
Chapter 2

The new concept of

semicopula

The focus of this chapter is on the notion of semicopula. To the best of our
knowledge, this term was used for the first time by B. Bassan and F. Spizzichino ([7])
and arises from a statistical application: the study of multivariate aging through the
analysis of the Schur–concavity of the survival distribution function. Specifically, in
order to define some notions of aging from the univariate case to the bivariate case,
B. Bassan and F. Spizzichino introduced the so–called bivariate aging function, which
“has all the formal properties of a copula, except possibly for the rectangle inequlity”
(see [6]). Therefore, they call “semicopula” a function of this type. As it will be seen
shortly, this function generalizes the concept both of copula and of triangular norm.

However, this concept was already known, in different contexts, as conjunctor,
a monotone extension of the Boolean conjunction with neutral element 1 ([26, 27]),
t–seminorm ([154]), or generalized copula ([136]). Moreover, the class of semicopulas
appeared also in [140, Definition 2], where it is used in order to characterize some
operations on d.f.’s that are not derivable from any operation on r.v.’s.

In section 2.1, we give the basic properties and examples of semicopulas. Some
characterizations of the semicopulas M , Π and W are given in section 2.2, where
super– and sub– harmonic semicopulas are studied and their statistical interpretation
is presented. The study of the class of semicopulas is the object of section 2.3. The
extension of semicopulas to the multivariate case is presented in section 2.4, where
an interesting connection to the theory of fuzzy measures is also given.

These results can be also found in [47, 42, 34, 45].
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2.1 Definition and basic properties

Definition 2.1.1. A function S : [0, 1]2 → [0, 1] is said to be a semicopula if, and
only if, it satisfies the two following conditions:

(S1) S(x, 1) = S(1, x) = x for all x in [0, 1];

(S2) S(x, y) ≤ S(x′, y′) for all x, x′, y, y′ ∈ [0, 1], x ≤ x′ and y ≤ y′.

The class of semicopulas will be denoted by S.

In other words, a semicopula is a binary aggregation operator with neutral element
1 and, consequently, annihilator 0, because

0 ≤ S(x, 0) ≤ S(1, 0) = 0,

and, analogously, S(0, x) = 0 for all x ∈ [0, 1].
The class S strictly includes the class Q of quasi–copulas and, if we denote by

SC the set of continuous semicopulas, SC ⊂ Q. Moreover, the set SS of symmetric
semicopulas is a proper subset of S and it strictly includes the set T of t–norms.

Example 2.1.1.

. The drastic t–norm Z is a semicopula, but it is not a quasi–copula, because it
is not continuous.

. S1(x, y) = xy max{x, y} is a continuous semicopula, but, because it is not
associative, it is not a t–norm. Moreover, S1 is not a quasi–copula, because

S1(8/10, 9/10)− S1(8/10, 8/10) = 136/1000 > 1/10.

. The following mapping S2 is an associative semicopula that is not commutative

S2(x, y) =

0, if (x, y) ∈ [0, 1/2]× [0, 1[;

min{x, y}, otherwise.

Proposition 2.1.1. If S : [0, 1]2 → [0, 1] is a semicopula, then

Z(x, y) ≤ S(x, y) ≤M(x, y) for all x and y in [0, 1]. (2.1)

Proof. If S is a semicopula, then, for all x, y ∈ [0, 1[, we obtain

0 = S(x, 0) ≤ S(x, y) ≤ S(x, 1) = x.

Analogously,
0 = S(x, 0) ≤ S(x, y) ≤ S(1, y) = y,

so that S(x, y) ≤ min{x, y}.
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It must be noticed that no assumption on the (left– or right–) continuity of a
semicopula has hitherto been made and different types of continuity can be also
considered in the class of semicopulas in the spirit of [88]; but, the next result can be
useful (see, e.g., [95]).

Proposition 2.1.2. Let H : [0, 1]2 → [0, 1] be increasing in each variable. The
following statements are equivalent:

(a) H is jointly (left–) continuous, in the sense that if {sn} and {tn} are two in-
creasing sequences of points of [0, 1] that tend to s and t respectively, then

lim
n→+∞

H(sn, tn) = H(s, t);

(b) H is (left–) continuous in each place.

