
Università degli Studi di Lecce

Dipartimento di Matematica “E. De Giorgi”

New results on copulas

and related concepts

Tesi presentata per il conseguimento del titolo di Dottore di Ricerca

Supervisore Dottorando
Prof. Carlo Sempi Dott. Fabrizio Durante

Coordinatore del Dottorato di Ricerca
Prof. Domenico Perrone

Dottorato di Ricerca in Matematica – XVIII Ciclo

Settore Disciplinare: Probabilità e Statistica Matematica (MAT/06)





Riassunto

Questa dissertazione è dedicata principalmente allo studio delle copule. Nello spe-
cifico, una copula è la restrizione all’ipercubo [0, 1]n (n ≥ 2) di una funzione di ripar-
tizione (= f.r.) n–dimensionale avente f.r. marginali uniformemente distribuite sull’in-
tervallo [0, 1]. Una copula è univocamente associata ad ogni vettore n–dimensionale
di variabili aleatorie continue, di cui descrive le proprietà di dipendenza. Una del-
le principali ragioni dell’interesse degli statistici nelle copule risiede nel fatto che la
costruzione di funzioni di ripartizioni multidimensionali (e quindi di modelli che de-
scrivono fenomeni aleatori complessi) può essere divisa in due più semplici passi: la
costruzione delle leggi marginali e la costruzione di un’opportuna famiglia di copule.

La maggior parte dei risultati presentati è dedicata alla costruzione di f.r. bidimen-
sionali sia attraverso la costruzione esplicita di nuove famiglie di copule (dipendenti
da uno o più parametri) sia attraverso l’introduzione di nuovi metodi costruttivi che
permettono di associare a due f.r. (o copule) già note un’altra funzione nella stessa
classe.

In particolare, si introducono tre famiglie di copule. La prima famiglia si adatta a
sistemi bidimensionali con una dipendenza positiva. La seconda è collegata a due va-
riabili aleatorie X e Y di cui sia noto il comportamento del loro massimo, max{X,Y }.
La terza, pur non avendo una diretta interpretazione probabilistica, generalizza la fa-
miglia delle copule archimedeee, che sono ampiamente utilizzate nelle applicazioni
grazie alla loro grande flessibilità.

Inoltre, per ogni coppia di f.r. A e B e per ogni operazione H su [0, 1], si caratteriz-
zano tutte le f.r. F indotte puntualmente da A e B, cioè F (x, y) = H(A(x, y), B(x, y)).
Tale caratterizzazione richiede la definizione di un nuova proprietà delle funzioni bidi-
mensionali, denominata “P–increasing”, che generalizza il concetto di supermodula-
rità. Si considera, quindi, una forma leggermente modificata di tale operazione nella
classe delle copule, dove si fornisce un metodo per aggiungere parametri ad una copula
rendendola adatta a descrivere anche modelli multivariati in cui le variabili aleatorie
in gioco non sono scambiabili.

Recentemente, le copule sono state utilizzate anche nella definizione dei concetti di
affidabilità ed invecchiamento per sistemi scambiabili bidimensionali. In particolare,
Bassan e Spizzicino (2005) hanno introdotto la cosiddetta “funzione bidimensionale
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di invecchiamento” che consente di definire nel caso bidimensionale alcuni concetti
(unidimensionali) di affidabilità già noti, quali, ad esempio, IFR, DFR e NBU. Tale
funzione è denominata “semicopula” in quanto verifica alcune, ma non tutte, le pro-
prietà di una copula. La classe delle semicopule e le sue proprietà si studiano nei
particolari, evidenziando il ruolo che tali funzioni svolgono anche nelle logiche a più
valori e nella teoria delle misure “fuzzy” (anche note come capacità). Si considera,
quindi, un metodo per trasformare una (semi–) copula in un’altra (semi–)copula, evi-
denziando l’utilizzo di tale trasformazione nella teoria dei valori estremi. Sempre nel
contesto dell’affidabilità, si inserisce anche lo studio della Schur–concavità nella classe
delle copule.

Classificazione AMS 2000: Primaria: 60E05, 62H10 Secondaria: 62H20, 60E15,
60B10, 03E72.

Parole chiave: Copule; Misure di associazione; Concetti di dipendenza; Supermo-
dularità; Schur–convessità; Quasi–copule, Operatori di aggregazione; Semicopule.



Abstract

This dissertion is devoted, mainly, to the study of copulas. Specifically, a copula is
the restriction on the n–cube [0, 1]n (n ≥ 2) of an n–dimensional distribution function
(=d.f.) with marginal d.f.’s uniformly distributed on [0, 1]. A copula is uniquely
associated with an n–dimensional vector of continuous random variables and describes
its dependence properties. One of the main reasons of the interest of statisticians to
copulas consists in the fact that the construction of multivariate d.f.’s (and, hence,
of models describing random phaenomena) can be divided into two easier steps: the
construction of the marginal d.f.’s and the construction of a suitable family of copulas.

The major part of the presented results is devoted to the construction of bivariate
d.f.’s by means both of the construction of new families of copulas (depending on one
or more parameters) and of the introduction of new construction methods that allow
to associate with two d.f.’s (or copulas) already known another function in the same
class.

In particular, three families of copulas are introduced. The first family is suit-
able to describe bivariate systems with positive dependence. The second one is con-
nected to two random variables X and Y such that the behaviour of their maximum,
max{X,Y }, is known. The third one, which does not have a probabilistic inter-
pretation, generalizes the family of Archimedean copulas that are largely used in
applications thanks to their great flexibility.

Moreover, for all d.f.’s A and B and for every binary operation H on [0, 1], we char-
acterize the d.f.’s F pointwise induced by A and B, viz. F (x, y) = H(A(x, y), B(x, y)).
Such characterization needs of the definition of a new property of bivariate functions,
called “P–increasing”, which generalizes the concept of supermodularity. A slight
modified form of this operation is, hence, considered in the class of copulas, where we
give a method for adding parameters to a copula in order to transform it into another
copula suitable to describe also multivariate models whith non–exchangeable random
variables.

Recently, the copulas have been also used in the definition of the concepts of
reliability and aging for exchangeable bivariate system. In particular, Bassan and
Spizzichino (2005) introduced the so–called “bivariate aging function”, which allows
to define in the bivariate case some (univariate) concepts of reliability already known,
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like, for instance, IFR, DFR and NBU. Such a function is called “semicopula” because
it verifies some, but not all, properties of a copula. The class of semicopulas and its
properties are studied in details by underlining the rôle that such functions have also
in multivalued logic and in the theory of fuzzy measures (also called capacities). A
method of transforming a (semi–) copula into another one is then considered and its
use in extreme value theory is underlined. In connection with reliability theory, we
study also the Schur–concavity in the class of copulas.

Mathematics Subject Classification 2000: Primary: 60E05, 62H10 Secondary:
62H20, 60E15, 60B10, 03E72.

Keywords: Copulas; Measures of Association; Dependence concepts; Supermodu-
larity; Schur–convexity; Quasi–copulas, Aggregation operators; Semicopulas.



Contents

Riassunto iii

Abstract v

Introduction xv

1 Preliminaries 1
1.1 Sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The pseudo–inverse of a real function . . . . . . . . . . . . . . 3
1.2 Majorization ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Triangular norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Copulas and random variables . . . . . . . . . . . . . . . . . . 17
1.6.2 Families of copulas . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.3 Diagonal sections of copulas . . . . . . . . . . . . . . . . . . . . 23
1.6.4 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Dependence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Measures of Association . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.9 Multivariate Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.10 Quasi-copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11 Aggregation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 The new concept of semicopula 35
2.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Characterizations of some semicopulas . . . . . . . . . . . . . . . . . . 39

2.2.1 Harmonic semicopulas . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 The class of semicopulas . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Extremal semicopulas . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Multivariate semicopulas . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



viii Contents

2.4.1 Multivariate semicopulas and fuzzy measures . . . . . . . . . . 49

3 2–increasing aggregation operators 51
3.1 Characterizations of 2–increasing agops . . . . . . . . . . . . . . . . . 52
3.2 Construction of 2–increasing agops . . . . . . . . . . . . . . . . . . . . 55
3.3 Bounds on sets of 2–increasing agops . . . . . . . . . . . . . . . . . . . 58
3.4 A construction method for copulas . . . . . . . . . . . . . . . . . . . . 65

4 A new family of PQD copulas 69
4.1 Characterization of the new class . . . . . . . . . . . . . . . . . . . . . 69
4.2 Properties of the new class . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Concordance order . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Dependence concepts . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Measures of association . . . . . . . . . . . . . . . . . . . . . . 74
4.2.4 Symmetry properties . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.5 Associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.6 Absolute continuity . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 A similar new class of quasi–copulas . . . . . . . . . . . . . . . . . . . 78

5 A family of copulas with given diagonal section 81
5.1 Characterization of MT–copulas . . . . . . . . . . . . . . . . . . . . . 82
5.2 Properties of MT–copulas . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 A construction method . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 A generalization of Archimedean copulas 91
6.1 The new family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Concordance order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 A similar new class of quasi–copulas . . . . . . . . . . . . . . . . . . . 97

7 Binary operations on bivariate d.f.’s 101
7.1 P–increasing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Induced pointwise operations on d.f.’s . . . . . . . . . . . . . . . . . . 105
7.3 Some connected questions . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Remarks on the composition of copulas . . . . . . . . . . . . . . . . . 110

8 Generalized composition of aggregation operators 113
8.1 Composition of agops . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Composition of semicopulas . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 Composition of 1–Lipschitz agops . . . . . . . . . . . . . . . . . . . . . 118
8.4 Composition of 2–increasing agops . . . . . . . . . . . . . . . . . . . . 119
8.5 Composition of copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents ix

9 Copula and semicopula transforms 125
9.1 Transformation of semicopulas . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Transformation of copulas . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.3 Properties of the transformed copula . . . . . . . . . . . . . . . . . . . 130

10 Copulas and Schur–concavity 135
10.1 The class of Schur–concave copulas . . . . . . . . . . . . . . . . . . . . 135
10.2 Families of Schur–concave copulas . . . . . . . . . . . . . . . . . . . . 138
10.3 Solution of an open problem for associative copulas . . . . . . . . . . . 140

10.3.1 Discussion in the class of triangular norms . . . . . . . . . . . . 142

Bibliography 145

Acknowledgments 155

Index 157





List of Figures

1.1 A function f and its inverse f−1 . . . . . . . . . . . . . . . . . . . . . 3
1.2 The ordinal sum T = (〈0, 1/2,W 〉, 〈1/2, 1,W 〉) . . . . . . . . . . . . . 9
1.3 The copulas W and M . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 The copula Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Supports of the copulas W and M . . . . . . . . . . . . . . . . . . . . 16
1.6 Support of the copula Cα for α = 1/3 . . . . . . . . . . . . . . . . . . 22

5.1 The function FA,B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Proof of Proposition 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Support of the copula Cα (α = 2) in Example 6.2.4 . . . . . . . . . . . 95

7.1 Geometric interpretation of the P–increasing property . . . . . . . . . 102

xi





List of Tables

1.1 Families of Archimedean copulas . . . . . . . . . . . . . . . . . . . . . 25
1.2 Implications among dependence concepts . . . . . . . . . . . . . . . . 28

2.1 Superharmonicity and dependence concepts . . . . . . . . . . . . . . . 42

7.1 Family of P–increasing functions . . . . . . . . . . . . . . . . . . . . . 106

9.1 Examples of functions in ΘC . . . . . . . . . . . . . . . . . . . . . . . 130

xiii





Introduction

The official history of the concept of copula began with the following words, con-
tained in the seminal paper by Abe Sklar ([149]):

Nous appelerons copule (à n dimensions) toute fonction Cn continue et non décrois-
sante (au sense employé pour une fonction de répartition à n dimensions) définie sur
le produit Cartésien de n intervalles fermés [0, 1] et satisfaisante aux conditions:

Cn(0, 0, . . . , 0) = 0, Cn(1, . . . , 1, α, 1, . . . , 1) = α.

Copulas have been introduced in order to answer a question posed by M. Fréchet on
the determining of the classes of multidimensional probability distribution functions
with given margins. This problem had occupied several researchers for some years
(see, for example, [55, 53, 22]) and the proposed solution states in the following result,
since then called Sklar’s Theorem.

If G is an n-dimensional distribution function with margins F1, . . . , Fn, then there
exists a copula Cn such that

G(x1, . . . , xn) = Cn(F1(x1), . . . , Fn(xn)),

and, if each Fi is continuous, then C is unique. Conversely, given the univariate
distribution functions F1, . . . , Fn, and a copula Cn, the function G, defined as above,
is an n–dimensional distribution function.

