
Chapter 4

A new family of PQD copulas

In this chapter we introduce a new class of bivariate copulas, depending on a
univariate function, that includes some already known families. This class is charac-
terized in section 4.1, where a probabilistic interpretation is given, and its properties
(dependence, measures of association, symmetries, associativity, absolute continuity)
are studied in detail in section 4.2. Section 4.3 is devoted to the introduction of a
similar class in the set of quasi–copulas.

The contents of this chapter can be also found in [36, 42, 43].

4.1 Characterization of the new class

Let f be a mapping from [0, 1] into [0, 1]. Consider the function Cf given, for
every x, y ∈ [0, 1], by

Cf (x, y) := (x ∧ y) f(x ∨ y). (4.1)

It is obvious that every Cf is symmetric and the copulas Π and M are of this type:
it suffices to take, respectively, f(t) = t and f(t) = 1 for all t ∈ [0, 1]. Our aim
is to study under which conditions on f , Cf is a copula. Notice that, in view of
the properties (1.9) and (1.10) of a copula, it is quite natural to require that f is
increasing and continuous and, then, simple considerations of real analysis imply that
f is differentiable almost everywhere on [0, 1] and the left and right derivatives of f
exist for every x ∈ [0, 1] and assume finite values. We aim to characterize the copulas
of type (4.1).

Lemma 4.1.1. Let f : [0, 1] → [0, 1] be a continuous and increasing function, differ-
entiable except at finitely many points. The following statements are equivalent:

(a) for every s, t ∈ ]0, 1], with s ≤ t, sf(s) + tf(t)− 2sf(t) ≥ 0;

(b) the function t 7→ f(t)/t is decreasing on ]0, 1].
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Proof. (a) ⇒ (b): Let si (i = 1, 2, . . . , n) be the points in [0, 1] such that f ′(s+i ) 6=
f ′(s−i ). Set s0 := 0 and sn+1 := 1. For every i ∈ {0, 1, . . . , n}, let s and t be in
]si, si+1[, s < t. The inequality

sf(s) + tf(t)− 2sf(t) ≥ 0

is equivalent to
f(t)
s

≥ f(t)− f(s)
t− s

.

In the limit t ↓ s, we have f(s) ≥ sf ′(s). It follows that(
f(s)
s

)′
=
sf ′(s)− f(s)

s2
≤ 0,

viz. t 7→ f(t)/t is decreasing in each interval ]si, si+1[, (i = 0, 1, . . . , n). But f(t)/t is
continuous and, therefore, it is decreasing on the whole ]0, 1].
(b) ⇒ (a): Let s, t be in ]0, 1], with s < t. Then

f(s)
s

≥ f(t)
t

is equivalent to
f(s)
s

≥ f(t)− f(s)
t− s

,

and, because f is increasing,

f(t)
s

≥ f(t)− f(s)
t− s

,

viz. condition (a).

Theorem 4.1.1. Let f : [0, 1] → [0, 1] be a differentiable function (except at finitely
many points). Let Cf be the function defined by (4.1). Then Cf is a copula if, and
only if, the following statements hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) the function t 7→ f(t)/t is decreasing on ]0, 1].

Proof. It is immediate that Cf satisfies the boundary conditions (C1) if, and only if,
f(1) = 1. We now prove that Cf is 2–increasing if, and only if, (ii) and (iii) hold. Let
x, x′, y, y′ be in [0, 1] with x ≤ x′ and y ≤ y′. First, we suppose that the rectangle
[x, x′]× [y, y′] is a subset of ∆+ (see notations (1.12)). Then

VC([x, x′]× [y, y′]) = (y′ − y) (f(x′)− f(x)) ≥ 0

if, and only if, f is increasing. Analogously, the 2–increasing property is equivalent
to (ii) for rectangles contained in ∆−. If, instead, the diagonal of [x, x′] × [y, y′] lies
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on the diagonal {(x, y) ∈ [0, 1]2 : y = x} of the unit square, then x = y and x′ = y′

and, in view of Lemma 4.1.1,

VC([x, x′]× [x, x′]) = xf(x) + x′f(x′)− 2xf(x′) ≥ 0

if, and only if, (iii) holds. Now, the assertion follows from Proposition 1.6.1.

