x)) + ϕ(h(y)))

)
,

viz. Ch is the Archimedean copula generated by ϕ ◦ h.
Part (b) is a direct consequence of Proposition 9.1.1.
(c) Let C be an Archimax copula defined by the dependence function A and the
Archimedean generator ϕ (see Example 1.6.9). As in part (a), we can prove that the
h–transformation of C, Ch, is also an Archimax copula defined by the dependence
function A and the Archimedean generator ϕ ◦ h.

In [7] some results are presented about the preservation of some dependence prop-
erties of a copula C that is transformed via a concave bijection (see Propositions 6.6
and 6.7). Here, we present only a result about the concordance order.

Proposition 9.3.4. Given C and C ′ in C, and h in ΘC , we have

(a) the operation Ψh is order–preserving in the first place, i.e., C ≤ C ′ implies
ΨhC ≤ ΨhC

′;

(b) if ΨhC ≤ ΨhC
′, then C(x, y) ≤ C ′(x, y) for all (x, y) ∈ [h(0), 1]2.

Proof. Part (a) is a consequence of the fact that h and h[−1] are both increasing. Part
(b) follows by considering that the restriction of h on [h(0), 1] is a bijection.
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Notice that, in general, C and its transformation Ch are not ordered in concordance
order. It suffices to take, for α ∈]0, 1[, the copula

Cα(x, y) :=
xy

[1 + (1− xα)(1− yα)]1/α
,

and h(t) = t1/2 a function in ΘC . Then ΨhCα = Cα/2 and Cα/2 ≤ Cα if, and only if,
xα/2 + yα/2 ≤ 1 (see also [114, Example 4.15]).