Therefore, the Fréchet problem can be reduced to the study of the class of copulas.
At the beginning, many results on copulas were obtained in connection with prob-

lems arising in the theory of probabilistic metric spaces, a promising research field
developed by B. Schweizer and A. Sklar following the original idea of K. Menger
([106, 141]). As explicitly said by B. Schweizer ([138]), in those years there were no
“ideas of possible statistical applications of copulas and the statistical community took
little note of this new concept”.

The initial poor diffusion of this new concept is testified by the fact that, since
1959, copulas appeared implicitely, and under different names, in the works of several
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authors. In 1960, M. Sibuya considered a dependence function associated with a pair
of random variables ([148]). In 1975, G. Kilmedorf and A.R. Sampson introduced
the uniform representation and studied it as a tool to define various dependence
notions ([77, 78]). Succesively, analogous concepts were introduced by P. Deheuvels,
J. Galambos, D.S. Moore and M.C. Spruill (see [138] for more details). It is also
important here to mention that a concept similar to that one of copula was introduced
in a paper of W. Hoeffding published in 1940, but unknown largely for many years
(see [138, 54]).

The situation changed after the paper [142], in which B. Schweizer and E.F. Wolff
announced their first results on the use of copulas for defining a rank–based measure
of dependence among random variables. This work, published after some years in the
Annals of Statistics ([143]), gave the input to a large development of copulas in the
study of dependence. In fact, as noted by B. Schweizer and E.F. Wolff,

“it is precisely the copula which captures those properties of the joint distribu-
tion which are invariant under a.s. strictly increasing transformations. Hence the
study of rank statistics – insofar as it is the study of properties invariant under such
transformations – may be characterized as the study of copulas and copula–invariant
properties”.

Some years later, only to make few examples, M. Scarsini showed the importance
of copulas in the definition of a measure of concordance between random variables
([135]); C. Genest and J. Mac Kay studied the so–called Archimedean copulas, which
can be easily constructed and simulated ([62, 63]); W.F. Darsow et al. used the copulas
in the study of Markov processes (see [24, 125] and also [144]).

An important help to the diffusion of the copula concept has been given by the
international conferences devoted to this idea: Rome (1990), Seattle (1993), Prague
(1996), Barcelona (2000), Québec (2004); and by their published proceedings ([23,
133, 8, 19]). But, one should also mention the books by B. Schweizer and A. Sklar
([141]), by H. Joe ([74]) and by R.B. Nelsen ([114]), the most cited references in all
the papers concerning this topic. A complete history of the development of this field
is given in the papers by B. Schweizer ([138]) and by A. Sklar ([151]).

But, it is precisely in the last five years that the theory of copulas is growing into a
central topic in the multivariate models and in the study of the dependence concepts.
The explosion of the interest in copulas is testified by the fact that the number of
papers reviewed by Mathematical Reviews since 2000 and mentioning anywhere the
word “copula” is greater than the analogous number of papers in the first “40 years
of the life” of the copula notion!

Such growing importance is due mainly to the fact that the copula function has
been discovered by many researchers working in different areas of applied mathe-
matics: for instance, in actuarial science ([58, 61]), finance ([51, 15]) and hydrology
([134]).
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Nowadays, there are many results on copulas and many applications of them in
the real problems. Paraphrasing the words of R.B. Nelsen in the introduction of his
book, we could say that “the study of copulas is a subject still in its youth”.

In this dissertation we present, mainly, several new results in the theory of copulas.
However, a great attention is also given to some concepts that are a direct extension
of the copula function (e.g., triangular norm, quasi–copula, semicopula, aggregation
operator) and which have been introduced in other fields, such as probabilistic met-
ric spaces, semigroup theory, reliability and fuzzy theory: an introduction to these
notions is presented in chapter 1.

Taking into account the origin of the problems that spurred the investigations here
presented, this dissertation can be divided into three parts, which overlap in several
points and which are written in a mixed sequence.

The first part is devoted to the construction of new families of bivariate probability
distribution functions. This problem has received great attention in the years ([73])
and, as written by N.I. Fisher in the Encyclopedia of Statistical Sciences ([54]), it is
one of the main reasons of the interest to statisticians in copulas.

In chapter 4 we study a family of copulas that depend on a univariate function.
Specifically, we give necessary and sufficient conditions on a function f : [0, 1] → [0, 1]
that ensure that the mapping Cf (x, y) := min{x, y}f(max{x, y}) is a copula. This
method provides several examples and, among others, it is shown that the Cuadras–
Augé copulas belong to this class. Such a Cf is suitable to describe the positive
dependence between random variables (namely, it is positively quadrant dependent)
and, moreover, it has also an interesting probabilistic interpretation.

In chapter 5 we characterize the copulas that can be constructed beginning from
their diagonal sections. Note that, if C is the copula associated with two random
variables X and Y , then the diagonal section of C, namely δC(t) := C(t, t), expresses
the behaviour of the maximum between X and Y . Constructions of this type have
been already considered in [56, 57]; in particular, our class is a distinguished subset of
the Bertino class of copulas, formed by those copulas satisfying a functional equation
studied, in the class of triangular norms, by G. Mayor and J. Torrens ([105]).

The study of a generalization of the Archimedean class of copulas is, instead, the
topic of chapter 6. This class is larger than the two other ones presented in chapters 4
and 5 and might include both singular and absolutely continuous copulas. Although,
as in the Archimedean case, no probabilistic interpretation is given, their simple form
and flexibility makes this class suitable to be used in the statistical modelling.

Finally, in chapter 7 we characterize a binary operation on the class of bivariate
distribution functions. Such an operation was considered, in the univariate case, by C.
Alsina et al. ([4]), but their extension to the bivariate case is a bit intricate and stim-
ulate us to introduce the new concept of P–increasing function. Some considerations
about bivariate distribution functions with fixed marginal d.f.’s and the convergence
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of distribution functions are then investigated.
The second part of this dissertation is directly inspired by the work of B. Bassan

and F. Spizzichino ([7]). In their investigations on multivariate aging through the
analysis of the Schur–concavity of the survival distribution functions, they introduced
the concept of semicopula, which generalizes the copula function, and studied some of
its properties. Following these ideas, we investigate the class of semicopulas (chapter
2) and study a transformation method for copulas, also used in other contexts (chapter
9). Moreover, we notice that semicopulas have an interest of their own in fuzzy logic,
where it can considered as a generalization of the boolean conjunction from the set
{0, 1} to the interval [0, 1], and in fuzzy measures. Chapter 10 is, instead, devoted to
the study of Schur–concavity of copulas, which allows us to make some considerations
about the properties of associative copulas.

The third part of this dissertation is connected with the theory of aggregation
operators. Aggregation or fusion of several inputs into a single output is a basic
problem in many practical applications and various categories and several approaches
have been proposed and investigated. In particular, this field is especially useful for
researchers interested in artificial intelligence and multicriteria decision making, where
the aggregation of several inputs is the most difficult and controversial problem. In
particular, the aggregation of a finite number of real inputs involves functions already
known in a mathematical context as triangular norms, quasi–copulas, copulas and,
by now, semicopulas. Through all the dissertation, we often present the results in
this most general form, and this point of view is especially underlined in chapter 3,
where the class of binary aggregation operator sharing the 2–increasing property is
analized in details, and in chapter 8, where another kind of composition is introduced
for special subclasses of aggregation operators (semicopulas, quasi–copulas, etc). In
particular, this last method is applied to copulas, where it gives a valuable method
to construct non–symmetric families.



Chapter 1

Preliminaries

In this chapter, we recall several definitions and properties that will be used in
the sequel. We begin with some notations on sets and functions (section 1.1) and, in
particular, we present the construction of the pseudo–inverse of a monotone function.
Section 1.2 is devoted to the presentation of the main concepts and results about the
majorization ordering. Binary operations and, in particular, triangular norms are
presented in sections 1.3 and 1.4.

After recalling some facts about distribution functions (section 1.5), we present
the concept of copula and its applications to dependence concepts (sections 1.6–1.9).
Two generalizations of the copula function are presented in the sections 1.10 and 1.11.

1.1 Sets and functions

We denote by R the ordinary set of real numbers (−∞,+∞) and by R its extension
[−∞,+∞]. For every positive integer n ≥ 2, Rn and Rn denote, respectively, the
cartesian product of n copies of R and R. We use vector notations for the points in
Rn, e.g. x = (x1, . . . , xn), and we write x ≤ y when xi ≤ yi for all i ∈ {1, 2, . . . , n}.

A n–box B is a subset of Rn given by the cartesian product of n closed intervals,
B = [x1, y1]× · · · × [xn, yn], and we write it also in the form [x,y], where we suppose
xi < yi for at least an index i ∈ {1, 2, . . . , n}. In particular, [0, 1]n indicates the
cartesian product of n copies of the unit interval, i.e. the unit n–cube. The vertices
of the n–box B = [x,y] are the points c = (c1, . . . , cn) ∈ B such that ci ∈ {xi, yi} for
all i ∈ {1, 2, . . . , n}. In every vertex c, we can define the following function

sgn(c) :=

 1, if card{i ∈ {1, 2, . . . , n} | ci = xi} is an even number;

−1, if card{i ∈ {1, 2, . . . , n} | ci = xi} is an odd number.

An n–place real function H is a function whose domain, DomH, is a subset of Rn

and whose range, RanH, is a subset of R. As a convention, a 1–place real function
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is called simply real function. The partial derivative of H with respect to the i-th
variable xi is denoted by ∂xi

H or ∂iH. If S is a subset of Rn, 1S denote the indicator
function of S defined by

1S(x) =

1, if x ∈ S;

0, if x /∈ S.

A statement about the points of a set S ⊆ Rn is said to hold almost everywhere
(briefly, a.e.) if the set of points of S where the statement fails to hold has Lebesgue
measure zero.

Given a real function f and an accumulation point x0 of Domf , we denote the
left–hand limit of f at x0 (if it exists) by f(x−0 ), and the right–hand limit of f at x0

(if it exists) by f(x+
0 ). Analogously, f ′(x−0 ) and f ′(x+

0 ) denote, resp., the left–hand
derivative and right–hand derivative of f at x0. Moreover, if S ⊆ R, we will denote
by idS the identity function of S, i.e. idS(x) := x for every x ∈ S.

A real function f is increasing (resp., strictly increasing) if, for every x < y,
f(x) ≤ f(y) (resp., f(x) < f(y)). Similarly, f is decreasing (resp., strictly decreasing)
if, for every x < y, f(x) ≥ f(y) (resp., f(x) > f(y)). A function f is (strictly)
monotone if f is either (strictly) increasing or (strictly) decreasing.

Let f : I → R be a real function whose domain I is an interval of R. The function
f is said to be convex on I if, for every x, y ∈ I and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The function f is called Jensen–convex on I (or mid–convex ) if, for every x, y ∈ I,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

A function f is said to be (Jensen–)concave on I if the function−f is (Jensen–)convex.

Proposition 1.1.1 ([69]). Let f be a continuous real function defined on an interval
I of R. Then f is convex if, and only if, f is Jensen–convex.

In the same manner, we could define the convexity for an n–place real function
whose domain is a convex subset of Rn.

Some notations from lattice theory will be also necessary (see [25]). Let (X,≤) be
a partially ordered set, X 6= ∅. For all x, y ∈ X, let U(x, y) := {z ∈ X : x ≤ z, y ≤ z}.
If U(x, y) has a unique smallest element z̃ such that z̃ ≤ z for all z ∈ U(x, y), then z̃
is called the supremum of x and y, denoted by x ∨ y or sup{x, y}. Similarly, if there
is a unique greatest element z′ smaller than x and y, then this is called the infimum,
denoted by x ∧ y or inf{x, y}. If, for all x, y ∈ X, x ∧ y and x ∨ y exist in X, then
(X,≤) is called lattice. Moreover, for every S ⊆ X, we denote by

∨
S the supremum

of the elements of S and by
∧
S the infimum of the elements of S. If, for every S ⊆ X,∨

S and
∧
S exist in X, then (X,≤) is called complete lattice.
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1.1.1 The pseudo–inverse of a real function

Definition 1.1.1. Let [a, b] and [c, d] be intervals of R and let f : [a, b] → [c, d] be
a monotone function. The pseudo–inverse of f is the function f [−1] : [c, d] → [a, b]
defined by

f [−1](y) =


sup{x ∈ [a, b] | f(x) < y}, if f(a) < f(b);

sup{x ∈ [a, b] | f(x) > y}, if f(a) > f(b);

a, if f(a) = f(b).

Notice that, if f is a bijection, then the pseudo–inverse coincides with the inverse.
The graph of the pseudo–inverse of a non–constant monotone function f can be

easily constructed by the following procedure:

(i) draw the graph of f and complete it, if it is necessary, by adding vertical line
segments connecting the points (x0, f(x−0 )) and (x0, f(x+

0 )) at each discontinuity
point x0 of f ;

(ii) reflect the graph so obtained with respect to the graph of idR, namely with
respect to the bisector of the first quadrant;

(iii) remove all but the smallest point from any vertical line contained in the reflected
graph.

