Chapter 4

A new family of PQD copulas

In this chapter we introduce a new class of bivariate copulas, depending on a univariate function, that includes some already known families. This class is characterized in section 4.1, where a probabilistic interpretation is given, and its properties (dependence, measures of association, symmetries, associativity, absolute continuity) are studied in detail in section 4.2. Section 4.3 is devoted to the introduction of a similar class in the set of quasi-copulas.

The contents of this chapter can be also found in [36, 42, 43].

4.1 Characterization of the new class

Let f be a mapping from $[0,1]$ into $[0,1]$. Consider the function C_{f} given, for every $x, y \in[0,1]$, by

$$
\begin{equation*}
C_{f}(x, y):=(x \wedge y) f(x \vee y) \tag{4.1}
\end{equation*}
$$

It is obvious that every C_{f} is symmetric and the copulas Π and M are of this type: it suffices to take, respectively, $f(t)=t$ and $f(t)=1$ for all $t \in[0,1]$. Our aim is to study under which conditions on f, C_{f} is a copula. Notice that, in view of the properties (1.9) and (1.10) of a copula, it is quite natural to require that f is increasing and continuous and, then, simple considerations of real analysis imply that f is differentiable almost everywhere on $[0,1]$ and the left and right derivatives of f exist for every $x \in[0,1]$ and assume finite values. We aim to characterize the copulas of type (4.1).

Lemma 4.1.1. Let $f:[0,1] \rightarrow[0,1]$ be a continuous and increasing function, differentiable except at finitely many points. The following statements are equivalent:
(a) for every $s, t \in] 0,1]$, with $s \leq t, s f(s)+t f(t)-2 s f(t) \geq 0$;
(b) the function $t \mapsto f(t) / t$ is decreasing on $] 0,1]$.

Proof. $(a) \Rightarrow(b)$: Let $s_{i}(i=1,2, \ldots, n)$ be the points in $[0,1]$ such that $f^{\prime}\left(s_{i}^{+}\right) \neq$ $f^{\prime}\left(s_{i}^{-}\right)$. Set $s_{0}:=0$ and $s_{n+1}:=1$. For every $i \in\{0,1, \ldots, n\}$, let s and t be in $] s_{i}, s_{i+1}[, s<t$. The inequality

$$
s f(s)+t f(t)-2 s f(t) \geq 0
$$

is equivalent to

$$
\frac{f(t)}{s} \geq \frac{f(t)-f(s)}{t-s}
$$

In the limit $t \downarrow s$, we have $f(s) \geq s f^{\prime}(s)$. It follows that

$$
\left(\frac{f(s)}{s}\right)^{\prime}=\frac{s f^{\prime}(s)-f(s)}{s^{2}} \leq 0
$$

viz. $t \mapsto f(t) / t$ is decreasing in each interval $] s_{i}, s_{i+1}[,(i=0,1, \ldots, n)$. But $f(t) / t$ is continuous and, therefore, it is decreasing on the whole $] 0,1]$.
$(b) \Rightarrow(a)$: Let s, t be in $] 0,1]$, with $s<t$. Then

$$
\frac{f(s)}{s} \geq \frac{f(t)}{t}
$$

is equivalent to

$$
\frac{f(s)}{s} \geq \frac{f(t)-f(s)}{t-s}
$$

and, because f is increasing,

$$
\frac{f(t)}{s} \geq \frac{f(t)-f(s)}{t-s}
$$

viz. condition (a).
Theorem 4.1.1. Let $f:[0,1] \rightarrow[0,1]$ be a differentiable function (except at finitely many points). Let C_{f} be the function defined by (4.1). Then C_{f} is a copula if, and only if, the following statements hold:
(i) $f(1)=1$;
(ii) f is increasing;
(iii) the function $t \mapsto f(t) / t$ is decreasing on $] 0,1]$.