Because of (S2), every semicopula has derivatives almost everywhere on [0, 1]2. In
particular, some conditions on derivatives allow us to characterize the semicopulas
that are also quasi–copulas. But, first, we give two technical lemmata (see, respec-
tively, page 333 and 337 of [153]).

Lemma 2.1.1. Let f : [a, b] → R be given. If f is continuous on [a, b] and differen-
tiable except at countably many points of [a, b], and f ′ is Lebesgue integrable on [a, b],
then f is absolutely continuous on [a, b].

Lemma 2.1.2. Let f : [a, b] → R be given. The following statements are equivalent:

(a) for some k > 0, we have

|f(x)− f(y)| ≤ k|x− y| for all x, y ∈ [a, b];

(b) f is absolutely continuous on [a, b] and |f ′(t)| ≤ k on [a, b] for some k > 0.

Proposition 2.1.3. Let S be a semicopula such that all the horizontal and vertical
sections of S are differentiable on [0, 1] except at countably many points. The following
statements are equivalent:

(a) S is a quasi–copula;

(b) S satisfies the following two conditions:

(b1) S is continuous;

(b2) for every (x, y) in [0, 1]2 that admits first–order partial derivatives of S

0 ≤ ∂xS(x, y) ≤ 1 and 0 ≤ ∂yS(x, y) ≤ 1.



38 Chap. 2 The new concept of semicopula

Proof. Implication (a) =⇒ (b) is trivial. In order to prove (b) =⇒ (a), let Sy(t)
be the horizontal section of S at y ∈ [0, 1] and Sx(t) be the vertical section of S
at x ∈ [0, 1]. The functions Sx and Sy are continuous and differentiable on [0, 1]
except at countably many points and their derivatives are bounded. Therefore, from
Lemma 2.1.1 it follows that they are absolutely continuous. But, again, if Sx and Sy
are absolutely continuous and their derivatives are bounded from above by 1, then
Lemma 2.1.2 ensures that Sx and Sy are Lipschitz with constant 1. Therefore, for
every (x, y) and (x′, y′) in [0, 1]2, we have

|S(x, y)− S(x′, y′)| ≤ |S(x, y)− S(x′, y)|+ |S(x′, y)− S(x′, y′)|

≤ |Sy(x)− Sy(x′)|+ |Sx′(y)− Sx′(y′)|

≤ |x− x′|+ |y − y′|,

which is the desired assertion.

Notice that there exists also a semicopula which is not Lebesgue measurable.

Example 2.1.2. Let J be a subset of [0, 1] that is not Lebesgue measurable. Define
the function

S(x, y) =

0, (x+ y < 1) or (x+ y = 1 and x ∈ J);

min{x, y}, otherwise.

Then S is a semicopula that is not Lebesgue measurable. In [79] there is an analogous
example of a t–norm which is not Lebesgue measurable.

Given a semicopula S, its diagonal section δ satisfies the following properties:

(a) δ(1) = 1;

(b) δ(t) ≤ t for all t ∈ [0, 1];

(c) δ is increasing.

Conversely, given a function δ satisfying properties (a), (b) and (c), it is always
possible to construct a semicopula whose diagonal section is δ; for instance:

Sδ(x, y) :=

δ(x) ∧ δ(y), if (x, y) ∈ [0, 1[2;

x ∧ y, otherwise.

A semicopula need not be uniquely determined by its diagonal. For example, if
δ(t) = t2 for all t ∈ [0, 1], there are two different semicopulas, Π and Sδ with diagonal
section equal to δ. The only semicopulas uniquely determined by their diagonal
sections are M and Z, as asserted in the following

Proposition 2.1.4. The only semicopula with diagonal section equal to id[0,1] is M .
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Proof. Suppose that δ(t) = t for all t in [0, 1]. For all x, y ∈ [0, 1], if x ≥ y, then

S(y, y) = y ≤ S(x, y) ≤ S(1, y) = y;

whereas if x < y, then

S(x, x) = x ≤ S(x, y) ≤ S(x, 1) = x;

that is S(x, y) = min{x, y}.

Analogously, we can prove

Proposition 2.1.5. The only semicopula with diagonal δ(t) = 0 on [0, 1[ is Z.