Figure 1.1: A function f and its inverse f−1

Now, we consider a pseudo–inverse construction in two special cases.
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Example 1.1.1. Let us consider a function ϕ : [0, 1] → [0,+∞] that is continuous
and strictly decreasing with ϕ(1) = 0. The pseudo–inverse of ϕ is given by

ϕ[−1](t) :=

ϕ−1(t), if t ∈ [0, ϕ(0)] ;

0, if t ∈ [ϕ(0),+∞] .

Note that ϕ[−1] is continuous and decreasing on [0,+∞] and strictly decreasing on
[0, ϕ(0)]. Furthermore, for all t ∈ [0, 1],

ϕ[−1] (ϕ(t)) = t (1.1)

and, for all t ∈ [0,+∞],
ϕ
(
ϕ[−1](t)

)
= min{t, ϕ(0)}. (1.2)

Example 1.1.2. Given a function h : [0, 1] → [0, 1] that is continuous and strictly
increasing with h(1) = 1, its pseudo–inverse h[−1] : [0, 1] → [0, 1] is defined by

h[−1](t) :=

h−1(t), if t ∈ [h(0), 1];

0, if t ∈ [0, h(0)].

Notice that h[−1] is continuous and increasing on [0, 1] and strictly increasing on
[h(0), 1] and, for all t ∈ [0, 1]

h[−1] (h(t)) = t and h
(
h[−1](t)

)
= max{t, h(0)}.

1.2 Majorization ordering

In this section we recall the concepts of majorization ordering on Rn and Schur–
convexity, which can be found in the book by A.W. Marshall and I. Olkin (see [103]).

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two points in Rn and denote
by

x[1], x[2], . . . , x[n] and y[1], y[2], . . . , y[n]

the components of x and y rearranged in decreasing order, and by

x(1), x(2), . . . , x(n) and y(1), y(2) . . . , y(n)

the components of x and y rearranged in increasing order.

Definition 1.2.1. The point x is majorized by y (and we write x ≺ y) if

(i)
k∑
i=1

x[i] ≤
k∑
i=1

y[i] for every k ∈ {1, 2, . . . , n− 1};

(ii)
n∑
i=1

x[i] =
n∑
i=1

y[i].
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Definition 1.2.2. The point x is said to be weakly submajorized by y (and we write
x ≺w y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for every k ∈ {1, 2, . . . , n}.

The point x is said to be weakly supermajorized by y (and we write x ≺w y) if

k∑
i=1

x(i) ≥
k∑
i=1

y(i) for every k ∈ {1, 2, . . . , n}.

In the case n = 2, the previous definitions take these forms.

(x1, x2) ≺ (y1, y2) ⇐⇒

max{x1, x2} ≤ max{y1, y2}

x1 + x2 = y1 + y2

(x1, x2) ≺w (y1, y2) ⇐⇒

max{x1, x2} ≤ max{y1, y2}

x1 + x2 ≤ y1 + y2

(x1, x2) ≺w (y1, y2) ⇐⇒

min{x1, x2} ≥ min{y1, y2}

x1 + x2 ≥ y1 + y2.

The following theorems characterize the majorization orderings ([68, 69, 103]).

Theorem 1.2.1 (Hardy, Littlewood and Pólya). Given two points x and y in
Rn, the following statements are equivalent:

(i) x ≺ y;

(ii) a doubly stochastic matrix P exists such that x = Py.

Corollary 1.2.1. Given two points x and y in R2, the following statements are
equivalent:

(i) x ≺ y;

(ii) there exists α ∈ [0, 1] such that

x1 = αy1 + (1− α)y2 and x2 = (1− α)y1 + αy2.

Theorem 1.2.2 (Hardy, Littlewood and Pólya). Given two points x and y in
Rn, the following statements are equivalent:

(a) x ≺ y;

(b) for every continuous convex function g : R → R
n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).
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The following result, which extends Theorem 1.2.2 to the weak majorization or-
dering and which will be necessary in the sequel, can be found in [103] since it was
published in a journal of difficult access ([155]).

Theorem 1.2.3 (Tomić). Given two points x and y in Rn, the following statements
are equivalent:

(a) x ≺w y;

(b) for every continuous, increasing and convex function g : R → R

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).

Similarly, the following statements are equivalent

(a) x ≺w y;

(b) for every continuous, decreasing and convex function g : R → R

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).

Definition 1.2.3. A function ϕ : A ⊂ Rn → R is said to be Schur–convex on A if
it is increasing with respect to the majorization order ≺, namely if, for all x,y ∈ A,
x ≺ y implies ϕ(x) ≤ ϕ(y). If, in addition, ϕ(x) < ϕ(y) whenever x ≺ y but x is not
a permutation of y, then ϕ is said to be strictly Schur–convex on A.
Similarly, ϕ is said to be Schur–concave on A if, for all x,y ∈ A, x ≺ y implies
ϕ(x) ≥ ϕ(y). Moreover, ϕ is said to be Schur–constant if it is, at same time, Schur–
convex and Schur–concave.

The next result characterizes continuously differentiable Schur–concave functions
([137, 126]).

Theorem 1.2.4 (Schur, Ostrowski). Let I be an open interval in R and let ϕ :
In → R be a continuously differentiable function. Then ϕ is Schur–concave on In if,
and only if,

(i) ϕ is symmetric, viz. ϕ(x) = ϕ(xΠ) for every permutation Π;

(ii) for all z = (z1, z2, . . . , zn) ∈ In and i 6= j

(zi − zj) (∂iϕ(z)− ∂jϕ(z)) ≤ 0.
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1.3 Binary operations

Definition 1.3.1. A 2–place real function H is binary operation on a nonempty set
S ⊆ R if Dom H = S × S and Ran H ⊆ S.

Let H be a binary operation on [0, 1].

Definition 1.3.2. The horizontal section of H at b ∈ [0, 1] is the function hb : [0, 1] →
[0, 1] defined by hb(x) := H(x, b); the vertical section of H at a ∈ [0, 1] is the function
va : [0, 1] → [0, 1] defined by va(y) := H(a, y). The sections h0, h1, v0 and v1 are also
called margins of H.

The diagonal section of H is the function δH : [0, 1] → [0, 1] defined by δH(t) :=
H(t, t); the opposite diagonal section of H is the function δ∗H : [0, 1] → [0, 1] defined
by δ∗H(t) := H(t, 1− t).

Definition 1.3.3. An element 0H of [0, 1] is said to be annihilator of H (or zero,
null element of H) if H(0H , s) = 0H = H(s, 0H) for every s in [0, 1].

An element 1H of [0, 1] is said to be neutral element of H if H(1H , s) = s =
H(s, 1H) for every s in [0, 1].

Definition 1.3.4. An element a of [0, 1] is said to be idempotent underH ifH(a, a) =
δH(a) = a, namely if a is a fixed point for δH .

Definition 1.3.5. The transpose of H is the function HT given by

HT (x, y) = H(y, x) for every x, y ∈ [0, 1].

A binary operation H is said to be commutative (or symmetric) if

H(x, y) = H(y, x) for every x, y ∈ [0, 1], (1.3)

viz. H = HT .

Definition 1.3.6. A binary operation H is said to be associative if

H(H(x, y), z) = H(x,H(y, z)) for every x, y, z ∈ [0, 1]. (1.4)

Definition 1.3.7. Let H be a binary operation on [0, 1] and let x be an element of
[0, 1]. The H–powers of x are the elements of [0, 1] given recursively by

x1
H = x and xn+1

H = H(xnH , x)

for all positive integers n.

1.4 Triangular norms

A triangular norm (briefly, t–norm) is a distinguished type of binary operation on
the unit interval [0, 1] that has been introduced (in a simplified form) by K. Menger
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([106]) in order to extend the triangle inequality from the setting of metric spaces to
probabilistic metric spaces. Since then, triangular norms were largely studied in this
context and B. Schweizer and A. Sklar provided the axioms of t–norms as they are
commonly used today (see the book [141] for an extended bibliography); but they
also are widely used in statistics ([62, 65]) and in fuzzy logic, as a generalization of
the classical logic connectives (see [160, 83]). For a complete discussion also on the
recent developments of the theory of triangular norm, we refer to [139, 82, 3].

Definition 1.4.1. A binary operation T on [0, 1] is a triangular norm (briefly, t–
norm) if it satisfies the following properties:

(T1) T is associative;

(T2) T is commutative;

(T3) T is increasing in each place;

(T4) T has neutral element 1.

The following functions are examples of t–norms:

M(x, y) := min{x, y}; W (x, y) := max{x+ y − 1, 0};

Π(x, y) := xy; Z(x, y) =

0, if (x, y) ∈ [0, 1[2 ;

min{x, y}, otherwise.

They are called, resp., minimum,  Lukasiewicz, product and drastic t–norm and are
also denoted by TM , TL, TP and TD.

These four basic t–norms are remarkable for several reasons. For every t–norm T ,
we have

Z(x, y) ≤ T (x, y) ≤M(x, y) for all (x, y) ∈ [0, 1]2.

The t–norms Π and W are prototypical examples of two important subclasses of t–
norms called, respectively, strict and nilpotent t–norms ([83]). Moreover, M , Π and
W play an important role in the theory of copulas, as we shall underline in the sequel.

An example of parametrized family of t–norm is the Yager family {Tα}α≥0 (see
[157]), given by

Tα(x, y) =


Z(x, y), if α = 0;

M(x, y), if α = +∞;

max{1− [(1− x)α + (1− y)α]1/α}, otherwise.

Now, we present a simple way of constructing a new t–norm beginning from already
known ones. This method goes back to some investigations by A.H. Clifford ([17]) on
the theory of semigroups (see [141, 83] for more details).
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Let {Ti : i ∈ I} be a (possibly countable) collection of binary operations on [0, 1]
that are increasing and bounded from above by M , namely Ti(x, y) ≤ M(x, y) for
every i ∈ I and all (x, y) ∈ [0, 1]2. Let {Ji := [ai, bi]}i∈I be a family of closed, non
overlapping (except at the end points), non degenerate subintervals of [0, 1]. Then
the function T , given by

T (x, y) :=

ai + (bi − ai) Ti

(
x− ai
bi − ai

,
y − ai
bi − ai

)
, if (x, y) ∈ [ai, bi]2;

min{x, y}, otherwise;

is a binary operation on [0, 1], called the ordinal sum of the summands 〈ai, bi, Ti〉,
i ∈ I, and we shall write T = (〈ai, bi, Ti〉)i∈I.

Theorem 1.4.1 (Theorem 5.3.8, [141]). An ordinal sum of t–norms is a t–norm.

Clearly, every t–norm T can be viewed as a trivial ordinal sum with only one
summand 〈0, 1, T 〉 only, viz. T = (〈0, 1, T 〉). Moreover, the t–norm M can be viewed
as an empty ordinal sum of t–norms, when the index set I is the empty set. Notice
that, for an ordinal sum of the above type, the points ai and bi (i ∈ I) are the
idempotent elements of T .

Figure 1.2: The ordinal sum T = (〈0, 1/2,W 〉, 〈1/2, 1,W 〉)

Using ordinal sums, parametric families of t–norms can be easily constructed.

Example 1.4.1 (Mayor–Torrens family). Given α ∈ [0, 1], consider the following
family

Tα(x, y) :=

max{0, x+ y − α}, if (x, y) ∈ [0, α]2 ;

min{x, y}, otherwise.
(1.5)

This family is known as the Mayor–Torrens family of t–norms and every Tα is an
ordinal sum, T = (〈0, α,W 〉).
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An important property that a t–norm can have is the Archimedean one.

Definition 1.4.2. A t–norm T is called Archimedean if, for each (x, y) ∈ ]0, 1[2 there
is an n ∈ N such that xnT < y.

For continuous Archimedean t–norms, we have the following representation (see
[97, 3]).

Theorem 1.4.2. For a binary operation T : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) T is a continuous Archimedean t–norm;

(ii) there exists a mapping ϕ : [0, 1] → [0,+∞] continuous and strictly decreasing
with ϕ(1) = 0 such that, for every (x, y) ∈ [0, 1],

T (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)) . (1.6)

The function ϕ is said to be additive generator of T . A continuous and Archimedean
t–norm T is said to be strict if it has an additive generator ϕ such that ϕ(0) = +∞.

Theorem 1.4.3 (Representation of continuous t–norms). Let T be a binary
operation on [0, 1] such that:

(i) T has annihilator element 0;

(ii) T (1, 1) = 1;

(iii) T is associative;

(iv) T is jointly continuous.

Then T admits one of the following representations:

(a) T = M ;

(b) T (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)), where ϕ : [0, 1] → [0,+∞] is a continuous and
strictly decreasing function with ϕ(1) = 0;

(c) T is an ordinal sum of t–norms Ti, each of them representable in the form (b).