Proof. It is immediate that C_{f} satisfies the boundary conditions (C1) if, and only if, $f(1)=1$. We now prove that C_{f} is 2 -increasing if, and only if, (ii) and (iii) hold. Let $x, x^{\prime}, y, y^{\prime}$ be in $[0,1]$ with $x \leq x^{\prime}$ and $y \leq y^{\prime}$. First, we suppose that the rectangle $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ is a subset of Δ_{+}(see notations (1.12)). Then

$$
V_{C}\left(\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]\right)=\left(y^{\prime}-y\right)\left(f\left(x^{\prime}\right)-f(x)\right) \geq 0
$$

if, and only if, f is increasing. Analogously, the 2-increasing property is equivalent to (ii) for rectangles contained in Δ_{-}. If, instead, the diagonal of $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ lies
on the diagonal $\left\{(x, y) \in[0,1]^{2}: y=x\right\}$ of the unit square, then $x=y$ and $x^{\prime}=y^{\prime}$ and, in view of Lemma 4.1.1,

$$
V_{C}\left(\left[x, x^{\prime}\right] \times\left[x, x^{\prime}\right]\right)=x f(x)+x^{\prime} f\left(x^{\prime}\right)-2 x f\left(x^{\prime}\right) \geq 0
$$

if, and only if, (iii) holds. Now, the assertion follows from Proposition 1.6.1.

A function f that satisfies the assumptions of Theorem 4.1.1 is called generator of a copula of type (4.1). In particular, the class of generators is convex and, because of condition (iii), it has minimal element $\operatorname{id}_{[0,1]}$ and maximal element the constant function equal to 1 . Note that $f:[0,1] \rightarrow[0,1]$ satisfies condition (iii) of Theorem 4.1.1 if, and only if, f is star-shaped, i.e., $f(\alpha x) \geq \alpha f(x)$ for all $\alpha \in[0,1]$. Moreover, every concave function satisfies (iii) (these results can also be found in [103, Chap. 16]). Now, we give a probabilistic interpretation of the generators.

Proposition 4.1.1. Let U and V be r.v.'s uniformly distributed on $[0,1]$ with copula C_{f} of type (4.1). Then

$$
f(t)=P(\max \{U, V\} \leq t \mid U \leq t)
$$

Proof. For every t in $[0,1]$, we have

$$
C(t, t)=t f(t)=P(U \leq t, V \leq t)
$$

and

$$
P(\max \{U, V\} \leq t \mid U \leq t)=\frac{P(U \leq t, V \leq t)}{P(U \leq t)}=f(t)
$$

namely the assertion.
In the sequel we give some sub-classes of copulas $\left\{C_{\alpha}\right\}$ of type (4.1) generated by a one-parameter family $\left\{f_{\alpha}\right\}$.

Example 4.1.1 (Fréchet copulas). Given $f_{\alpha}(t):=\alpha t+(1-\alpha)(\alpha \in[0,1])$, we obtain $C_{\alpha}=\alpha \Pi+(1-\alpha) M$, which is a convex sum of Π and M and, therefore, is a member of the Fréchet family of copulas (see Example 1.6.2) (see, also, family (B11) in [74]). Notice that $C_{0}=M$ and $C_{1}=\Pi$.

Example 4.1.2 (Cuadras-Augé copulas). Given $f_{\alpha}(t):=t^{\alpha}(\alpha \in[0,1]), C_{\alpha}$ is defined by

$$
C_{\alpha}(x, y)=(x \wedge y)(x \vee y)^{\alpha}= \begin{cases}x y^{\alpha}, & \text { if } x \leq y \\ x^{\alpha} y, & \text { if } x>y\end{cases}
$$

Then C_{α} describes the Cuadras-Augé family of copulas (see Example 1.6.4). Notice that $C_{0}=M$ and $C_{1}=\Pi$.