The proof of the following result is immediate and will not be given.

Proposition 2.1.6. Let S = (〈ai, bi, Si〉)i∈I be an ordinal sum of semicopulas. Then
S is a semicopula.

Another simple construction method for semicopulas is presented here.

Example 2.1.3 (Frame semicopula). Let the points

0 = t0 < t1 < · · · < tn−1 < tn = 1

partition the unit interval [0, 1] and let

0 = v0 ≤ v1 · · · ≤ vn < 1

be points in [0, 1] such that vi ≤ ti (i ∈ {1, 2, . . . , n}). The frame semicopula Sf

corresponding to (t0, t1, . . . , tn) and (v0, v1, . . . , vn) is defined by

Sf (x, y) :=

vi−1, if (x, y) ∈ [ti−1, 1[2\[ti, 1[2;

x ∧ y, if x ∨ y = 1.

Moreover, if continuity questions arise, we may choose as the value taken on the side
of each frame the value taken on the frame below.

2.2 Characterizations of some semicopulas

At a first glance, the definition of semicopula might appear somewhat more general
than actually is. In this sense, it will be shown in this section that condition (S1) is
quite restrictive and that it allows to characterize some basic semicopulas.

Proposition 2.2.1. Let S be a semicopula. The following statements are equivalent:

(a) S is concave;
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(b) S is super–homogeneous, viz. S(λx, λy) ≥ λS(x, y) for all x, y and λ in [0, 1];

(c) S is idempotent, viz. S(x, x) = x for every x ∈ [0, 1];

(d) S = M .

Proof. If S is concave, then S(λx, λy) = S(λ(x, y)+(1−λ)(0, 0)) ≥ λS(x, y), and (b)
holds. If S is super–homogeneous, then S(x, x) ≥ xS(1, 1) = x, which together with
S(x, x) ≤ S(x, 1) = x, leads to (c). If S is idempotent, then Proposition 2.1.4 ensures
that S = M . Finally, it is clear that M is concave.

Proposition 2.2.2. Let S be a semicopula. The following statements are equivalent:

(a) S is convex and 1–Lipschitz;

(b) S is a function of the sum of its arguments, i.e. S(x, y) = F (x + y) for some
function F from [0, 2] into [0, 1];

(c) S = W .

Proof. (a) ⇒ (c): Suppose that S is convex and 1–Lipschitz. If x+ y ∈ ]0, 1], define
λ := y/(x + y), which is in [0, 1]; then (x, y) = λ(0, x + y) + (1 − λ)(x + y, 0). Now,
since S is convex,

0 ≤ S(x, y) ≤ λS(0, x+ y) + (1− λ)S(x+ y, 0) = 0;

therefore, S(x, y) = 0. If x+ y ≥ 1, define λ := (1− y)/[2− (x+ y)], which is in [0, 1],
in order to obtain (x, y) = λ(1, x + y − 1) + (1 − λ)(x + y − 1, 1). Again, since S is
convex,

S(x, y) ≤ λS(1, x+ y − 1) + (1− λ)S(x+ y − 1, 1) = x+ y − 1,

and, since it is 1–Lipschitz,

S(1, 1)− S(x, y) ≤ 1− x+ 1− y.

Therefore S(x, y) = x+ y − 1, and (c) holds.
(b) ⇒ (c): Suppose that there exists a function F from [0, 2] into [0, 1] such

that S(x, y) = F (x + y). If t is in [0, 1], then F (t) = S (0, t) = 0, and if t is
in [1, 2], then F (t) = S(1, t − 1) = t − 1. Therefore, F (t) = max{0, t − 1}, and
S(x, y) = F (x+ y) = max{x+ y − 1, 0} = W (x, y).

Parts “(c)⇒(a)” and “(c)⇒(b)” can be easily proved.

In particular, part (b) is equivalent to the fact that S is Schur–constant.

Proposition 2.2.3. The following properties are equivalent for a semicopula S:
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(a) S is positively homogeneous with respect to one variable, viz. for every x, y, λ
in [0, 1], either S(x, λy) = λS(x, y) or S(λx, y) = λS(x, y);

(b) S has separate variables, viz. there exist two functions F1 and F2 defined from
[0, 1] into [0, 1] such that S(x, y) = F1(x) · F2(y);

(c) S has linear section in both the variables;

(d) S = Π.