1.5 Distribution Functions

Let n be a natural number, n ∈ N.

Definition 1.5.1. Let H be an n–place real function and let B = [x,y] be an n–box
whose vertices belong to DomH. The H–volume of B is given by

VH(B) =
∑

sgn(c)H(c),

where the sum is taken over all the vertices c of B.
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Definition 1.5.2. Let S1, . . . , Sn be nonempty subsets of R and let H be an n–
place real function such that DomH = S1 × · · · × Sn. The function H is said to be
n–increasing if VH(B) ≥ 0 for every n–box B whose vertices lie in DomH.

In particular:

. a 1–increasing function is an increasing function in the classical sense;

. a 2–increasing function H satisfies the following condition

H(x1, y1) +H(x2, y2) ≥ H(x1, y2) +H(x2, y1), (1.7)

for every x1 ≤ x2 and y1 ≤ y2.

Definition 1.5.3. A function H : Rn → [0, 1] is an n–dimensional distribution func-
tion (briefly n–d.f.) if

(i) H is n–increasing;

(ii) H is left–continuous in each place;

(iii) H(+∞, . . . ,+∞) = 1;

(iv) H(x) = 0, whenever x ∈ Rn and min{x1, x2, . . . , xn} = −∞.

The class of all n–dimensional d.f.’s will be denoted by ∆n.

Specifically:

. F : R → [0, 1] is a (unidimensional) d.f. it it is increasing and left–continuous
with F (−∞) = 0 and F (+∞) = 1;

. H : R2 → [0, 1] is a bivariate d.f. if it is 2–increasing and left–continuous in each
place, with H(+∞,+∞) = 1 and H(x,−∞) = 0 = H(−∞, y) for all x, y ∈ R.

Definition 1.5.4. Let n ∈ N, n ≥ 2. Let {i1, i2, . . . , ik} be a nonempty set of k
indices in {1, 2, . . . , n} (1 ≤ k < n) and let H be an n–distribution function. The
k–margins of H (1 ≤ k < n) are the

(
n
k

)
functions Hi1,...,ik : Rk → [0, 1] defined, for

every y ∈ Rk by
Hi1,...,ik(y) = H(x),

where x is a point in Rn defined by

xj =

yj , if j ∈ {i1, . . . , ik};

+∞, if j /∈ {i1, . . . , ik}.

Proposition 1.5.1. Given an n–dimensional d.f. H, every k–margin of H (1 ≤ k <

n) is a k–dimensional distribution function.
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In particular, we shall generally denote the 1–margins of an n–d.f. H by F1, . . . , Fn

instead of H1, . . . ,Hn and we shall refer to them briefly as margins or marginal d.f.’s.

Remark 1.5.1. Given a probability space (Ω,F, P ) and a random vector X =
(X1, X2, . . . , Xn), namely X : Ω → Rn is a measurable mapping with respect to
the σ–algebra F and the Borel σ–algebra over Rn, the function

H(x) := P

(
n⋂
i=1

{ω ∈ Ω : Xi(ω) < xi}

)
(1.8)

is a n–d.f.. Conversely, in view of the classical Kolmogorov’s compatibility Theorem
(see [94]), given an n–dimensional d.f. H it is possible to construct a probability space
(Ω,F, P ) and a random vector X = (X1, X2, . . . , Xn), such that equation (1.8) holds
for every x in Rn.

Remark 1.5.2. In many applications on reliability theory, the random variables of
interest represent lifetimes of individuals or objects and then it is very important to
study the survival d.f. instead of the d.f.. For a r.v. X, its survival d.f. is defined
by F (t) := P (X ≥ t) = 1 − FX(t). In general, the joint survival d.f. of the vector
(X1, X2, . . . , Xn) is defined by

H(x1, x2, . . . , xn) := P (X1 ≥ x1, X2 ≥ x2, . . . , Xn ≥ xn).

For a random pair (X,Y ) with joint d.f. H and margins F1 and F2, the survival d.f.
is given by

H(x, y) = 1− F1(x)− F2(y) +H(1− x, 1− y).

Finally, we recall the concept of Fréchet class, introduced in [55].

Definition 1.5.5. The Fréchet class determined by the univariate d.f.’s F1, F2, . . . , Fn

is the set Γ[F1, F2, . . . , Fn] of all n–d.f.’s whose margins are F1, F2, . . . , Fn.

Notice that, for every choice of a set of n univariate d.f.’s, the corrisponding Fréchet
class is not empty, because it contains the independence d.f. given by the product of
the margins.

1.6 Copulas

In this section, we introduce the concept of copula. For simplicity’s sake, first, we
limit ourselves to consider two–dimensional copulas; the multivariate case (n ≥ 3) will
be, instead, considered briefly in section 1.9. For a deeper discussion of this topic, we
refer to the book by R.B. Nelsen ([114]) and to chap. 6 of the book by B. Schweizer
and A. Sklar ([141]) (see also the recent papers [128, 116]).

Definition 1.6.1. A function C : [0, 1]2 → [0, 1] is a (bivariate) copula if it satisfies:
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(C1) the boundary conditions,

∀x ∈ [0, 1] C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x;

(C2) the 2–increasing property, i.e. for all x, x′, y, y′ in [0, 1], with x ≤ x′ and y ≤ y′,

VC ([x, x′]× [y, y′]) := C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) ≥ 0.

In particular, every copula is increasing in each place, viz.

C(x, y) ≤ C(x′, y) and C(x, y) ≤ C(x, y′) for x ≤ x′, y ≤ y′, (1.9)

and satisfies the 1–Lipschitz condition, i.e. for all x, x′, y, y′ ∈ [0, 1]

|C(x, y)− C(x′, y′)| ≤ |x− x′|+ |y − y′|. (1.10)

Moreover, if C : [0, 1]2 → [0, 1] is twice continuously differentiable, condition (C2) is
equivalent to

∂2 C(x, y)
∂x∂y

≥ 0 for all (x, y) ∈ [0, 1]2. (1.11)

In order to prove that a function F : [0, 1]2 → [0, 1] satisfies the so–called rectan-
gular inequality (C2), the following technical Proposition will be useful. But, first,
we denote by ∆+ and ∆− the subsets of the unit square given by:

∆+ := {(x, y) ∈ [0, 1]2 : x ≥ y}, ∆− := {(x, y) ∈ [0, 1]2 : x ≤ y}, (1.12)

and we prove

Lemma 1.6.1. For every F : [0, 1]2 → [0, 1], the F–volume VF (R) of any rectangle
R ⊆ [0, 1]2 can be expressed as the sum

∑
i VF (Ri) of at most three terms, where the

rectangles Ri may have a side in common and belong to one of the following types:

(a) Ri ⊆ ∆+;

(b) Ri ⊆ ∆−;

(c) Ri = [s, t]× [s, t].

Proof. Let a rectangle R ⊆ [0, 1]2 be given; if it belongs to one of the three types (a),
(b) or (c) there is nothing to prove. Then, consider the other possible cases: R may
have one, two or three vertices in ∆−.

If R = [x1, x2]× [y1, y2] has one vertex in ∆+ and three vertices in ∆−, then, since
y2 > x2 > y1 > x1, we can write

R = ([x1, y1]× [y1, y2]) ∪ ([y1, x2]× [y1, x2]) ∪ ([y1, x2]× [x2, y2]) ;
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of these rectangles, the first and the third one are of type (b), while the second one
is of type (c). Now

VF ([x1, y1]× [y1, y2]) = F (y1, y2)− F (y1, y1)− F (x1, y2) + F (x1, y1),

VF ([y1, x2]× [y1, x2]) = F (x2, x2)− F (x2, y1)− F (y1, x2) + F (y1, y1),

VF ([y1, x2]× [x2, y2]) = F (x2, y2)− F (x2, x2)− F (y1, y2) + F (y1, x2).

Therefore, summing these equalities we have

VF ([x1, y1]× [y1, y2]) + VF ([y1, x2]× [y1, x2]) + VF ([y1, x2]× [x2, y2])

= F (x2, y2)− F (x2, y1)− F (x1, y2) + F (x1, y1) = VF ([x1, x2]× [y1, y2]) ,

which proves the assertion in this case. The other cases can be proved in a similar
manner.

Proposition 1.6.1. A binary operation F : [0, 1]2 → [0, 1] is 2–increasing if, and
only if, the three following conditions hold:

(a) VF (R) ≥ 0 for every rectangle R ⊆ ∆+;

(b) VF (R) ≥ 0 for every rectangle R ⊆ ∆−;

(c) VF (R) ≥ 0 for every rectangle R = [s, t]× [s, t] ⊆ [0, 1]2.

Proof. If F is 2–increasing, (a), (b) and (c) follow easily. Conversely, let R be a
rectangle of [0, 1]2. Then, because of the previous Lemma, R can be decomposed into
the union of at most three sub–rectangles Ri of type (a), (b) and (c); and for each of
them VF (Ri) ≥ 0 holds. Therefore VF (R) =

∑
VF (Ri) ≥ 0.

For every (x, y) ∈ [0, 1]2 and for every copula C

W (x, y) ≤ C(x, y) ≤M(x, y); (1.13)

this inequality is known as the Fréchet–Hoeffding bounds inequality ([109]), and W

and M are copulas, called also Fréchet–Hoeffding bounds, in honour of the pioneering
works of Hoeffding ([71]) and Fréchet ([55]). Hence the graph of a copula is a surface
within the unit cube [0, 1]3 that lies between the graphs of the copulas W and M .

A third important copula is the product copula Π.
Notice that a copula is the restriction to [0, 1]2 of the bivariate d.f. HC , given by

HC(x, y) :=



0, if min{x, y} < 0;

C(x, y), if (x, y) ∈ [0, 1]2;

x, if x ∈ [0, 1] and y > 1;

y, if x > 1 and y ∈ [0, 1];

1, if x > 1 and y > 1;
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Figure 1.3: The copulas W and M

Figure 1.4: The copula Π

whose margins are uniformly distributed on [0, 1].
Every copula C induces a probability measure PC on [0, 1]2 given, for every rect-

angle R, by PC(R) := VC(R). In particular, such a probability measure PC is doubly
stochastic, namely P (J × [0, 1]) = P ([0, 1]×J) = λ(J), where J is a Borel set in [0, 1]
and λ is the the Lebesgue measure on [0, 1]. The support of a copula C is the com-
plement of the union of all open subsets of [0, 1]2 with PC measure equal to zero. If a
Borel set R ⊆ [0, 1]2 has PC–measure equal to m ∈ ]0, 1], we said that the probability
mass of C on R is m (or C spreads a mass m on R). For every copula C, we have
the decomposition

C(x, y) = CA(x, y) + CS(x, y),

where

CA(x, y) :=
∫ x

0

∫ y

0

∂2

∂s∂t
C(s, t) dsdt, CS(x, y) = C(x, y)− CA(x, y).

The function CA is the absolutely continuous component of C and CS is the singular
component of C. If C = CA, then it is called absolutely continuous (e.g. Π) and the
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mixed second derivative of C, ∂12C is called density of C. If C = CS , then it is called
singular (e.g. M and W ). If one of the first derivatives of C has a jump discontinuity,
then C has a singular component (see [74, page 15]).

When a copula C is singular, then its support has Lebesgue measure zero, and
conversely. For example, the support of M is the main diagonal of [0, 1]2, {(x, y) ∈
[0, 1]2 | x = y}, namely M is singular. Also W is singular and its support is the
opposite diagonal of [0, 1]2, {(x, y) ∈ [0, 1]2 | x+ y = 1}.

Figure 1.5: Supports of the copulas W and M

We shall denote by C (or C2) the class of all the (bivariate) copulas. The set C is
convex and compact under the topology induced by the norm ‖ ‖∞, given for every
A in C by

‖A‖∞ := max
{
|A(x, y)| : (x, y) ∈ [0, 1]2

}
.

Moreover, pointwise convergence in C is equivalent to uniform convergence, in the
sense that, if a sequence {Cn : n ∈ N} of copulas converges pointwise to a copula C,
then it converges also uniformly.

Notice that, since the set C of copulas is a convex and compact subset of the class
of real–valued continuous functions defined on [0, 1]2, equipped with the ‖ ‖∞ norm,
from the classical Krein–Milman’s Theorem (see, e.g., [32]) it follows that C is the
convex hull of its extremal points.

Given two copulas C and D, D is said to be more concordant (or more PQD)
than C (C ≤ D, for short) if C(x, y) ≤ D(x, y) for every x, y in [0, 1] (see [74]). The
concordance order is only a partial ordering; however, some parametric families of
copulas are totally ordered. In particular, we say that a family {Cθ : θ ∈ I ⊆ R} is
positively ordered (resp., negatively) if Cα ≤ Cβ whenever α ≤ β (resp., α ≥ β).
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1.6.1 Copulas and random variables

Sklar’s Theorem (see [149, 150, 151]) is surely the most important result in the
theory of copulas and it is the foundation of many of the applications of copulas
to statistics. From that, it is clear in which sense we say that “a copula is a func-
tion which joins or couples a bivariate distribution function to its one–dimensional
margins”.