Example 4.1.3. Given $f_{\alpha}(t):=\min (\alpha t, 1)(\alpha \geq 1), C_{\alpha}$ is defined by

$$
C_{\alpha}(x, y)=(x \wedge y) \min \{\alpha(x \vee y), 1\}= \begin{cases}\alpha x y, & \text { if }(x, y) \in[0,1 / \alpha]^{2} \\ x \wedge y, & \text { otherwise }\end{cases}
$$

viz. C_{α} is the ordinal sum $(\langle 0,1 / \alpha, \Pi\rangle)$. Notice that $C_{1}=\Pi$ and $C_{\infty}=M$, where, if $g(x)=\lim f_{\alpha}(x)$ as $\alpha \rightarrow+\infty$ and $\left.\left.x \in\right] 0,1\right], C_{\infty}:=C_{g}$.

Example 4.1.4. Given the function $f_{\alpha}(t):=c \exp \left(t^{\alpha} / \alpha\right)$, where $\alpha>0$ and $c=$ $\exp (-1 / \alpha)$, we obtain the following family

$$
C_{\alpha}(x, y)= \begin{cases}c x \exp \left(y^{\alpha} / \alpha\right), & \text { if } x \leq y \\ c y \exp \left(x^{\alpha} / \alpha\right), & \text { if } x>y .\end{cases}
$$

Example 4.1.5. The function $\left.\left.f_{\alpha}(t):=\frac{1}{\sin \alpha} \sin (\alpha t)(\alpha \in] 0, \pi / 2\right]\right)$ is increasing with $f_{\alpha}(t) / t$ decreasing on $\left.] 0,1\right]$, as is easily proved. Therefore, Theorem 4.1.1 ensures that

$$
C_{\alpha}(x, y)= \begin{cases}\frac{x}{\sin \alpha} \sin (\alpha y), & \text { if } x \leq y \\ \frac{y}{\sin \alpha} \sin (\alpha x), & \text { if } x>y\end{cases}
$$

is a copula.
For a copula C_{f} of type (4.1) the following result holds (see [100] for details).

Theorem 4.1.2. If C_{f} is the copula given by (4.1) and $H(x, y)=C_{f}\left(F_{1}(x), F_{2}(y)\right)$ for univariate d.f.'s F_{1} and F_{2}, then the following statements are equivalent:
(a) random variables X and Y with joint d.f. H have a representation of the form

$$
X=\max \{R, W\} \quad \text { and } \quad Y=\max \{S, W\}
$$

where R, S and W are independent r.v.'s;
(b) H has the form $H(x, y)=F_{R}(x) F_{S}(y) F_{W}(x \wedge y)$, where F_{R}, F_{S} and F_{W} are univariate d.f.'s.

4.2 Properties of the new class

In this section we give the most important properties of a copula C_{f} of type (4.1).

4.2.1 Concordance order

Proposition 4.2.1. Let C_{f} and C_{g} be two copulas of type (4.1). Then $C_{f} \leq C_{g}$ if, and only if, $f(t) \leq g(t)$ for all $t \in[0,1]$.

In particular, for every copula $C_{f}, \Pi \leq C_{f} \leq M$ and, therefore, every C_{f} is positively quadrant dependent.

Example 4.2.1. Consider the family $\left\{f_{\alpha}\right\}(\alpha \geq 1)$, given by $f_{\alpha}(t):=1-(1-t)^{\alpha}$. It is easily proved by differentation that every f_{α} is increasing with $f_{\alpha}(t) / t$ decreasing on $] 0,1]$. Therefore, this family generates a family of copulas C_{α}, that is positively ordered, with $C_{1}=\Pi$ and $C_{\infty}=M$.

Example 4.2.2. Consider the family of copulas generated by the function $f_{\alpha}(t):=$ $(1+\alpha) t /(\alpha t+1)$ for every $\alpha \geq 0$. This family is positively ordered with $C_{0}=\Pi$ and $C_{\infty}=M$.