A function f that satisfies the assumptions of Theorem 4.1.1 is called generator
of a copula of type (4.1). In particular, the class of generators is convex and, because
of condition (iii), it has minimal element id[0,1] and maximal element the constant
function equal to 1. Note that f : [0, 1] → [0, 1] satisfies condition (iii) of Theorem
4.1.1 if, and only if, f is star–shaped, i.e., f(αx) ≥ αf(x) for all α ∈ [0, 1]. Moreover,
every concave function satisfies (iii) (these results can also be found in [103, Chap.
16]). Now, we give a probabilistic interpretation of the generators.

Proposition 4.1.1. Let U and V be r.v.’s uniformly distributed on [0, 1] with copula
Cf of type (4.1). Then

f(t) = P (max{U, V } ≤ t | U ≤ t) .

Proof. For every t in [0, 1], we have

C(t, t) = tf(t) = P (U ≤ t, V ≤ t) ,

and

P (max{U, V } ≤ t | U ≤ t) =
P (U ≤ t, V ≤ t)

P (U ≤ t)
= f(t),

namely the assertion.

In the sequel we give some sub–classes of copulas {Cα} of type (4.1) generated by
a one–parameter family {fα}.

Example 4.1.1 (Fréchet copulas). Given fα(t) := αt+(1−α) (α ∈ [0, 1]), we obtain
Cα = αΠ+(1−α)M , which is a convex sum of Π and M and, therefore, is a member
of the Fréchet family of copulas (see Example 1.6.2) (see, also, family (B11) in [74]).
Notice that C0 = M and C1 = Π.

Example 4.1.2 (Cuadras–Augé copulas). Given fα(t) := tα (α ∈ [0, 1]), Cα is
defined by

Cα(x, y) = (x ∧ y)(x ∨ y)α =

xyα, if x ≤ y;

xαy, if x > y.

Then Cα describes the Cuadras–Augé family of copulas (see Example 1.6.4). Notice
that C0 = M and C1 = Π.
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Example 4.1.3. Given fα(t) := min (αt, 1) (α ≥ 1), Cα is defined by

Cα(x, y) = (x ∧ y)min{α(x ∨ y), 1} =

αxy, if (x, y) ∈ [0, 1/α]2 ;

x ∧ y, otherwise;

viz. Cα is the ordinal sum (〈0, 1/α,Π〉). Notice that C1 = Π and C∞ = M , where, if
g(x) = lim fα(x) as α→ +∞ and x ∈ ]0, 1], C∞ := Cg.

Example 4.1.4. Given the function fα(t) := c exp(tα/α), where α > 0 and c =
exp(−1/α), we obtain the following family

Cα(x, y) =

cx exp(yα/α), if x ≤ y;

cy exp(xα/α), if x > y.

Example 4.1.5. The function fα(t) := 1
sinα sin (αt) (α ∈ ]0, π/2]) is increasing with

fα(t)/t decreasing on ]0, 1], as is easily proved. Therefore, Theorem 4.1.1 ensures that

Cα(x, y) =

 x
sinα sin (αy) , if x ≤ y;
y

sinα sin (αx) , if x > y.

is a copula.

For a copula Cf of type (4.1) the following result holds (see [100] for details).

Theorem 4.1.2. If Cf is the copula given by (4.1) and H(x, y) = Cf (F1(x), F2(y))
for univariate d.f.’s F1 and F2, then the following statements are equivalent:

(a) random variables X and Y with joint d.f. H have a representation of the form

X = max{R,W} and Y = max{S,W}

where R, S and W are independent r.v.’s;

(b) H has the form H(x, y) = FR(x)FS(y)FW (x ∧ y), where FR, FS and FW are
univariate d.f.’s.