Theorem 1.6.1 (Sklar, 1959). If X and Y are random variables with unidimen-
sional d.f.’s F and G, respectively, and joint d.f. H, then there exists a copula C

(uniquely determined on RanF ×RanG, and hence unique when X and Y are con-
tinuous) such that

∀(x, y) ∈ R2
H(x, y) = C(F (x), G(y)). (1.14)

Conversely, given a copula C and two univariate d.f.’s F and G, the function H

defined in (1.14) is a bivariate d.f. with margins F and G.

Given a joint d.f. H with continuous margins F and G, it is easy to construct the
corresponding copula is given by:

C(x, y) = H(F [−1](x), G[−1](y)),

where F [−1](t) = sup{x : F (x) ≤ t} is the pseudo–inverse of F (and similarly for
G[−1]). Conversely, given a copula C and two univariate d.f.’s F and G, the equality
(1.14) allows us to construct a bivariate d.f. H.

Note as well that, if X and Y are continuous r.v.’s with d.f.’s F and G, C is the
joint d.f. of the r.v.’s U = F (X) and V = G(Y ).

The following result gives an interesting probabilistic interpretation of the three
basic copulas M , Π and W .

Theorem 1.6.2. For continuous r.v.’s X and Y with copula C the following state-
ments hold:

. X and Y are independent if, and only if, C = Π;

. Y is almost surely an increasing function of X if, and only if, C = M ;

. Y is almost surely a decreasing function of X if, and only if, C = W .

In general, Sklar’s Theorem allows us to study the dependence properties of a
random vector by examination of the copula alone, if the r.v.’s are continuous. This
last assumption is essential because, for discontinuous r.v.’s, the copula is not unique
and many problems arise, as discussed, e.g., in [100, 146, 124].
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Example 1.6.1. Let X and Y be r.v.’s with d.f.’s FX = 1]a,+∞] and FY = 1]b,+∞],
with a < b. Then the joint d.f. of X and Y is

H(x, y) =

1, if (x, y) ≥ (a, b);

0, otherwise.

Notice that, in view of Sklar’s Theorem, there exists a (not uniquely determined)
copula C such that (1.14) holds. In this case, C has to satisfy only the assumptions

C(1, 1) = 1, C(0, 1) = C(1, 0) = C(0, 0) = 0.

Therefore, every copula can be associated with the random pair (X,Y ).

In the sequel, when we speak about “the copula of the random pair (X,Y )”, we
assume that X and Y are continuous and, therefore, the copula is unique and it will
also be denoted by CXY .

Remark 1.6.1. The first–order derivatives of a copula have a nice interpretation. If
C is the copula of the random pair (U, V ) of two r.v.’s uniformly distributed on [0, 1],
then

∂C(u, v)
∂u

= P (V ≤ v | U = u) and
∂C(u, v)
∂v

= P (U ≤ u | V = v).

Now, we express the copula of a random vector obtained from another one by
strictly monotone transformations.

Theorem 1.6.3. Let X and Y be continuous r.v.’s with copula C. Let α and β be
two functions strictly monotone on RanX and RanY , respectively.

(i) If α and β are both strictly increasing, then

Cα(X)β(Y ) = CXY .

(ii) If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(x, y) = x− CXY (x, 1− y).

(iii) If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(x, y) = y − CXY (1− x, y).

(iii) If α and β are both strictly decreasing, then

Cα(X)β(Y )(x, y) = x+ y − 1 + CXY (1− x, 1− y).
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From the above result we have that, given a copula C, the following function are
copulas (see [84]):

C0,1(x, y) := x− C(x, 1− y), (1.15)

C1,0(x, y) := y − C(1− x, y), (1.16)

C1,1(x, y) := x+ y − 1 + C(1− x, 1− y). (1.17)

In particular, C1,1 is called survival copula and it is denoted more frequently by Ĉ.
It has a large use in reliability theory, where Sklar’s Theorem can be reformulated
under the following form:

Theorem 1.6.4. Let X and Y be two continuous r.v.’s with copula C. Let H be the
joint survival d.f. of (X,Y ) and let F and G be the univariate survival d.f.’s. Then

H(x, y) = Ĉ
(
F (x), G(y)

)
,

where Ĉ is the survival copula of C.

Remark 1.6.2. Notice that the survival copula Ĉ is not the joint survival d.f. C of
two r.v.’s unifomly distributed on [0, 1] whose joint d.f. is the copula C. In such a
case, in fact, we have C(x, y) := 1− x− y + C(x, y).

The symmetry properties of a random pair can also be expressed in terms of the
associated copula (see [114, 84] for more details).

Definition 1.6.2. Two r.v.’s X and Y are exchangeable if, and only if, (X,Y ) and
(Y,X) are identically distributed.

Proposition 1.6.2. Let X and Y be continuous r.v.’s with margins d.f.’s F and G,
respectively, and copula C. Then X and Y are exchangeable if, and only if, F = G

and C is symmetric.

Definition 1.6.3. Let X and Y be r.v.’s and let (a, b) be a point in R2.

. (X,Y ) is radially symmetric about (a, b) if the joint d.f. of (X − a) and (Y − b)
is the same as the joint d.f. of (a−X) and (b− Y ).

. (X,Y ) is jointly symmetric about (a, b) if the following four pairs of r.v.’s have a
common joint d.f.: (X−a, Y −b), (X−a, b−Y ), (a−X,Y −b) and (a−X, b−Y ).

Note that the joint symmetry implies the radial symmetry.

Proposition 1.6.3. Let X and Y be continuous r.v.’s with marginal d.f.’s F and G,
respectively, and copula C. Given a point (a, b) ∈ R2, assume that (X − a) has the
same d.f. as (a−X), and (Y − b) has the same d.f. as (b− Y ). Then:

. (X,Y ) is radially symmetric about (a, b) if, and only if, C = Ĉ;

. (X,Y ) is jointly symmetric about (a, b) if, and only if, C = C0,1 and C = C1,0

(and then also C = Ĉ).
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1.6.2 Families of copulas

For many years, statisticians have been fascinated by the following problem: given
two univariate d.f.’s F and G, find a bivariate d.f. H having F and G as its margins,
and having useful properties such as a simple analytic expression, a simple stochas-
tic representation, some desirable dependence properties, and a suitable number of
parameters. Many methods and procedures for constructing such joint distributions
have been introduced and studied in the literature (see, for example [75, 73]). As
noted in subsection 1.6.1, thanks to Sklar’s Theorem, we can decompose this prob-
lem into two easier steps: the construction of a copula and the construction of two
univariate margins.

Having several families of bivariate distributions at disposal is of great importance
in statistical applications. In fact, for many years, multivariate models have been often
constructed either under the assumption of the independence of their components or
by assuming the components are connected by a multivariate normal distribution
(see, e.g., [58]). Copulas, instead, allow to study models with a more flexible and
wide range of dependence.

In [74, 77], some criteria are given in order to ensure that a family of copulas is
a “good” family, in the sense that it can be useful in certain statistical applications.
Here we list some desirable properties for a parametric class of copulas Cα, where α
belongs to an interval of the real line:

. interpretability, which means having a probabilistic interpretation;

. flexible and wide range of dependence, which implies that the copula Π and at
least one of the Fréchet–Hoeffding bounds W and M belong to the class;

. closed form, in the sense that every copula of the class is absolutely continuous
or has a simple representation;

. ordering, with respect, for example, to concordance.

Now, we present some families of copulas (see [114] for more details).

Example 1.6.2 (Fréchet family). For all x, y ∈ [0, 1] and α, β ∈ [0, 1] such that
α+ β ≤ 1, the family

Cα,β(x, y) = αM(x, y) + (1− α− β)Π(x, y) + βW (x, y)

is a family of copulas, known as the Fréchet family. A slight modification of this
family is the so–called linear Spearman copula (see [72] and [74, family B11]), given,
for every α ∈ [−1, 1], by

Cα(x, y) = (1− |α|) ·Π(x, y) + |α| · Csgn(α)(x, y),

where Csgn(α) = M , if α ≥ 0, and Csgn(α) = W , otherwise.
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Example 1.6.3 (FGM family). For all x, y ∈ [0, 1] and α ∈ [−1, 1]

Cα(x, y) = xy + αxy (1− x) (1− y)

is a family of copulas, known as the Farlie-Gumbel-Morgenstern family (often abbre-
viated FGM) and contains as its members copulas with sections that are quadratic
in both x and y.

Example 1.6.4 (Cuadras–Augé family). For every α ∈ [0, 1], the following func-
tion

Cα(x, y) :=

xy1−α, if x ≤ y;

x1−αy, if x ≥ y;

is a copula, belonging to the family introduced by Cuadras and Augé ([18]). Notice
that Cα is the weighted geometric mean of M and Π; in particular, C0 = Π and
C1 = M .

Example 1.6.5 (Marshall–Olkin family). For every α and β in [0, 1], the following
function

Cα,β(x, y) :=

x1−αy, if xα ≥ yβ ;

xy1−β , if xα ≤ yβ ;

is a copula, belonging to the family introduced by Marshall and Olkin ([101, 102]),
which contains the family given in Example 1.6.4 for α = β.

Example 1.6.6 (BEV Copula). Let A : [0, 1] → [1/2, 1] be a convex function such
that max{t, 1− t} ≤ A(t) ≤ 1 for every t ∈ [0, 1]. The following function

CA(x, y) := exp
[
(lnx+ ln y)A

(
lnx

lnx+ ln y

)]
is a copula, known as bivariate extreme value copula (briefly, BEV) (see [74, chap. 6]).
This copula satisfies the equality Cn(x, y) = C(xn, yn) for every n ∈ N. The name of
this class arises from the theory of extreme statistics. In fact, let (X1, Y1), . . . , (Xn, Yn)
be a random sample from bivariate distribution H, define Mn := max{X1, . . . , Xn}
and Nn := max{Y1, . . . , Yn} and suppose that there exist constants a1n, a2n, b1n and
b2n, with a1n > 0 and a2n > 0, for which the pair(

Mn − b1n
a1n

,
Nn − b2n
a2n

)
has a non-degenerate joint limiting distribution H∗. Then the copula associated with
H∗ is a BEV copula (see [59, 129]).

Example 1.6.7 (Normal copula). Let Nρ(x, y) denote the standard bivariate nor-
mal joint d.f. with correlation coefficient ρ. Then the corresponding copula is

Cρ(x, y) = Nρ(Φ−1(x),Φ−1(y)),
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where Φ denotes the standard normal d.f.. Because Φ−1 does not have a closed form,
there is no closed form for Cρ, which can be only evaluated approximately.

Example 1.6.8 (Shuffle of Min). The copulas known as shuffles of M were intro-
duced in [110] and do not have a simple explicit expression. However, the procedure
to obtain their mass distribution can be easily described:

1. spread uniformly the mass on the main diagonal of [0, 1]2,

2. cut [0, 1]2 vertically into a finite number of strips,

3. shuffling the strips with perhaps some of them flipped around their vertical axes
of symmetry,

4. reassembling them to form the square again.

The resulting mass distribution corresponds to a copula called shuffle of M . Formally,
a shuffle of M is determined by a partition {Ji}i=1,2,...,n, a permutation of (1, 2, . . . , n)
and an orientation n–ple (i1, i2, . . . , in) such that ik = −1 or 1 according to whether
or not the strip Ji × [0, 1] is flipped.

For instance, the shuffle given by {[0, 1/2], [1/2, 1]}, permutation (2, 1) and orien-
tation (−1,−1) is W . Moreover, the shuffle of M with partition {[0, a], [a, 1− a], [1−
a, 1]}, (a ∈ [0, 1/2]), permutation (3, 2, 1) and orientation (−1,+1,−1) is the copula
Cα(x, y) = max{W (x, y),M(x, y)− α}.

Figure 1.6: Support of the copula Cα for α = 1/3

A way of constructing new copulas is given by the ordinal sum construction, a
method already presented in section 1.4, and reproduced here.

Theorem 1.6.5. Let C = (〈ai, bi, Ci〉)i∈I be an ordinal sum such that Ci is a copula
for every i ∈ I. Then C is a copula.
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1.6.3 Diagonal sections of copulas

Given a copula C, it is easily proved that its diagonal δ satisfies the following
properties:

(D1) δ(1) = 1;

(D2) δ(t) ≤ t for all t ∈ [0, 1];

(D3) δ is increasing;

(D4) |δ(t)− δ(s)| ≤ 2|t− s| for all t, s ∈ [0, 1].