4.2.2 Dependence concepts

Theorem 4.2.1. Let (X, Y) be a continuous random pair with copula C_{f}. Then
(a) Y is left tail decreasing in X;
(b) Y is stochastically increasing in X if, and only if, f^{\prime} is decreasing a.e. on $[0,1]$;
(c) X and Y are left corner set decreasing.

Proof. In order to prove $L T D(Y \mid X)$, according to Proposition 1.7.2 it suffices to notice that, for every $(x, y) \in[0,1]^{2}$

$$
\frac{C_{f}(x, y)}{x}= \begin{cases}f(y), & \text { if } x \leq y \\ \frac{y f(x)}{x}, & \text { if } x>y\end{cases}
$$

is decreasing in x.
Property $S I(Y \mid X)$ follows from Proposition 1.7.3, observing that $\partial_{x} C_{f}$ is decreasing in the first place if, and only if, f^{\prime} is decreasing a.e. on $[0,1]$.

In order to prove (c), because of Proposition 1.7.4, it suffices to prove that, for all $x, x^{\prime}, y, y^{\prime}$ in $[0,1]$, with $x \leq x^{\prime}$ and $y \leq y^{\prime}$,

$$
\begin{equation*}
C_{f}(x, y) C_{f}\left(x^{\prime}, y^{\prime}\right) \geq C_{f}\left(x, y^{\prime}\right) C_{f}\left(x^{\prime}, y\right) \geq 0 \tag{4.2}
\end{equation*}
$$

Because $f(t) / t$ is decreasing and C_{f} is symmetric, inequality (4.2) follows easily from simple calculations on rectangles $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ that have 4,3 or 2 vertices in the set Δ_{+}. For instance, if $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ has only two vertices, say (x, y) and $\left(x^{\prime}, y\right)$ in Δ_{+}, then (4.2) holds if, and only if, $x^{\prime} f(x) \geq x f\left(x^{\prime}\right)$, viz. $f(t) / t$ is decreasing.

The following result for the tail dependence holds.
Proposition 4.2.2. Let C_{f} be a copula of type (4.1). Then, the lower tail dependence of C_{f} is $f\left(0^{+}\right)$and the upper tail dependence of C_{f} is $1-f^{\prime}\left(1^{-}\right)$.

Proof. The diagonal section of C_{f} is $\delta_{C_{f}}(t)=t f(t)$. Therefore, from Proposition 1.7.5, we have $\lambda_{L}=\delta_{C}^{\prime}\left(0^{+}\right)=f\left(0^{+}\right)$and $\lambda_{U}=2-\delta_{C}^{\prime}\left(1^{-}\right)=1-f^{\prime}\left(1^{-}\right)$.

Remark 4.2.1. As noted, a copula of type (4.1) is PQD and, therefore, it is suitable to describe positive dependence of a random vector (X, Y). However, it is very simple to introduce a copula to describing, for example, the (negative) dependence of the random vector $(X,-Y)$. It suffices to consider the copula $C_{0,1}^{f}$ given by

$$
C_{0,1}^{f}(x, y):=x-C(x, 1-y)= \begin{cases}x(1-f(1-y)), & \text { if } x+y \leq 1 \\ x-(1-y) f(x), & \text { otherwise }\end{cases}
$$

4.2.3 Measures of association

Theorem 4.2.2. The values of several measures of association of C_{f} are, respectively, given by

$$
\begin{gathered}
\tau_{C}=4 \int_{0}^{1} x f^{2}(x) d x-1, \quad \rho_{C}=12 \int_{0}^{1} x^{2} f(x) d x-3 \\
\gamma_{C}=4\left(\int_{0}^{1 / 2} x[f(x)+f(1-x)] d x+\int_{1 / 2}^{1} f(x) d x\right)-2 \\
\beta_{C}=2 f(1 / 2)-1, \quad \varphi_{C}=6 \int_{0}^{1} x f(x) d x-2
\end{gathered}
$$

Proof. In view of Theorem 1.8.1, the Kendall's tau of C_{f} is given by

$$
\tau_{C}=1-4 \int_{0}^{1} \int_{0}^{1} \partial_{x} C(x, y) \partial_{y} C(x, y) d x d y
$$