Proof. Without loss of generality assume that S is homogeneous with respect to the
first variable; then S(x, y) = xS(1, y) = xy; therefore (a) implies (b).

Now, suppose that (b) holds and let S(x, y) = F1(x) · F2(y) be a semicopula. It
follows that S(x, 1) = F1(x) · F2(1) = x and S(1, x) = F1(1) · F2(x) = x. Therefore,
for every a ∈ [0, 1], we have S(x, a) = F1(x) · F2(a) = (F2(a)/F2(1)) · x, viz. the
horizontal section of S at the point a is linear. The same result holds for the vertical
section of S.

Finally, if S has linear sections in both the variables, then, fixed a ∈ [0, 1], we
have S(x, a) = λax for a suitable λa ∈ [0, 1]. But S(1, a) = a and, hence, λa = a and
S = Π. Obviously, (d) implies (a).

2.2.1 Harmonic semicopulas

Let Ω be an open subset of R2. A twice continuously differentiable function
F : Ω → R is said to be harmonic if

∆F (x, y) :=
∂2F (x, y)
∂x2

+
∂2F (x, y)
∂y2

= 0 for all (x, y) ∈ Ω.

Moreover, such F is said to be superharmonic (resp. subharmonic) if ∆F ≤ 0 (resp.
∆F ≥ 0). For more details on harmonic function theory, we refer to [5]. Here we
recall two important results for harmonic functions.

Theorem 2.2.1 (Maximum–minimum principle for harmonic functions). Let Ω be a
connected open subset of R2 and let F be a harmonic function on Ω. If F has either
a maximum or a minimum on Ω, then F is constant on Ω.

Theorem 2.2.2. Let Ω be a connected open subset of R2 and let F be a superhar-
monic (respectively, subharmonic) function on Ω. If F has a minimum (respectively,
a maximum) on Ω, then it is constant on Ω.

Proposition 2.2.4. The only harmonic semicopula is Π.

Proof. It is easily shown that Π is harmonic. Suppose that there exists another
harmonic semicopula F and let (x0, y0) be a point in ]0, 1[2 such that Π(x0, y0) 6=
F (x0, y0). Now, G := F − Π is a harmonic function that vanishes on the boundary
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of [0, 1]2. Therefore, G has either a maximum or a minimum on ]0, 1[2, and, in view
of the maximum–minimum principle for harmonic functions, G is constant, and this
constant is equal to zero, viz. F = Π.

Proposition 2.2.5. If S is a superharmonic (resp. subharmonic) semicopula, then
S ≥ Π (resp. S ≤ Π).

Proof. If S is a superharmonic semicopula, then G := S − Π is also superharmonic
and it vanishes on the boundary of [0, 1]2. Therefore, S(x, y)− Π(x, y) ≥ 0 for every
(x, y) in [0, 1]2, because, otherwise, Theorem 2.2.2 would imply S = Π. A similar
argument holds for subharmonic semicopulas.

In the case of copulas, the following result holds.

Proposition 2.2.6. Let (X,Y ) be a continuous random pair with copula C. If C
is superharmonic, then (X,Y ) is positively quadrant dependent. Analogously, if C is
subharmonic, then (X,Y ) is negatively quadrant dependent.

Proposition 2.2.7. Let the copula C of a pair (X,Y ) of continuous random variables
be twice–differentiable.

(a) If Y is stochastically increasing in X and if X is stochastically increasing in
Y , then C is superharmonic.

(b) If Y is stochastically decreasing in X and if X is stochastically decreasing in
Y , then C is subharmonic.

Proof. In view of Proposition 1.7.3, the property SI(Y |X) is equivalent to the concav-
ity of the function x 7→ C(x, y) for every y ∈ [0, 1], and SI(X|Y ) is equivalent to the
concavity of the function y 7→ C(x, y) for every x ∈ [0, 1]. Because C is twice differen-
tiable, it follows that ∂2

xxC(x, y) ≤ 0 and ∂2
yyC(x, y) ≤ 0, from which ∆C(x, y) ≤ 0.