The set of functions δ : [0, 1] → [0, 1] satisfying (D1)–(D3) will be denoted by D,
instead D2 will denote the subset of D of the functions satisfying also (D4).

For each function δ ∈ D2, there is always a copula whose diagonal section coincides
with δ. Consider, for example, the diagonal copula

Kδ(x, y) := min
{
x, y,

δ(x) + δ(y)
2

}
, (1.18)

introduced in [117, 56]. Another example is given by the Bertino copula ([9, 57])

Bδ(x, y) := min{x, y} −min {t− δ(t) : t ∈ [x ∧ y, x ∨ y]} . (1.19)

In particular, a Bertino copula is called simple if it can be expressed in the form

Bδ(x, y) := min{x, y} −min {x− δ(x), y − δ(y)} . (1.20)

From a probabilistic point of view, investigations on diagonal sections of copulas
are of interest because, if X and Y are random variables with the same distribution
function F and copula C, then the distribution function of max{X,Y } is δC(F (t)).
Moreover, copulas with given diagonal section have important consequences in finding
the bounds on arbitrary subsets of joint d.f.’s (see [121]). An absolutely continuous
copula with given diagonal section is also given in the recent paper [52].

1.6.4 Archimedean copulas

From a general point of view, copulas are special type of binary operations on [0, 1],
and many important copulas are also t–norms. In particular, the class of Archimedean
copulas (i.e. associative copulas with the Archimedean property as defined in section
1.4), is a very useful subclass of copulas, both in the statistical context (see [62, 63,
113, 112]) and in applications, especially in finance, actuarial science ([58, 70]) and
hydrology ([134]), due to their simple form and nice properties. Archimedean copulas
are characterized here.
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Theorem 1.6.6. A function C is an Archimedean copula if, and only if, it admits
the representation

C(x, y) := ϕ[−1] (ϕ(x) + ϕ(y)) , for all x, y ∈ [0, 1] , (1.21)

where ϕ : [0, 1] → [0,+∞] is continuous, strictly decreasing and convex with ϕ(1) = 0.

The function ϕ is said to be an additive generator of C and, therefore, C is also
denoted as Cϕ. Notice that, by setting h(t) := exp (−ϕ(t)) for every t ∈ [0, 1], Cϕ
may be represented in the form

Cϕ(x, y) = h[−1] (h(x) · h(y)) for all x, y ∈ [0, 1] . (1.22)

This function h is a multiplicative generator of Cϕ and Theorem 1.6.6 may be rephrased
in the following (multiplicative) form.

Theorem 1.6.7. A function C is an Archimedean copula if, and only if, it admits
the representation

C(x, y) := h[−1] (h(x) · h(y)) , for all x, y ∈ [0, 1] , (1.23)

where h : [0, 1] → [0, 1] is continuous, strictly increasing and log–concave, viz. for
every α, s and t in [0, 1], it satisfies the inequality

hα(s)h1−α(t) ≤ h (αs+ (1− α)t) .

Notice that, neither the additive nor the multiplicative generator of an Archime-
dean copula are unique. In fact, if ϕ is an additive generator of C, then every additive
generator of C has the form ϕ1 := k ϕ, for k > 0. Analogously, if h is a multiplicative
generator of a copula D, then h1(t) := h(tα) (α > 0) is also a multiplicative generator
for D. The next result yields a technique for finding generators of Archimedean
copulas ([62]).

Theorem 1.6.8. Let C be an Archimedean copula with generator ϕ. Then

ϕ′(x) · ∂yC(x, y) = ϕ′(y) · ∂xC(x, y) a.e. on [0, 1]2.

In Table 1.1 we list some known families of Archimedean copulas and their additive
generators.

In the spirit of the representation of continuous t–norms (see 1.4.3), Archimedean
copulas allow us to give a full characterization of associative copulas.

Theorem 1.6.9 (Representation of associative copulas). Let C be an associative
copula with diagonal section δC . Then:

. C = M if, and only if, δC = id[0,1];
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Family Copula Cθ(x, y) θ ∈

Frank − 1
θ ln

(
1 + (e−θx−1)(e−θy−1)

e−θ−1

)
[−∞,+∞]

Clayton max
{
(x−θ + y−θ − 1)−1/θ, 0

}
[−1,+∞]

Gumbel–Hougaard exp
(
−
(
(− lnx)θ + (− ln y)θ

)1/θ) [1,+∞]

Ali–Mikhail–Haq xy
1−θ(1−x)(1−y) [−1, 1]

Table 1.1: Families of Archimedean copulas

. C is Archimedean if, and only if, δC(t) < t on ]0, 1[;

. C is an ordinal sum of Archimedean copulas if, and only if, δC(t) < t for some,
but not all, t in ]0, 1[.

In [14], the following generalization of an Archimedean copula is studied.

Example 1.6.9. [Archimax copula] Let A : [0, 1] → [1/2, 1] be a convex function
such that max{t, 1− t} ≤ A(t) ≤ 1 for every t ∈ [0, 1]. Let ϕ be an additive generator
of an Archimedean copula. The following function

Cϕ,A(x, y) := ϕ[−1]

[
(ϕ(x) + ϕ(y))A

(
ϕ(x)

ϕ(x) + ϕ(y)

)]
is a copula, known as Archimax. The family of Archimax copulas includes both
Archimedean copulas and BEV copulas. The functions A and ϕ, which uniquely
determine Cϕ,A, are called, respectively, dependence function and Archimedean gen-
erator.

1.7 Dependence Properties

Here we recall some dependence properties between random variables that will be
expressed in terms of copulas. For more details on this topic, see [114, chap. 5] and
[74].

Definition 1.7.1. Let X and Y be random variables.

. X and Y are positively quadrant dependent (briefly, PQD) if, for every (x, y) in
R2, P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y).

. X and Y are negatively quadrant dependent (briefly, NQD) if, for every (x, y)
in R2, P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y).

Proposition 1.7.1. Let X and Y be continuous r.v.’s with copula C. X and Y are
PQD (resp. NQD) if, and only if, C ≥ Π (resp. C ≤ Π).
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Definition 1.7.2. Let X and Y be random variables.

. Y is left tail decreasing in X (briefly, LTD(Y |X)) if, and only if, the mapping
x 7→ P (Y ≤ y | X ≤ x) is a decreasing function for all y.

. X is left tail decreasing in Y (briefly, LTD(X|Y )) if, and only if, the mapping
y 7→ P (X ≤ x | Y ≤ y) is a decreasing function for all x.

. Y is right tail increasing in X (briefly, RTI(Y |X)) if, and only if, the mapping
x 7→ P (Y > y | X > x) is an increasing function for all y.

. X is right tail increasing in Y (briefly, RTI(X|Y )) if, and only if, the mapping
y 7→ P (X > x | Y > y) is an increasing function for all x.

Proposition 1.7.2. Let X and Y be continuous r.v.’s with copula C.

. LTD(Y |X) if, and only if, for every y ∈ [0, 1],

x 7→ C(x, y)/x is decreasing.

. LTD(X|Y ) if, and only if, for every x ∈ [0, 1],

y 7→ C(x, y)/y is decreasing.

. RTI(Y |X) if, and only if, for every y ∈ [0, 1],

x 7→ [y − C(x, y)]/(1− x) is decreasing.

. RTI(Y |X) if, and only if, for every x ∈ [0, 1],

y 7→ [x− C(x, y)]/(1− y) is decreasing.

Definition 1.7.3. Let X and Y be random variables.

. Y is stochastically increasing inX (briefly, SI(Y |X)) if, and only if, the mapping
x 7→ P (Y > y | X = x) is an increasing function for all y.

. X is stochastically increasing in Y (briefly, SI(X|Y )) if, and only if, the mapping
y 7→ P (X > x | Y = y) is an increasing function for all x.

. Y is stochastically decreasing in X (briefly, SD(Y |X)) if, and only if, the map-
ping x 7→ P (Y > y | X = x) is a decreasing function for all y.

. X is stochastically decreasing in Y (briefly, SD(X|Y )) if, and only if, the map-
ping y 7→ P (X > x | Y = y) is a decreasing function for all x.

Proposition 1.7.3. Let X and Y be continuous r.v.’s with copula C.
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. SI(Y |X) if, and only if, x 7→ C(x, y) is concave for every y ∈ [0, 1].

. SI(X|Y ) if, and only if, y 7→ C(x, y) is concave for every x ∈ [0, 1].

. SD(Y |X) if, and only if, x 7→ C(x, y) is convex for every y ∈ [0, 1].

. SD(X|Y ) if, and only if, y 7→ C(x, y) is convex for every x ∈ [0, 1].

Definition 1.7.4. Let X and Y be random variables

. X and Y are left corner set decreasing (briefly , LCSD(X,Y )) if, and only if,
P (X ≤ x, Y ≤ y | X ≤ x′, Y ≤ y′) is decreasing in x′ and in y′ for all x and y.

. X and Y are left corner set increasing (briefly , LCSI(X,Y )) if, and only if,
P (X ≤ x, Y ≤ y | X ≤ x′, Y ≤ y′) is increasing in x′ and in y′ for all x and y.

. X and Y are right corner set increasing (briefly , RCSI(X,Y )) if, and only if,
P (X > x, Y > y | X > x′, Y > y′) is increasing in x′ and in y′ for all x and y.

. X and Y are right corner set decreasing (briefly , RCSD(X,Y )) if, and only if,
P (X > x, Y > y | X > x′, Y > y′) is increasing in x′ and in y′ for all x and y.

Proposition 1.7.4. Let X and Y be r.v.’s uniformly distributed on [0, 1] with asso-
ciated copula C.

. LCSD(X,Y ) if, and only if,

C(x, y)C(x′, y′) ≥ C(x, y′)C(x′, y)

for every x, x′, y, y′ in [0, 1], x ≤ x′, y ≤ y′.

. RCSI(X,Y )) if, and only if,

Ĉ(x, y)Ĉ(x′, y′) ≥ Ĉ(x, y′)Ĉ(x′, y)

for every x, x′, y, y′ in [0, 1], x ≤ x′, y ≤ y′.

The scheme of implications among the various dependence concepts is presented
in Table 1.2.

For the study of dependence between extreme values, the concept of tail dependence
is useful and can be also expressed in terms of copula (see [74, 113]).

Definition 1.7.5. Let X and Y be continuous r.v.’s with d.f.’s, resp., F and G. If
the following limits exist in [0, 1], then the upper tail dependence parameter λU of
(X,Y ) is defined by

λU = lim
t→1−

P
(
Y > G[−1](t) | X > F [−1](t)

)
;
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SI(Y |X) =⇒ RTI(Y |X) ⇐= RCSI(X,Y )

⇓ ⇓ ⇓

LTD(Y |X) =⇒ PQD(X,Y ) ⇐= RTI(X|Y )

⇑ ⇑ ⇑

LCSD(X,Y ) =⇒ LTD(X|Y ) ⇐= SI(X|Y )

Table 1.2: Implications among dependence concepts

and the lower tail dependence parameter λL of (X,Y ) is defined by

λL = lim
t→0+

P
(
Y ≤ G[−1](t) | X ≤ F [−1](t)

)
.

In particular, if λU = 0 (resp. λL = 0), then X and Y are said to be asymptotically
independent in the upper tail (resp. in the lower tail).

Proposition 1.7.5. Let X and Y be continuous r.v.’s with copula C. If the following
limits exist and take values in ]0, 1], then

λL = lim
u→0+

C(u, u)
u

and λU = lim
u→1−

1− 2u+ C(u, u)
1− u

.

Moreover, if δC is the diagonal section of C, we have:

λL = δ′C(0+) and λU = 2− δ′C(1−).

1.8 Measures of Association

There are a variety of ways to measure the association (or dependence) between
random variables and, as noted by Hoeffding, many such descriptions are “scale invari-
ant” ([71]), that is they remain unchanged under stricly increasing transformations
of r.v.’s. But, in the words of B. Schweizer and E.F. Wolff, “it is precisely the copula
which captures those properties of the joint distribution function which are invari-
ant under almost surely strictly increasing transformations” ([143]). Thus, Sklar’s
Theorem and Theorem 1.6.3(i) suggest that copulas are a powerful tool to measure
dependence.

In this section, we give a representation of some known measures of association in
terms of copula; for more details, see [114, chapter 5] and [143, 74, 50].

Theorem 1.8.1. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version for Kendall’s tau for X and Y is given by

τX,Y := 4
∫ ∫

[0,1]2
C(u, v) dC(u, v)− 1 = 1− 4

∫ ∫
[0,1]2

∂1C(u, v) · ∂2C(u, v) dudv.
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Theorem 1.8.2. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version of Spearman’s rho for X and Y is given by

ρX,Y := 12
∫ ∫

[0,1]2
C(u, v) dudv − 3.

Theorem 1.8.3. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version of Gini’s measure of association for X and Y is given by

γX,Y := 4
[∫ 1

0

C(u, 1− u) du−
∫ 1

0

(u− C(u, u)) du
]
.