Now, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \partial_{x} C(x, y) \partial_{y} C(x, y) d x d y \\
= & \int_{0}^{1} d y \int_{0}^{y} x f(y) f^{\prime}(y) d x+\int_{0}^{1} d x \int_{0}^{x} y f(x) f^{\prime}(x) d y \\
= & \int_{0}^{1} x^{2} f(x) f^{\prime}(x) d x=\frac{1}{2}-\int_{0}^{1} x f^{2}(x) d x
\end{aligned}
$$

where the last equality is obtained through integration by parts. Then

$$
\tau_{C}=4 \int_{0}^{1} x f^{2}(x) d x-1
$$

From Theorem 1.8.2, Spearman's rho is given by:

$$
\begin{aligned}
\rho_{C} & =12 \int_{0}^{1} \int_{0}^{1} C(x, y) d x d y-3 \\
& =12 \int_{0}^{1} d y \int_{0}^{y} x f(y) d x+\int_{0}^{1} d x \int_{0}^{x} y f(x) d y-3 \\
& =12 \int_{0}^{1} x^{2} f(x) d x-3 .
\end{aligned}
$$

Following Theorem 1.8.3, we have

$$
\begin{aligned}
\gamma_{C}= & 4\left(\int_{0}^{1} C(x, 1-x) d x-\int_{0}^{1}(x-C(x, x)) d x\right) \\
= & 4\left(\int_{0}^{1 / 2} x f(1-x) d x-\int_{0}^{1 / 2}[x-x f(x)] d x\right) \\
& \quad+\int_{1 / 2}^{1}(1-x) f(x)-\int_{1 / 2}^{1}[x-x f(x)] d x \\
= & 4\left(\int_{0}^{1 / 2} x[f(x)+f(1-x)] d x+\int_{1 / 2}^{1} f(x) d x-\frac{1}{2}\right) \\
= & 4\left(\int_{0}^{1 / 2} x[f(x)+f(1-x)] d x+\int_{1 / 2}^{1} f(x) d x\right)-2 .
\end{aligned}
$$

The expressions of β_{C} and φ_{C} follow easily from Theorems 1.8.4 and 1.8.5.
As an application of Theorem 4.2.2, the measures of association for the copulas in Examples 1.6.2 and 1.6.4 can be easily given:

- If C is a copula of the Fréchet family, then

$$
\tau_{C}=\frac{(\alpha-1)(\alpha-3)}{3}, \quad \rho_{C}=1-\alpha=\gamma_{C}=\varphi_{C}
$$

- If C is a Cuadras-Augé copula, then

$$
\tau_{C}=\frac{1-\alpha}{1+\alpha}, \quad \rho_{C}=\frac{3-3 \alpha}{3+\alpha}, \quad \varphi_{C}=\frac{2-2 \alpha}{2+\alpha}
$$

4.2.4 Symmetry properties

Theorem 4.2.3. Let (X, Y) be continuous r.v.'s with copula C_{f}.
(a) If X and Y are identically distributed, then X and Y are exchangeable.
(b) If X and Y are symmetric about a and b, respectively $(a, b \in \mathbb{R})$, then (X, Y) is radially symmetric about (a, b) if, and only if, $C_{f}=\alpha \Pi+(1-\alpha) M$ for some $\alpha \in[0,1]$.
(c) If X and Y are symmetric about a and b, respectively $(a, b \in \mathbb{R})$, then (X, Y) is jointly symmetric about (a, b) if, and only if, $C_{f}=\Pi$.