The proof of part (b) is analogous.

Therefore we can insert the concept of super– and sub– harmonicity in the scheme
of dependence concepts (note that the converse implications in Table 2.1 are, in
general, false).

SI(Y|X) & SI(X|Y) =⇒ Superharmonicity =⇒ PQD(X,Y)

SD(Y|X) & SD(X|Y) =⇒ Subharmonicity =⇒ NQD(X,Y)

Table 2.1: Superharmonicity and dependence concepts
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Example 2.2.1. Let consider the class of copulas given by Cfg(x, y) = xy+λf(x) g(y),
where f and g are suitable functions and λ > 0 (see [132]). We have

∆Cfg(x, y) = λ(f ′′(x) g(y) + f(x) g′′(y)).

If f(t) = t(1− t)2 and g(t) = t(1− t), then Cfg is a PQD copula, but

∆Cfg(x, y) = λ
[
(6x− 4)y(1− y)− 2x(1− x)2

]
is (strictly) positive on the set {(x, y) ∈ [0, 1]2 : x = 1} and it is (strictly) negative
on the set {(x, y) ∈ [0, 1]2 : 0 ≤ x < 2/3}; thus Cfg is neither superharmonic nor
subharmonic.

Analogously, we can find two functions f and g such that Cfg is superharmonic,
but f and g are not both concave and, thus, Cfg is not SI(Y |X) and SI(X|Y ).

2.3 The class of semicopulas

Proposition 2.3.1. If S1 and S2 are semicopulas, then for all θ ∈ [0, 1] both the
weighted arithmetic mean (1− θ)S1 + θS2 and the weighted geometric mean Sθ1 S

1−θ
2

are semicopulas. In other words, the set S is convex and log–convex.

Let X denote the set of all functions from [0, 1]2 to [0, 1] equipped with the product
topology (which corresponds to pointwise convergence).

Theorem 2.3.1. The class S of semicopulas is a compact subset of X (under the
topology of pointwise convergence).

Proof. Since X is a product of compact spaces, it is well known from Tychonoff The-
orem (see, e.g., [76]) that X is compact. The proof is completed by showing that S is
a closed subset of X, viz. given a sequence {Sn}n∈N in S, if Sn converges pointwise to
S, then S belongs to S. In fact, for all x, x′, y ∈ [0, 1] and n ∈ N,

Sn(x, 1) = x −−−−−→
n→+∞

x = S(x, 1),

and, if x ≤ x′, Sn(x, y) ≤ Sn(x′, y) implies S(x, y) ≤ S(x′, y), which is the desired
conclusion.

A sequence {Sn}n∈N of semicopulas is a Cauchy sequence with respect to pointwise
convergence if, for every ε > 0 and for every point (x, y) in [0, 1]2, there exists a natural
number n0 = n0(ε, x, y) such that

|Sn(x, y)− Sm(x, y)| < ε,

whenever n,m ≥ n0. As an immediate consequence, each Cauchy sequence of semi-
copulas converges pointwise to some semicopula; in other words S is complete. Notice
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that it is known that the class T of t–norms is neither a complete nor a compact
subset of S ([83]).

Now, consider the set S equipped with the pointwise ordering. Obviously, (S,≤)
is partially ordered, and not all pairs of semicopulas are comparable: it is sufficient
to consider the following example.

Example 2.3.1. Let S1 and S2 be, respectively, the two ordinal sums given by

S1(x, y) = (〈0, 1/2, Z〉) =

0, if (x, y) ∈ [0, 1/2[2,

min{x, y}, otherwise;

and by

S2(x, y) = (〈1/2, 1, Z〉) =

1/2, if (x, y) ∈ [1/2, 1[2;

min{x, y}, otherwise.

Then
0 = S1(1/4, 1/4) < S2(1/4, 1/4) = 1/4,

but
3/4 = S1(3/4, 3/4) > S2(3/4, 3/4) = 1/2.

Proposition 2.3.2. The set S, equipped with the classical pointwise ordering, is a
complete lattice.