Theorem 1.8.4. Let X and Y be continuous r.v.’s whose copula is C. Then the
medial correlation coefficient of X and Y (called also Blomqvist coefficient) is given
by

βX,Y := 4C
(

1
2
,
1
2

)
− 1.

Theorem 1.8.5. Let X and Y be continuous r.v.’s whose copula is C. Then the
Spearman’s footrule coefficient of X and Y is given by

ϕX,Y := 6
∫ 1

0

C(u, u) du− 2.

On the definition of such measures for non–continuous random variables, we refer
to the paper [124].

1.9 Multivariate Copulas

In this section, we consider copulas in the n–dimensional case (n ≥ 3).

Definition 1.9.1. A function C : [0, 1]n → [0, 1] is an n–copula if, and only if, it
satisfies the following conditions:

(C1’) C(x) = 0 if at least one coordinate of x is 0, and C(x) = xi if all coordinates of
x are 1 except at most the i–th one;

(C2’) C is n–increasing.

As a consequence, every copula is increasing in each place and satisfies the 1–
Lipschitz condition, viz.

|C(x1, x2, . . . , xn)− C(x′1, x
′
2, . . . , x

′
n)| ≤

n∑
i=1

|xi − x′i|

for all (x1, x2, . . . , xn) and (x′1, x
′
2, . . . , x

′
n) in [0, 1]n.

For every n–copula C, we have

Wn(x) ≤ C(x) ≤Mn(x) for all x ∈ [0, 1]n,
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where

Wn(x) := max

{
n∑
i=1

xi − n+ 1, 0

}
, Mn(x) := min{x1, x2, . . . , nn}.

These bounds are the best–possible. Notice that, for n ≥ 3, Wn is not a copula.
Another important n–copula is the product

Πn(x) := Πn
i=1xi.

The set of all n copulas will be denoted by Cn.
For sake of completeness, we give the analogous of Sklar’s Theorem.

Theorem 1.9.1. Let X1, X2, . . . , Xn be r.v.’s with joint d.f. H and marginal d.f.’s
F1, F2, . . . , Fn. Then there exists an n–copula C such that, for all x ∈ Rn

H(x) = C(F1(x1), F2(x2), . . . , Fn(xn)). (1.24)

If F1, F2, . . . , Fn are continuous, then C is unique; otherwise C is uniquely determined
on RanF1 ×RanF2 × · · · ×RanFn.

Conversely, if C is an n–copula and F1, F2, . . . , Fn are univariate d.f.’s, then the
function H given by (1.24) is an n–d.f. with margins F1, F2, . . . , Fn.

In the case n ≥ 3, Theorems 1.6.2 and 1.6.3 can be partially reformulated in this
way:

Theorem 1.9.2. Let X1, X2, . . . , Xn be continuous r.v.’s with copula C.

. X1, X2, . . . , Xn are independent if, and only if, C = Πn.

. each of the r.v.’s X1, X2, . . . , Xn is almost surely a strictly increasing function
of any of the others if, and only if, C = Mn.

. If α1, α2, . . . , αn are strictly increasing mapping, respectively, on RanX1, RanX2,
. . . , RanXn, then Cα1(X1)...αn(Xn) = CX1...Xn

.

The following result gives an important class of multivariate copulas, called multi-
variate Archimedean copulas for their analogy with the bivariate case (see [114, 112]).

Theorem 1.9.3. Let ϕ : [0, 1] → [0,+∞] be continuous and strictly decreasing func-
tion with ϕ(0) = +∞ and ϕ(1) = 0. Let C be the function defined by

Cϕ(x) := ϕ−1 (ϕ(x1) + ϕ(x2) + · · ·+ ϕ(xn)) .

If, for all t ∈ ]0,+∞[ and k ∈ N ∪ {0}

(−1)k
dk

dtk
(ϕ−1(t)) ≥ 0,

then Cϕ is an n–copula, called Archimedean copula.
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1.10 Quasi-copulas

Quasi–copulas were introduced by Alsina, Nelsen and Schweizer ([4]) in order to
characterize operations on distribution functions that can, or cannot, be derived from
operations on random variables (see [122] and [116]). The concept of quasi–copula,
which will be defined shortly, is closely connected to that of copula.

Definition 1.10.1. An n–track is any subset B of [0, 1]n that can be written in the
form

B = {(F1(t), F2(t), . . . , Fn(t)) : t ∈ [0, 1]},

where F1, F2, . . . , Fn are some continuous and increasing functions such that Fi(0) = 0
and Fi(1) = 1 for i = 1, 2, . . . , n.

Definition 1.10.2. An n–quasi–copula is a function Q : [0, 1]n → [0, 1] such that for
any n–track B there exists an n–copula CB that coincides with Q on B, namely, for
all x ∈ B, Q(x) = CB(x).

Such a definition of quasi–copula is, however, of little practical use because it
is hard to tell whether a function Q : [0, 1]n → [0, 1] is, or is not, a quasi–copula
according to it. In view of this purpose, quasi–copulas were characterized in a different
way: see [64] for the bivariate case and [21] for the multivariate case.

Theorem 1.10.1. A function Q : [0, 1]n → [0, 1] is an n–quasi–copula if, and only
if, it satisfies the following conditions:

(Q1) Q(x) = xi if all coordinates of x are 1 except at most the i–th one;

(Q2) Q is increasing in each variable;

(Q3) Q satisfies the 1–Lipschitz condition, viz.

|Q(x1, x2, . . . , xn)−Q(x′1, x
′
2, . . . , x

′
n)| ≤

n∑
i=1

|xi − x′i|

for all (x1, x2, . . . , xn) and (x′1, x
′
2, . . . , x

′
n) in [0, 1]n.

The set of all n–quasi–copulas will be denoted by Qn. Since an n–copula is obvi-
ously also an n–quasi–copula, the set Cn of all n–copulas is (strictly) included in Qn.
If Q belongs to Qn \ Cn, then we say that it is a proper n–quasi–copula.

For every n–quasi–copula Q, we have

Wn(x) ≤ C(x) ≤Mn(x) for all x ∈ [0, 1]n,

and Wn is a quasi–copula.
The concept of quasi–copulas has important applications on finding of best–possible

bounds on arbitrary sets of d.f.’s (see [121, 131]). In particular, if we restrict to the
bivariate case, we have:
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Theorem 1.10.2 ([123]). A function Q : [0, 1]2 → [0, 1] is a quasi–copula if, and
only if, there exists a nonempty set B of copulas such that, for every (x, y) ∈ [0, 1]2,
Q(x, y) := sup{C(x, y) : C ∈ B}.

1.11 Aggregation operators

The aggregation of several input values into a single output is an indispensable
tool not only in mathematics, but also in any other disciplines where the fusion of
different pieces of information is of vital interest (see [12]). In a very intuitive sense,
an aggregation operator associates a single value to a list of values, where a value is
simply an element of a given class (e.g., numbers, functions, sets, etc.). Therefore,
from a mathematical point of view, an aggregation operator is simply a function that,
a priori, has a varying number of variables. Here, following [10], we restrict ourselves
to aggregations of a finite number of input values that belong to the unit interval
[0, 1] into an output value belonging to the same interval and we consider aggregation
operators according to the following

Definition 1.11.1. Let n ∈ N, n ≥ 2. An n–ary aggregation operator (briefly,
n–agop) is a function A : [0, 1]n → [0, 1] satisfying

(A1) A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1;

(A2) A is increasing in each variable.

We note that the above conditions seem quite natural with respect to the intuitive
idea of aggregation: (A1) states that if we have only minimal (respectively, maximal)
possible inputs, then we should obtain the minimal (respectively, maximal) possible
output; (A2) ensures that the aggregation preserves the cartesian ordering on the
inputs. The assumptions that inputs and outputs belong to [0, 1] is not restrictive: in
fact, if they belong to some interval [a, b] ⊂ R, it is always possible to re–scale them
on [0, 1].

Definition 1.11.2. A (global) aggregation operator is a family A = {A(n)}n∈N of
n–agops, with the convention that id[0,1] is the only 1–agop.

Such a definition of global aggregation operator is very useful because, in general,
the number of input values to be aggregated is not known. Notice that, given a global
aggregation operator A, A(n) and A(m) need not be related for n 6= m.

Remark 1.11.1. In 2005, during the Summer School on Aggregation Operators, E.P.
Klement suggested to use the term “aggregation function” instead of “aggregation
operator”, when we aggregate real numbers and not complex quantities. We agree
with this point of view, but it is not adopted here for the sake of uniformity with the
literature of this field.
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As it is easily seen, copulas and quasi–copulas are special types of n–agops. In
particular, they are in the class of 1–stable n–agops, as stated in the following

Definition 1.11.3. Let n ∈ N, n ≥ 2 and p ∈ [1,+∞]. An n–agop A is p–stable if,
for all x and y in [0, 1]n

|A(x)−A(y)| ≤ ‖x− y‖p, (1.25)

where ‖ · ‖p is the standard Lp norm on Rn.

The class of p–stable aggregation operators was introduced in [11] for controlling
output errors in aggregation processes. In particular, a 1–stable 2–agop A, also called
1–Lipschitz 2–agop ([90]), satisfies

|A(x, y)−A(x′, y′)| ≤ |x− x′|+ |y − y′|, for every x, x′y, y′ ∈ [0, 1];

and a ∞–stable 2–agop A, also called kernel 2–agop ([93]), satisfies

|A(x, y)−A(x′, y′)| ≤ max{|x− x′|, |y − y′|}, for every x, x′y, y′ ∈ [0, 1].

In the sequel, if no confusion arises, we use the term agop to denote simply a
binary aggregation operators.

For every agop A : [0, 1]2 → [0, 1], we have

AS(x, y) ≤ A(x, y) ≤ AG(x, y) for every (x, y) ∈ [0, 1]2,

where

AS(x, y) =

1, if (x, y) = (1, 1);

0, otherwise;
AG(x, y) =

0, if (x, y) = (0, 0);

1, otherwise;

are called, respectively, the smallest and the greatest agop .
Given an A, the dual of A is defined, for every point (x, y) in [0, 1]2, by Ad(x, y) :=

1−A(1− x, 1− y).





Chapter 2

The new concept of

semicopula

The focus of this chapter is on the notion of semicopula. To the best of our
knowledge, this term was used for the first time by B. Bassan and F. Spizzichino ([7])
and arises from a statistical application: the study of multivariate aging through the
analysis of the Schur–concavity of the survival distribution function. Specifically, in
order to define some notions of aging from the univariate case to the bivariate case,
B. Bassan and F. Spizzichino introduced the so–called bivariate aging function, which
“has all the formal properties of a copula, except possibly for the rectangle inequlity”
(see [6]). Therefore, they call “semicopula” a function of this type. As it will be seen
shortly, this function generalizes the concept both of copula and of triangular norm.

However, this concept was already known, in different contexts, as conjunctor,
a monotone extension of the Boolean conjunction with neutral element 1 ([26, 27]),
t–seminorm ([154]), or generalized copula ([136]). Moreover, the class of semicopulas
appeared also in [140, Definition 2], where it is used in order to characterize some
operations on d.f.’s that are not derivable from any operation on r.v.’s.

In section 2.1, we give the basic properties and examples of semicopulas. Some
characterizations of the semicopulas M , Π and W are given in section 2.2, where
super– and sub– harmonic semicopulas are studied and their statistical interpretation
is presented. The study of the class of semicopulas is the object of section 2.3. The
extension of semicopulas to the multivariate case is presented in section 2.4, where
an interesting connection to the theory of fuzzy measures is also given.

These results can be also found in [47, 42, 34, 45].
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2.1 Definition and basic properties

Definition 2.1.1. A function S : [0, 1]2 → [0, 1] is said to be a semicopula if, and
only if, it satisfies the two following conditions:

(S1) S(x, 1) = S(1, x) = x for all x in [0, 1];

(S2) S(x, y) ≤ S(x′, y′) for all x, x′, y, y′ ∈ [0, 1], x ≤ x′ and y ≤ y′.

The class of semicopulas will be denoted by S.

In other words, a semicopula is a binary aggregation operator with neutral element
1 and, consequently, annihilator 0, because

0 ≤ S(x, 0) ≤ S(1, 0) = 0,

and, analogously, S(0, x) = 0 for all x ∈ [0, 1].
The class S strictly includes the class Q of quasi–copulas and, if we denote by

SC the set of continuous semicopulas, SC ⊂ Q. Moreover, the set SS of symmetric
semicopulas is a proper subset of S and it strictly includes the set T of t–norms.

Example 2.1.1.

. The drastic t–norm Z is a semicopula, but it is not a quasi–copula, because it
is not continuous.