Proof. Statement (a) is a consequence of the symmetry of C_{f}. From Proposition 1.6.3, statement (b) holds if, and only if, C_{f} satisfies the following functional equation:

$$
\begin{equation*}
\forall x, y \in[0,1] \quad C_{f}(x, y)=x+y-1+C_{f}(1-x, 1-y) \tag{4.3}
\end{equation*}
$$

But, equality (4.3) is equivalent to

$$
(x \wedge y) f(x \vee y)=x+y-1+[1-(x \vee y)] f[1-(x \wedge y)] ;
$$

in particular, for all $y \in[x, 1[$, we have

$$
\begin{aligned}
& x f(y)=x+y-1+(1-y) f(1-x) \\
& \Longrightarrow x(1-f(y))+(1-y) f(1-x)=1-y \\
& \Longrightarrow x \cdot \frac{1-f(y)}{1-y}+f(1-x)=1 \Longrightarrow f(1-x)=1-x \cdot \frac{f(y)-1}{y-1} .
\end{aligned}
$$

In the limit $y \uparrow 1$, we can derive

$$
\frac{1-f(y)}{1-y} \longrightarrow f^{\prime}\left(1^{-}\right)
$$

where $f^{\prime}\left(1^{-}\right)$is a real number in $[0,1]$. Thus $f(1-x)=1-c x$, i.e. $f(x)=c x+(1-c)$, which corresponds to the family $C_{f}=c \Pi+(1-c) M$.

From Proposition 1.6.3, (X, Y) is jointly symmetric about (a, b) if, and only if, for all $(x, y) \in[0,1]^{2}$

$$
\begin{equation*}
C_{f}(x, y)=x-C_{f}(x, 1-y) \quad \text { and } \quad C_{f}(x, y)=y-C_{f}(1-x, y) \tag{4.4}
\end{equation*}
$$

In particular, for $x=y$, we obtain

$$
\forall x \in[0,1] \quad x f(x)=x-[x \wedge(1-x)] f[x \vee(1-x)],
$$

which implies

$$
\begin{array}{ll}
\forall x \in[1 / 2,1] & x f(x)=x-(1-x) f(x), \\
\forall x \in[0,1 / 2] & x f(x)=x-x f(1-x),
\end{array}
$$

viz. $f(x)=x$ on $[0,1]$, which corresponds to $C_{f}=\Pi$.

4.2.5 Associativity

Lemma 4.2.1. Let C_{f} be a copula of type (4.1). Then C_{f} is Archimedean if, and only if, $C_{f}=\Pi$.

Proof. If C_{f} is an Archimedean copula, then, there exists a convex function φ : $[0,1] \rightarrow[0,+\infty]$, which is continuous and strictly increasing, $\varphi(1)=0$, such that $C_{f}(x, y)=\varphi^{[-1]}(\varphi(x)+\varphi(y))$. In view of Theorem 1.6.8,

$$
\varphi^{\prime}(x) \frac{\partial C_{f}(x, y)}{\partial y}=\varphi^{\prime}(y) \frac{\partial C_{f}(x, y)}{\partial x} \quad \text { a.e. on }[0,1]^{2}
$$

In particular, if $x=y$, we obtain $\varphi^{\prime}(x) \cdot x f^{\prime}(x)=\varphi^{\prime}(x) \cdot f(x)$, which leads to $x f^{\prime}(x)=$ $f(x)$. In the class of the generators of a copula of type (4.1), this differential equation has as unique solution the function $f(x)=x$, viz. $C_{f}=\Pi$.

Theorem 4.2.4. Let C_{f} be a copula of type (4.1). Then C_{f} is associative if, and only if, C_{f} is an ordinal sum of type $(\langle 0, a, \Pi\rangle)$ with $a \in[0,1]$.

Proof. First, notice that every ordinal sum of type $(\langle 0, a, \Pi\rangle)$ is associative and it is generated by the function $f(t)=\min \{t / a, 1\}$.