4.2 Properties of the new class

In this section we give the most important properties of a copula Cf of type (4.1).

4.2.1 Concordance order

Proposition 4.2.1. Let Cf and Cg be two copulas of type (4.1). Then Cf ≤ Cg if,
and only if, f(t) ≤ g(t) for all t ∈ [0, 1].
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In particular, for every copula Cf , Π ≤ Cf ≤ M and, therefore, every Cf is
positively quadrant dependent.

Example 4.2.1. Consider the family {fα} (α ≥ 1), given by fα(t) := 1− (1− t)α. It
is easily proved by differentation that every fα is increasing with fα(t)/t decreasing
on ]0, 1]. Therefore, this family generates a family of copulas Cα, that is positively
ordered, with C1 = Π and C∞ = M .

Example 4.2.2. Consider the family of copulas generated by the function fα(t) :=
(1 + α)t/(αt+ 1) for every α ≥ 0. This family is positively ordered with C0 = Π and
C∞ = M .

4.2.2 Dependence concepts

Theorem 4.2.1. Let (X,Y ) be a continuous random pair with copula Cf . Then

(a) Y is left tail decreasing in X;

(b) Y is stochastically increasing in X if, and only if, f ′ is decreasing a.e. on [0, 1];

(c) X and Y are left corner set decreasing.

Proof. In order to prove LTD(Y |X), according to Proposition 1.7.2 it suffices to
notice that, for every (x, y) ∈ [0, 1]2

Cf (x, y)
x

=

f(y), if x ≤ y;
yf(x)
x

, if x > y;

is decreasing in x.
Property SI(Y |X) follows from Proposition 1.7.3, observing that ∂xCf is decreas-

ing in the first place if, and only if, f ′ is decreasing a.e. on [0, 1].
In order to prove (c), because of Proposition 1.7.4, it suffices to prove that, for all

x, x′, y, y′ in [0, 1], with x ≤ x′ and y ≤ y′,

Cf (x, y)Cf (x′, y′) ≥ Cf (x, y′)Cf (x′, y) ≥ 0. (4.2)

Because f(t)/t is decreasing and Cf is symmetric, inequality (4.2) follows easily from
simple calculations on rectangles [x, x′]× [y, y′] that have 4, 3 or 2 vertices in the set
∆+. For instance, if [x, x′]× [y, y′] has only two vertices, say (x, y) and (x′, y) in ∆+,
then (4.2) holds if, and only if, x′f(x) ≥ xf(x′), viz. f(t)/t is decreasing.

The following result for the tail dependence holds.

Proposition 4.2.2. Let Cf be a copula of type (4.1). Then, the lower tail dependence
of Cf is f(0+) and the upper tail dependence of Cf is 1− f ′(1−).
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Proof. The diagonal section of Cf is δCf
(t) = tf(t). Therefore, from Proposition

1.7.5, we have λL = δ′C(0+) = f(0+) and λU = 2− δ′C(1−) = 1− f ′(1−).

Remark 4.2.1. As noted, a copula of type (4.1) is PQD and, therefore, it is suitable
to describe positive dependence of a random vector (X,Y ). However, it is very simple
to introduce a copula to describing, for example, the (negative) dependence of the
random vector (X,−Y ). It suffices to consider the copula Cf0,1 given by

Cf0,1(x, y) := x− C(x, 1− y) =

x(1− f(1− y)), if x+ y ≤ 1;

x− (1− y)f(x), otherwise.

4.2.3 Measures of association

Theorem 4.2.2. The values of several measures of association of Cf are, respectively,
given by

τC = 4
∫ 1

0

xf2(x) dx − 1, ρC = 12
∫ 1

0

x2f(x) dx − 3,

γC = 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx

)
− 2,

βC = 2f(1/2)− 1, ϕC = 6
∫ 1

0

xf(x) dx − 2.