Proof. Let B be a nonempty subset of S. For all x, x′, y ∈ [0, 1] such that x ≤ x′,

∨B(x, 1) = sup{S(x, 1) : S ∈ B} = x,

that is ∨B satisfies the condition (S1) of Definition 2.1.1; moreover,

∨B(x, y) = sup{S(x, y) : S ∈ B} ≤ sup{S(x′, y) : S ∈ B} = ∨B(x′, y),

that is ∨B satisfies the condition (S2) of Definition 2.1.1, and hence ∨B is a semicop-
ula. Analogously ∧B is a semicopula.

In particular, the minimum (and the maximum) of two semicopulas is a semicop-
ula. This result holds also for quasi–copulas, but neither for copulas nor for t-norms,
as the following examples show (see, also, [123]).

Example 2.3.2. Consider the two copulas defined, for α and β in ]0, 1[ by

Aα(x, y) :=

α ∨ (x+ y − 1), if (x, y) ∈ [α, 1]2 ;

x ∧ y, otherwise;

(this is the ordinal sum (〈α, 1,W 〉)) and

Bβ(x, y) :=


xy

β
, if (x, y) ∈ [0, β]2 ;

x ∧ y, otherwise;
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(this is the ordinal sum (〈0, β,Π〉)). Now, for α = 1/3 and β = 1/2, the function
F : [0, 1]2 → [0, 1] defined by F (x, y) := A(1/3)(x, y) ∧B(1/2)(x, y) is not a copula. In
fact, choose s = t = 1/3 and s′ = t′ = 1/2,

F (s′, t′)− F (s′, t)− F (s, t′) + F (s, t) = −1/9 < 0.

Moreover, A(1/3) and B(1/2) are t–norms, but the function F is not associative, be-
cause F (F (1/2, 1/2), 1/3) = 2/9, while F (1/2, F (1/2, 1/3)) = 1/3.

Example 2.3.3. Consider the two copulas:

Aλ(x, y) =


y, 0 ≤ y < λx;

λx, λx ≤ y < 1− (1− λ)x;

x+ y − 1, otherwise;

and Bλ = AT the transpose of A. Then, for λ = 1/2, we have

max
{
A(1/2), B(1/2)

}([1
3
,
2
3

]2)
= −1

6
< 0.

Example 2.3.4. Consider the two t–norms:

T1(x, y) =

x ∧ y, x+ y > 1;

0, otherwise;

and T2(x, y) = Π. Then

T = max{T1(x, y), T2(x, y)} =

x ∧ y, x+ y > 1;

xy, otherwise;

is not associative. In fact,

T

(
T

(
4
10
,

5
10

)
,

7
10

)
= T

(
20
100

,
7
10

)
=

14
100

,

but

T

(
4
10
, T

(
5
10
,

7
10

))
= T

(
4
10
,

5
10

)
=

20
100

.

2.3.1 Extremal semicopulas

Definition 2.3.1. A semicopula S is said to be extremal if it can not be expressed
as a non–trivial convex sum of two semicopulas; in the sense that, if S admits the
representation S = λA+ (1− λ)B for A and B in S and λ ∈ ]0, 1[, then S = A = B.

By connecting Proposition 2.3.1 and Theorem 2.3.1, it follows that S is a compact
and convex subset of X; therefore, in view of the Krein–Millman Theorem (see, e.g.,
[32]), we have:
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Proposition 2.3.3. The class S of semicopulas is the convex hull of the set formed
by extremal semicopulas.

Next we show that the semicopulas Z and M are extremal.
Given the semicopula Z, suppose that there exist B and C in S and λ ∈ ]0, 1[ such

that Z(x, y) = λB(x, y) + (1− λ)C(x, y) on [0, 1]2. For all x, y ∈ [0, 1[, the equality

Z(x, y) = 0 = λB(x, y) + (1− λ)C(x, y)

implies
B(x, y) = 0 = C(x, y),

so that B = Z = C on [0, 1]2.
Using the same notations, we consider the semicopula M and suppose

M(x, y) = λB(x, y) + (1− λ)C(x, y)

on [0, 1]2. In particular, for every x ∈ [0, 1] the equality

M(x, x) = x = λB(x, x) + (1− λ)C(x, x)

implies
δB(x) = δC(x) = x,

which, in view of Proposition 2.1.4, yields B = C = M .
Extremal semicopulas can be easily constructed beginning from root sets. We

recall that a root set A ⊂ [0, 1]2 is defined by the property:

(x, y) ∈ A implies (x′, y′) ∈ A for every 0 ≤ x′ ≤ x and 0 ≤ y′ ≤ y.