Conversely, let C_{f} be an associative copula. As asserted in Theorem 1.6.9, the representation of C_{f} depends on the set I_{D} of idempotent elements of C_{f}, given by $I_{D}:=\{0\} \cup[a, 1]$, where $a:=\inf \{t \in[0,1]: f(t)=1\}$. If $I_{D}=\{0,1\}$, then C_{f} is Archimedean and, therefore, Lemma 4.2.1 ensures that $C_{f}=\Pi=(\langle 0,1, \Pi\rangle)$. If $I_{D}=[0,1]$, then $C_{f}=M=(\langle 0,0, \Pi\rangle)$. Otherwise, C_{f} is an ordinal sum of type $(\langle 0, a, D\rangle)$ for a suitable Archimedean copula D. Therefore, if φ is a generator of D, for all x, y in $[0, a]$,

$$
C_{f}(x, y)=a \varphi^{[-1]}\left(\varphi\left(\frac{x}{a}\right)+\varphi\left(\frac{y}{a}\right)\right)
$$

Hence, applying the chain rule to $\varphi\left(C_{f}(x, y) / a\right)=\varphi(x / a)+\varphi(y / a)$, we obtain

$$
\varphi^{\prime}\left(\frac{C_{f}(x, y)}{a}\right) \frac{\partial C_{f}(x, y)}{\partial x}=\varphi^{\prime}\left(\frac{x}{a}\right), \quad \varphi^{\prime}\left(\frac{C_{f}(x, y)}{a}\right) \frac{\partial C_{f}(x, y)}{\partial y}=\varphi^{\prime}\left(\frac{y}{a}\right)
$$

Therefore, a.e. on $[0,1]^{2}$, we have

$$
\varphi^{\prime}\left(\frac{x}{a}\right) \frac{\partial C_{f}(x, y)}{\partial y}=\varphi^{\prime}\left(\frac{y}{a}\right) \frac{\partial C_{f}(x, y)}{\partial x} .
$$

An argument similar to the proof of Lemma 4.2 .1 gives $D=\Pi$, as asserted.

4.2.6 Absolute continuity

Proposition 4.2.3. The only absolutely continuous copula of type (4.1) is Π.
Proof. Let C_{f} be a copula of type (4.1). If C_{f} is absolutely continuous, then

$$
1=C_{f}(1,1)=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} C}{\partial x \partial y} d x d y=\int_{0}^{1} \int_{0}^{1} f^{\prime}(x \vee y) d x d y
$$

It follows that

$$
\frac{1}{2}=\int_{0}^{1} d s \int_{0}^{s} f^{\prime}(s) d t=\int_{0}^{1} s f^{\prime}(s) d s
$$

integrating by parts, we have

$$
\int_{0}^{1} f(x) d x=\frac{1}{2}
$$

The function $f(x)=x$ is a solution of the above equation and, because all functions generating a copula of type (4.1) are greater than $\mathrm{id}_{[0,1]}$, it follows that $\mathrm{id}_{[0,1]}$ is the only solution in this class.

Remark 4.2.2. Let C_{f} be a copula of type (4.1), $C \neq \Pi$. Consider the first derivative of C_{f}

$$
\partial_{1} C_{f}(x, y)= \begin{cases}f(y), & \text { if } x<y \\ y \cdot f^{\prime}(x), & \text { otherwise }\end{cases}
$$

For a fixed y_{0}, the mapping $t \mapsto \partial_{1} C_{f}\left(t, y_{0}\right)$ has a jump discontinuity in y_{0}, and, thus, C_{f} has a singular component along the main diagonal of the unit square. By using [74, Theorem 1.1], the mass of this singular component is given by

$$
m=\int_{0}^{1}\left(f(x)-x f^{\prime}(x)\right) d x=2 \cdot \int_{0}^{1} f(x) d x-1
$$

This m has a graphical interpretation if f admits an inverse: in fact, m is the area of the region of the unit square between the graph of f and the graph of f^{-1}.