Proof. In view of Theorem 1.8.1, the Kendall’s tau of Cf is given by

τC = 1− 4
∫ 1

0

∫ 1

0

∂xC(x, y)∂yC(x, y) dx dy.

Now, we have ∫ 1

0

∫ 1

0

∂xC(x, y)∂yC(x, y) dx dy

=
∫ 1

0

dy

∫ y

0

xf(y)f ′(y) dx+
∫ 1

0

dx

∫ x

0

yf(x)f ′(x) dy

=
∫ 1

0

x2f(x)f ′(x) dx =
1
2
−
∫ 1

0

xf2(x) dx,

where the last equality is obtained through integration by parts. Then

τC = 4
∫ 1

0

xf2(x) dx − 1.

From Theorem 1.8.2, Spearman’s rho is given by:

ρC = 12
∫ 1

0

∫ 1

0

C(x, y) dx dy − 3

= 12
∫ 1

0

dy

∫ y

0

xf(y) dx+
∫ 1

0

dx

∫ x

0

yf(x) dy − 3

= 12
∫ 1

0

x2f(x) dx − 3.
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Following Theorem 1.8.3, we have

γC = 4
(∫ 1

0

C(x, 1− x) dx−
∫ 1

0

(x− C(x, x)) dx
)

= 4

(∫ 1/2

0

xf(1− x) dx−
∫ 1/2

0

[x− xf(x)] dx

)

+
∫ 1

1/2

(1− x)f(x)−
∫ 1

1/2

[x− xf(x)] dx

= 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx − 1
2

)

= 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx

)
− 2.

The expressions of βC and ϕC follow easily from Theorems 1.8.4 and 1.8.5.

As an application of Theorem 4.2.2, the measures of association for the copulas in
Examples 1.6.2 and 1.6.4 can be easily given:

– If C is a copula of the Fréchet family, then

τC =
(α− 1)(α− 3)

3
, ρC = 1− α = γC = ϕC .

– If C is a Cuadras–Augé copula, then

τC =
1− α

1 + α
, ρC =

3− 3α
3 + α

, ϕC =
2− 2α
2 + α

.

4.2.4 Symmetry properties

Theorem 4.2.3. Let (X,Y ) be continuous r.v.’s with copula Cf .

(a) If X and Y are identically distributed, then X and Y are exchangeable.

(b) If X and Y are symmetric about a and b, respectively (a, b ∈ R), then (X,Y ) is
radially symmetric about (a, b) if, and only if, Cf = αΠ + (1 − α)M for some
α ∈ [0, 1].

(c) If X and Y are symmetric about a and b, respectively (a, b ∈ R), then (X,Y ) is
jointly symmetric about (a, b) if, and only if, Cf = Π.

Proof. Statement (a) is a consequence of the symmetry of Cf . From Proposition 1.6.3,
statement (b) holds if, and only if, Cf satisfies the following functional equation:

∀x, y ∈ [0, 1] Cf (x, y) = x+ y − 1 + Cf (1− x, 1− y). (4.3)

But, equality (4.3) is equivalent to

(x ∧ y)f(x ∨ y) = x+ y − 1 + [1− (x ∨ y)] f [1− (x ∧ y)] ;
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in particular, for all y ∈ [x, 1[, we have

xf(y) = x+ y − 1 + (1− y)f(1− x)

=⇒ x (1− f(y)) + (1− y)f(1− x) = 1− y

=⇒ x · 1− f(y)
1− y

+ f(1− x) = 1 =⇒ f(1− x) = 1− x · f(y)− 1
y − 1

.

In the limit y ↑ 1, we can derive

1− f(y)
1− y

−→ f ′(1−),

where f ′(1−) is a real number in [0, 1]. Thus f(1−x) = 1−cx, i.e. f(x) = cx+(1−c),
which corresponds to the family Cf = cΠ + (1− c)M .