Thus, given a root set A, the semicopula SA defined by

SA(x, y) =

0, if (x, y) ∈ A;

x ∧ y, otherwise;

is extremal, and this can be proved by the same arguments of the cases M and Z.
Such SA are called 1–internal semicopulas. Notice that M and Z are 1–internal
semicopulas with root sets, respectively, AM = ∅ and AZ = [0, 1[2. Moreover, SA is a
t–norm if the set A is symmetric with respect to the main diagonal of the unit square.

Remark 2.3.1. For every semicopula S and for every u ∈ [0, 1], we can define the
root set

Au := {(x, y) ∈ [0, 1[2 : S(x, y) < u},

and we have
S(x, y) =

∨
u∈[0,1]

SAu
(x, y).

Thus every semicopula is the supremum of a set formed by 1–internal semicopulas.
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Notice that the semicopula W is not extremal in S. In fact, it suffices to consider
the two semicopulas

S1(x, y) = W (x, y) (2−max{x, y}) andS2(x, y) = W (x, y) ·max{x, y}.

Then W = (S1 + S2)/2.
Analogously, Π is not extremal in S (and also in the class of copulas). In fact,

Π = (C1 + C2)/2, where

C1(x, y) =



xy
2 , (x, y) ∈

[
0, 1

2

]2 ;
3xy−x

2 , (x, y) ∈
[
0, 1

2

]
×
[
1
2 , 1
]
;

3xy−y
2 , (x, y) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
;

xy+x+y−1
2 , (x, y) ∈

[
1
2 , 1
]2 ;

and

C2(x, y) =



3xy
2 , (x, y) ∈

[
0, 1

2

]2 ;
xy+x

2 , (x, y) ∈
[
0, 1

2

]
×
[
1
2 , 1
]
;

xy+y
2 , (x, y) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
;

3xy−x−y+1
2 , (x, y) ∈

[
1
2 , 1
]2 ;

and C1 and C2 are copulas.

2.4 Multivariate semicopulas

The notion of semicopula can be extended in a natural way to the n–dimensional
case (n ≥ 3).

Definition 2.4.1. A function S : [0, 1]n → [0, 1] is said to be an n–semicopula if it
satisfies the two following conditions:

(S1’) S(x) = xi if all coordinates of x are 1 except at most the i–th one;

(S2’) S is increasing in each place.

Higher dimensional semicopulas are easily constructed from lower dimensional
ones, in view of the following results, whose easy proofs will not be reproduced here.

Proposition 2.4.1. Let H be a 2–semicopula and let Sm and Sn be, respectively, an
m–semicopula and an n–semicopula (m,n ∈ N). Then the function S : [0, 1]m+n →
[0, 1] defined by

S(x1, . . . , xm+n) := H (Sm(x1, . . . , xm), Sn(xm+1, . . . , xm+n)) (2.2)

is an (m+ n)–semicopula.
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Aggregation operators of type (2.2) are called double aggregation operators; they
allow to combine two input lists of information coming from different sources into a
single output (see [13] for more details).

In the opposite direction we can construct lower dimensional semicopulas from
higher dimensional ones.

Proposition 2.4.2. Any m–marginal of an n–semicopula Sn, 2 ≤ m < n, is an
m–semicopula, viz., if Sn is an n–semicopula, then the function Sm : [0, 1]m → [0, 1]
defined by

Sm(x1, x2, . . . , xm) = Sn(x1, x2, . . . , xm, 1, 1, . . . , 1)

is an m–semicopula, and so any function obtained from it by permuting its arguments.

From Definition 2.4.1, it follows that all n–quasi–copulas are n–semicopulas. On
the other hand, it is clear that an n–semicopula is a special n–ary aggregation oper-
ator.