4.3 A similar new class of quasi-copulas

Given a function $f:[0,1] \rightarrow[0,1]$, we are also interested in studying under which conditions on f, the following function

$$
\begin{equation*}
Q_{f}(x, y):=(x \wedge y) f(x \vee y), \quad \text { for all }(x, y) \in[0,1]^{2}, \tag{4.5}
\end{equation*}
$$

is a quasi-copula. The following result provides a characterization.
Theorem 4.3.1. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function and let Q_{f} be defined by (4.5). Then Q_{f} is a quasi-copula if, and only if, the three following statements hold:
(i) $f(1)=1$;
(ii) f is increasing;
(iii) $x_{1} \cdot \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq 1$ for every $x_{1}, x_{2} \in[0,1]$, with $x_{1}<x_{2}$.

Proof. First, observe that Q_{f} satisfies (Q1) if, and only if, $f(1)=1$ and Q_{f} satisfies (Q2) if, and only if, (ii) holds. In order to prove that Q_{f} satisfies (Q3), let x_{1}, x_{2} and y be three points in $[0,1]$ with $x_{1}<x_{2}$. We distinguish three cases. If $x_{1}<x_{2} \leq y$, then

$$
Q_{f}\left(x_{2}, y\right)-Q_{f}\left(x_{1}, y\right)=x_{2} f(y)-x_{1} f(y) \leq x_{2}-x_{1}
$$

because $f \leq 1$. If $y \leq x_{1}<x_{2}$, then

$$
Q_{f}\left(x_{2}, y\right)-Q_{f}\left(x_{1}, y\right)=y \cdot\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) \leq \frac{y}{x_{1}} \cdot\left(x_{2}-x_{1}\right) \leq x_{2}-x_{1}
$$

if, and only if, (iii) holds. Finally, if $x_{1} \leq y \leq x_{2}$, in view of the two above cases we obtain

$$
\begin{aligned}
Q_{f}\left(x_{2}, y\right)-Q_{f}\left(x_{1}, y\right) & =\left(Q_{f}\left(x_{2}, y\right)-Q_{f}(y, y)\right)+\left(Q_{f}(y, y)-Q_{f}\left(x_{1}, y\right)\right) \\
& \leq\left(x_{2}-x_{1}\right)
\end{aligned}
$$

if, and only if, (iii) holds. In every case, (iii) is a necessary and sufficient condition that ensures that Q_{f} satisfies (1.10).

Corollary 4.3.1. Let $f:[0,1] \rightarrow[0,1]$ be a differentiable function and let Q_{f} be defined by (4.5). Then Q_{f} is a quasi-copula if, and only if, the three following statements hold:
(i) $f(1)=1$;
(ii) f is increasing;
(iii) $x f^{\prime}(x) \leq 1$ for every $x \in[0,1]$.

Notice that if Q_{f} is a copula, then $t \mapsto f(t) / t$ is decreasing and

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{1}\right)}{x_{1}}
$$

for every $x_{1}, x_{2} \in[0,1]$, with $x_{1}<x_{2}$, from which the condition (iii) of Theorem 4.3.1 follows, viz. Q_{f} is a quasi-copula. The converse implication need not be true, as the following example shows.

Example 4.3.1. Consider the function $f(t):=t+t^{2}-t^{3}$ on $[0,1]$. So, f satisfies the assumptions of Theorem 4.3.1, viz. $f^{\prime}(t) \leq 1 / t$ on $[0,1]$, but $f(t) / t$ is increasing on $[0,1 / 2]$. So Q_{f} is a proper quasi-copula. Another (not everywhere) differentiable function g, which leads to a proper quasi-copula, is given by

$$
g(x)= \begin{cases}x, & \text { if } x \in[0,1 / 4] \\ 2 x-1 / 4, & \text { if } x \in] 1 / 4,1 / 2[\\ (x+1) / 2, & \text { if } x \in[1 / 2,1]\end{cases}
$$

We have $g^{\prime}(x) \leq 1 / x$ and thus Q_{g} is a quasi-copula; however, $h(x):=g(x) / x$ is not decreasing (e.g. $h(1 / 4)=1$ but $h(1 / 2)=3 / 2$).