From Proposition 1.6.3, (X,Y ) is jointly symmetric about (a, b) if, and only if, for
all (x, y) ∈ [0, 1]2

Cf (x, y) = x− Cf (x, 1− y) and Cf (x, y) = y − Cf (1− x, y). (4.4)

In particular, for x = y, we obtain

∀x ∈ [0, 1] xf(x) = x− [x ∧ (1− x)] f [x ∨ (1− x)] ,

which implies

∀x ∈ [1/2, 1] xf(x) = x− (1− x)f(x),

∀x ∈ [0, 1/2] xf(x) = x− xf(1− x),

viz. f(x) = x on [0, 1], which corresponds to Cf = Π.

4.2.5 Associativity

Lemma 4.2.1. Let Cf be a copula of type (4.1). Then Cf is Archimedean if, and
only if, Cf = Π.

Proof. If Cf is an Archimedean copula, then, there exists a convex function ϕ :
[0, 1] → [0,+∞], which is continuous and strictly increasing, ϕ(1) = 0, such that
Cf (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)). In view of Theorem 1.6.8,

ϕ′(x)
∂Cf (x, y)

∂y
= ϕ′(y)

∂Cf (x, y)
∂x

a.e. on [0, 1]2.

In particular, if x = y, we obtain ϕ′(x) ·xf ′(x) = ϕ′(x) ·f(x), which leads to xf ′(x) =
f(x). In the class of the generators of a copula of type (4.1), this differential equation
has as unique solution the function f(x) = x, viz. Cf = Π.

Theorem 4.2.4. Let Cf be a copula of type (4.1). Then Cf is associative if, and
only if, Cf is an ordinal sum of type (〈0, a,Π〉) with a ∈ [0, 1].
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Proof. First, notice that every ordinal sum of type (〈0, a,Π〉) is associative and it is
generated by the function f(t) = min{t/a, 1}.

Conversely, let Cf be an associative copula. As asserted in Theorem 1.6.9, the
representation of Cf depends on the set ID of idempotent elements of Cf , given by
ID := {0} ∪ [a, 1], where a := inf{t ∈ [0, 1] : f(t) = 1}. If ID = {0, 1}, then Cf

is Archimedean and, therefore, Lemma 4.2.1 ensures that Cf = Π = (〈0, 1,Π〉). If
ID = [0, 1], then Cf = M = (〈0, 0,Π〉). Otherwise, Cf is an ordinal sum of type
(〈0, a,D〉) for a suitable Archimedean copula D. Therefore, if ϕ is a generator of D,
for all x, y in [0, a],

Cf (x, y) = aϕ[−1]
(
ϕ
(x
a

)
+ ϕ

(y
a

))
.

Hence, applying the chain rule to ϕ(Cf (x, y)/a) = ϕ(x/a) + ϕ(y/a), we obtain

ϕ′
(
Cf (x, y)

a

)
∂Cf (x, y)

∂x
= ϕ′

(x
a

)
, ϕ′

(
Cf (x, y)

a

)
∂Cf (x, y)

∂y
= ϕ′

(y
a

)
.

Therefore, a.e. on [0, 1]2, we have

ϕ′
(x
a

) ∂Cf (x, y)
∂y

= ϕ′
(y
a

) ∂Cf (x, y)
∂x

.

An argument similar to the proof of Lemma 4.2.1 gives D = Π, as asserted.

4.2.6 Absolute continuity

Proposition 4.2.3. The only absolutely continuous copula of type (4.1) is Π.

Proof. Let Cf be a copula of type (4.1). If Cf is absolutely continuous, then

1 = Cf (1, 1) =
∫ 1

0

∫ 1

0

∂2C

∂x∂y
dx dy =

∫ 1

0

∫ 1

0

f ′(x ∨ y) dx dy.

It follows that
1
2

=
∫ 1

0

ds

∫ s

0

f ′(s) dt =
∫ 1

0

sf ′(s) ds;

integrating by parts, we have ∫ 1

0

f(x) dx =
1
2
.

The function f(x) = x is a solution of the above equation and, because all functions
generating a copula of type (4.1) are greater than id[0,1], it follows that id[0,1] is the
only solution in this class.