In particular, a family of semicopulas {Sn : [0, 1]n → [0, 1]}n∈N is, obviously, a
global aggregation operator, but it need not have the neutral element property (in the
sense of global agop), because, in general, Sn(x1, . . . , xn−1, 1) 6= Sn−1(x1, . . . , xn−1).
Here we propose a possible definition of global semicopula.

Definition 2.4.2. A family of commutative semicopulas {Sn : [0, 1]n → [0, 1]}n∈N is
called a global semicopula if S1 = id[0,1] and, for every n ≥ 2,

Sn−1(x1, . . . , xn−1) = Sn(x1, . . . , xn−1, 1).

Notice that, in this way, a global semicopula is a global aggregation operator with
neutral element 1.

Analogously, we can define the concepts of global quasi–copula and global copula.
In practice, it is not difficult to construct a global semicopula. It suffices to take

a commutative 2–semicopula S and construct the family {Sn : [0, 1]n → [0, 1]}n∈N in
such a way that S1 = id[0,1], and, for every n ≥ 2,

Sn(x1, . . . , xn) := S(Sn−1(x1, . . . , xn−1), xn).

This method can be used also for quasi–copulas, but not for copulas, where it is
not immediate to construct a copula beginning from his margins (see [141] for more
details).

Finally, we present a few comments on a possible use of global copulas in a prob-
abilistic context.

Consider a stochastic process {Xn}n∈N in which all the random variables (=r.v.’s)
are continuous. In view of Sklar’s Theorem, a (unique) k–dimensional copula Ck can
be associated with any choice of k r.v.’s Xi1 , . . . , Xik . In particular, if the r.v.’s of
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the process are exchangeable, the copula Ck is commutative and it does not depend
on the choice of the r.v.’s. Moreover, Ck−1 is the (k − 1)–margin copula of Ck.

Conversely, if {Cn : [0, 1]n → [0, 1]}n∈N is a global copula, in view of the Kol-
mogorov compatibility Theorem (see [94]), we can construct an exchangeable stochas-
tic process {Xn}n∈N (where each r.v. Xn is uniformly distributed on [0, 1]) such that,
for every n ∈ N, Cn is the copula associated with any choice of n r.v.’s of the process.

Thus we have established a one–to–one correspondence between global copulas
and exchangeable stochastic processes.

2.4.1 Multivariate semicopulas and fuzzy measures

Here, we reformulate a result of M. Scarsini (see [136]) through the concept of
multivariate semicopula. To this end, some basic notations will be useful (see [30, 16]).

For every n ≥ 2, let B(Rn) be the class of Borel sets in Rn. A set function
ν : B(Rn) → [0, 1] is called fuzzy measure (or capacity) if it satisfies:

(a) ν(∅) = 0 and ν(Rn) = 1;

(b) ν(A) ≤ ν(B) for all Borel sets A and B, A ⊆ B.

In particular, a fuzzy measure ν is called supermodular (or convex ) if, for all Borel
sets A and B

ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B).

Given a fuzzy measure ν, the distribution function associated with ν is the function
Fν : Rn → R given by

Fν(x1, . . . , xn) = ν ([−∞, x1]× · · · × [−∞, x1]) .

Moreover, we denote by Fνi the marginal d.f. associated with νi, where νi is the i–th
projection of ν (i = 1, 2, . . . , n). Notice that, due to lack of additivity, a fuzzy measure
is not completely characterized by its distribution function.

Theorem 2.4.1 ([136]). Let ν be a supermodular fuzzy measure on (Rn,B(Rn)), Fν
its associated d.f., and Fνi , (i = 1, 2, . . . , n), the marginal d.f.’s associated with the
projections ν1, ν2, . . . , νn of ν. Then there exists a semicopula Sν : [0, 1]n → [0, 1]
such that

∀(x1, . . . , xn) ∈ Rn Fν(x1, . . . , xn) = Sν (Fν1(x1), . . . , Fνn(xn)) .

The above result is a direct generalization of Sklar’s Theorem to fuzzy measures;
in fact, if ν is a probability measure, we obtain Thereom 1.9.1. Moreover, we stress
the fact that as a copula links a joint d.f. to its margins so a semicopula joins the d.f.
of a fuzzy measure to its one–dimensional marginal d.f.’s.