Remark 4.2.2. Let Cf be a copula of type (4.1), C 6= Π. Consider the first derivative
of Cf

∂1Cf (x, y) =

f(y), if x < y;

y · f ′(x), otherwise.
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For a fixed y0, the mapping t 7→ ∂1Cf (t, y0) has a jump discontinuity in y0, and, thus,
Cf has a singular component along the main diagonal of the unit square. By using
[74, Theorem 1.1], the mass of this singular component is given by

m =
∫ 1

0

(f(x)− xf ′(x)) dx = 2 ·
∫ 1

0

f(x) dx − 1.

This m has a graphical interpretation if f admits an inverse: in fact, m is the area of
the region of the unit square between the graph of f and the graph of f−1.

4.3 A similar new class of quasi–copulas

Given a function f : [0, 1] → [0, 1], we are also interested in studying under which
conditions on f , the following function

Qf (x, y) := (x ∧ y) f(x ∨ y), for all (x, y) ∈ [0, 1]2 , (4.5)

is a quasi–copula. The following result provides a characterization.

Theorem 4.3.1. Let f : [0, 1] → [0, 1] be a continuous function and let Qf be defined
by (4.5). Then Qf is a quasi–copula if, and only if, the three following statements
hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) x1 ·
f(x2)− f(x1)

x2 − x1
≤ 1 for every x1, x2 ∈ [0, 1], with x1 < x2.

Proof. First, observe that Qf satisfies (Q1) if, and only if, f(1) = 1 and Qf satisfies
(Q2) if, and only if, (ii) holds. In order to prove that Qf satisfies (Q3), let x1, x2 and
y be three points in [0, 1] with x1 < x2. We distinguish three cases. If x1 < x2 ≤ y,
then

Qf (x2, y)−Qf (x1, y) = x2f(y)− x1f(y) ≤ x2 − x1

because f ≤ 1. If y ≤ x1 < x2, then

Qf (x2, y)−Qf (x1, y) = y · (f(x2)− f(x1)) ≤
y

x1
· (x2 − x1) ≤ x2 − x1

if, and only if, (iii) holds. Finally, if x1 ≤ y ≤ x2, in view of the two above cases we
obtain

Qf (x2, y)−Qf (x1, y) = (Qf (x2, y)−Qf (y, y)) + (Qf (y, y)−Qf (x1, y))

≤ (x2 − x1)

if, and only if, (iii) holds. In every case, (iii) is a necessary and sufficient condition
that ensures that Qf satisfies (1.10).
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Corollary 4.3.1. Let f : [0, 1] → [0, 1] be a differentiable function and let Qf be
defined by (4.5). Then Qf is a quasi–copula if, and only if, the three following state-
ments hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) xf ′(x) ≤ 1 for every x ∈ [0, 1].

Notice that if Qf is a copula, then t 7→ f(t)/t is decreasing and

f(x2)− f(x1)
x2 − x1

≤ f(x1)
x1

for every x1, x2 ∈ [0, 1], with x1 < x2, from which the condition (iii) of Theorem 4.3.1
follows, viz. Qf is a quasi–copula. The converse implication need not be true, as the
following example shows.

Example 4.3.1. Consider the function f(t) := t + t2 − t3 on [0, 1]. So, f satisfies
the assumptions of Theorem 4.3.1, viz. f ′(t) ≤ 1/t on [0, 1], but f(t)/t is increasing
on [0, 1/2]. So Qf is a proper quasi–copula. Another (not everywhere) differentiable
function g, which leads to a proper quasi–copula, is given by

g(x) =


x, if x ∈ [0, 1/4] ;

2x− 1/4, if x ∈ ]1/4, 1/2[ ;

(x+ 1)/2, if x ∈ [1/2, 1] .

We have g′(x) ≤ 1/x and thus Qg is a quasi-copula; however, h(x) := g(x)/x is not
decreasing (e.g. h(1/4) = 1 but h(1/2) = 3/2).