. S1(x, y) = xy max{x, y} is a continuous semicopula, but, because it is not
associative, it is not a t–norm. Moreover, S1 is not a quasi–copula, because

S1(8/10, 9/10)− S1(8/10, 8/10) = 136/1000 > 1/10.

. The following mapping S2 is an associative semicopula that is not commutative

S2(x, y) =

0, if (x, y) ∈ [0, 1/2]× [0, 1[;

min{x, y}, otherwise.

Proposition 2.1.1. If S : [0, 1]2 → [0, 1] is a semicopula, then

Z(x, y) ≤ S(x, y) ≤M(x, y) for all x and y in [0, 1]. (2.1)

Proof. If S is a semicopula, then, for all x, y ∈ [0, 1[, we obtain

0 = S(x, 0) ≤ S(x, y) ≤ S(x, 1) = x.

Analogously,
0 = S(x, 0) ≤ S(x, y) ≤ S(1, y) = y,

so that S(x, y) ≤ min{x, y}.
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It must be noticed that no assumption on the (left– or right–) continuity of a
semicopula has hitherto been made and different types of continuity can be also
considered in the class of semicopulas in the spirit of [88]; but, the next result can be
useful (see, e.g., [95]).

Proposition 2.1.2. Let H : [0, 1]2 → [0, 1] be increasing in each variable. The
following statements are equivalent:

(a) H is jointly (left–) continuous, in the sense that if {sn} and {tn} are two in-
creasing sequences of points of [0, 1] that tend to s and t respectively, then

lim
n→+∞

H(sn, tn) = H(s, t);

(b) H is (left–) continuous in each place.

Because of (S2), every semicopula has derivatives almost everywhere on [0, 1]2. In
particular, some conditions on derivatives allow us to characterize the semicopulas
that are also quasi–copulas. But, first, we give two technical lemmata (see, respec-
tively, page 333 and 337 of [153]).

Lemma 2.1.1. Let f : [a, b] → R be given. If f is continuous on [a, b] and differen-
tiable except at countably many points of [a, b], and f ′ is Lebesgue integrable on [a, b],
then f is absolutely continuous on [a, b].

Lemma 2.1.2. Let f : [a, b] → R be given. The following statements are equivalent:

(a) for some k > 0, we have

|f(x)− f(y)| ≤ k|x− y| for all x, y ∈ [a, b];

(b) f is absolutely continuous on [a, b] and |f ′(t)| ≤ k on [a, b] for some k > 0.

Proposition 2.1.3. Let S be a semicopula such that all the horizontal and vertical
sections of S are differentiable on [0, 1] except at countably many points. The following
statements are equivalent:

(a) S is a quasi–copula;

(b) S satisfies the following two conditions:

(b1) S is continuous;

(b2) for every (x, y) in [0, 1]2 that admits first–order partial derivatives of S

0 ≤ ∂xS(x, y) ≤ 1 and 0 ≤ ∂yS(x, y) ≤ 1.
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Proof. Implication (a) =⇒ (b) is trivial. In order to prove (b) =⇒ (a), let Sy(t)
be the horizontal section of S at y ∈ [0, 1] and Sx(t) be the vertical section of S
at x ∈ [0, 1]. The functions Sx and Sy are continuous and differentiable on [0, 1]
except at countably many points and their derivatives are bounded. Therefore, from
Lemma 2.1.1 it follows that they are absolutely continuous. But, again, if Sx and Sy
are absolutely continuous and their derivatives are bounded from above by 1, then
Lemma 2.1.2 ensures that Sx and Sy are Lipschitz with constant 1. Therefore, for
every (x, y) and (x′, y′) in [0, 1]2, we have

|S(x, y)− S(x′, y′)| ≤ |S(x, y)− S(x′, y)|+ |S(x′, y)− S(x′, y′)|

≤ |Sy(x)− Sy(x′)|+ |Sx′(y)− Sx′(y′)|

≤ |x− x′|+ |y − y′|,

which is the desired assertion.

Notice that there exists also a semicopula which is not Lebesgue measurable.

Example 2.1.2. Let J be a subset of [0, 1] that is not Lebesgue measurable. Define
the function

S(x, y) =

0, (x+ y < 1) or (x+ y = 1 and x ∈ J);

min{x, y}, otherwise.

Then S is a semicopula that is not Lebesgue measurable. In [79] there is an analogous
example of a t–norm which is not Lebesgue measurable.

Given a semicopula S, its diagonal section δ satisfies the following properties:

(a) δ(1) = 1;

(b) δ(t) ≤ t for all t ∈ [0, 1];

(c) δ is increasing.

Conversely, given a function δ satisfying properties (a), (b) and (c), it is always
possible to construct a semicopula whose diagonal section is δ; for instance:

Sδ(x, y) :=

δ(x) ∧ δ(y), if (x, y) ∈ [0, 1[2;

x ∧ y, otherwise.

A semicopula need not be uniquely determined by its diagonal. For example, if
δ(t) = t2 for all t ∈ [0, 1], there are two different semicopulas, Π and Sδ with diagonal
section equal to δ. The only semicopulas uniquely determined by their diagonal
sections are M and Z, as asserted in the following

Proposition 2.1.4. The only semicopula with diagonal section equal to id[0,1] is M .
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Proof. Suppose that δ(t) = t for all t in [0, 1]. For all x, y ∈ [0, 1], if x ≥ y, then

S(y, y) = y ≤ S(x, y) ≤ S(1, y) = y;

whereas if x < y, then

S(x, x) = x ≤ S(x, y) ≤ S(x, 1) = x;

that is S(x, y) = min{x, y}.

Analogously, we can prove

Proposition 2.1.5. The only semicopula with diagonal δ(t) = 0 on [0, 1[ is Z.

The proof of the following result is immediate and will not be given.

Proposition 2.1.6. Let S = (〈ai, bi, Si〉)i∈I be an ordinal sum of semicopulas. Then
S is a semicopula.

Another simple construction method for semicopulas is presented here.

Example 2.1.3 (Frame semicopula). Let the points

0 = t0 < t1 < · · · < tn−1 < tn = 1

partition the unit interval [0, 1] and let

0 = v0 ≤ v1 · · · ≤ vn < 1

be points in [0, 1] such that vi ≤ ti (i ∈ {1, 2, . . . , n}). The frame semicopula Sf

corresponding to (t0, t1, . . . , tn) and (v0, v1, . . . , vn) is defined by

Sf (x, y) :=

vi−1, if (x, y) ∈ [ti−1, 1[2\[ti, 1[2;

x ∧ y, if x ∨ y = 1.

Moreover, if continuity questions arise, we may choose as the value taken on the side
of each frame the value taken on the frame below.

2.2 Characterizations of some semicopulas

At a first glance, the definition of semicopula might appear somewhat more general
than actually is. In this sense, it will be shown in this section that condition (S1) is
quite restrictive and that it allows to characterize some basic semicopulas.

Proposition 2.2.1. Let S be a semicopula. The following statements are equivalent:

(a) S is concave;
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(b) S is super–homogeneous, viz. S(λx, λy) ≥ λS(x, y) for all x, y and λ in [0, 1];

(c) S is idempotent, viz. S(x, x) = x for every x ∈ [0, 1];

(d) S = M .

Proof. If S is concave, then S(λx, λy) = S(λ(x, y)+(1−λ)(0, 0)) ≥ λS(x, y), and (b)
holds. If S is super–homogeneous, then S(x, x) ≥ xS(1, 1) = x, which together with
S(x, x) ≤ S(x, 1) = x, leads to (c). If S is idempotent, then Proposition 2.1.4 ensures
that S = M . Finally, it is clear that M is concave.

Proposition 2.2.2. Let S be a semicopula. The following statements are equivalent:

(a) S is convex and 1–Lipschitz;

(b) S is a function of the sum of its arguments, i.e. S(x, y) = F (x + y) for some
function F from [0, 2] into [0, 1];

(c) S = W .

Proof. (a) ⇒ (c): Suppose that S is convex and 1–Lipschitz. If x+ y ∈ ]0, 1], define
λ := y/(x + y), which is in [0, 1]; then (x, y) = λ(0, x + y) + (1 − λ)(x + y, 0). Now,
since S is convex,

0 ≤ S(x, y) ≤ λS(0, x+ y) + (1− λ)S(x+ y, 0) = 0;

therefore, S(x, y) = 0. If x+ y ≥ 1, define λ := (1− y)/[2− (x+ y)], which is in [0, 1],
in order to obtain (x, y) = λ(1, x + y − 1) + (1 − λ)(x + y − 1, 1). Again, since S is
convex,

S(x, y) ≤ λS(1, x+ y − 1) + (1− λ)S(x+ y − 1, 1) = x+ y − 1,

and, since it is 1–Lipschitz,

S(1, 1)− S(x, y) ≤ 1− x+ 1− y.

Therefore S(x, y) = x+ y − 1, and (c) holds.
(b) ⇒ (c): Suppose that there exists a function F from [0, 2] into [0, 1] such

that S(x, y) = F (x + y). If t is in [0, 1], then F (t) = S (0, t) = 0, and if t is
in [1, 2], then F (t) = S(1, t − 1) = t − 1. Therefore, F (t) = max{0, t − 1}, and
S(x, y) = F (x+ y) = max{x+ y − 1, 0} = W (x, y).

Parts “(c)⇒(a)” and “(c)⇒(b)” can be easily proved.

In particular, part (b) is equivalent to the fact that S is Schur–constant.

Proposition 2.2.3. The following properties are equivalent for a semicopula S:
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(a) S is positively homogeneous with respect to one variable, viz. for every x, y, λ
in [0, 1], either S(x, λy) = λS(x, y) or S(λx, y) = λS(x, y);

(b) S has separate variables, viz. there exist two functions F1 and F2 defined from
[0, 1] into [0, 1] such that S(x, y) = F1(x) · F2(y);

(c) S has linear section in both the variables;

(d) S = Π.

Proof. Without loss of generality assume that S is homogeneous with respect to the
first variable; then S(x, y) = xS(1, y) = xy; therefore (a) implies (b).

Now, suppose that (b) holds and let S(x, y) = F1(x) · F2(y) be a semicopula. It
follows that S(x, 1) = F1(x) · F2(1) = x and S(1, x) = F1(1) · F2(x) = x. Therefore,
for every a ∈ [0, 1], we have S(x, a) = F1(x) · F2(a) = (F2(a)/F2(1)) · x, viz. the
horizontal section of S at the point a is linear. The same result holds for the vertical
section of S.

Finally, if S has linear sections in both the variables, then, fixed a ∈ [0, 1], we
have S(x, a) = λax for a suitable λa ∈ [0, 1]. But S(1, a) = a and, hence, λa = a and
S = Π. Obviously, (d) implies (a).

2.2.1 Harmonic semicopulas

Let Ω be an open subset of R2. A twice continuously differentiable function
F : Ω → R is said to be harmonic if

∆F (x, y) :=
∂2F (x, y)
∂x2

+
∂2F (x, y)
∂y2

= 0 for all (x, y) ∈ Ω.

Moreover, such F is said to be superharmonic (resp. subharmonic) if ∆F ≤ 0 (resp.
∆F ≥ 0). For more details on harmonic function theory, we refer to [5]. Here we
recall two important results for harmonic functions.

Theorem 2.2.1 (Maximum–minimum principle for harmonic functions). Let Ω be a
connected open subset of R2 and let F be a harmonic function on Ω. If F has either
a maximum or a minimum on Ω, then F is constant on Ω.

Theorem 2.2.2. Let Ω be a connected open subset of R2 and let F be a superhar-
monic (respectively, subharmonic) function on Ω. If F has a minimum (respectively,
a maximum) on Ω, then it is constant on Ω.

Proposition 2.2.4. The only harmonic semicopula is Π.

Proof. It is easily shown that Π is harmonic. Suppose that there exists another
harmonic semicopula F and let (x0, y0) be a point in ]0, 1[2 such that Π(x0, y0) 6=
F (x0, y0). Now, G := F − Π is a harmonic function that vanishes on the boundary
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of [0, 1]2. Therefore, G has either a maximum or a minimum on ]0, 1[2, and, in view
of the maximum–minimum principle for harmonic functions, G is constant, and this
constant is equal to zero, viz. F = Π.

Proposition 2.2.5. If S is a superharmonic (resp. subharmonic) semicopula, then
S ≥ Π (resp. S ≤ Π).

Proof. If S is a superharmonic semicopula, then G := S − Π is also superharmonic
and it vanishes on the boundary of [0, 1]2. Therefore, S(x, y)− Π(x, y) ≥ 0 for every
(x, y) in [0, 1]2, because, otherwise, Theorem 2.2.2 would imply S = Π. A similar
argument holds for subharmonic semicopulas.

In the case of copulas, the following result holds.

Proposition 2.2.6. Let (X,Y ) be a continuous random pair with copula C. If C
is superharmonic, then (X,Y ) is positively quadrant dependent. Analogously, if C is
subharmonic, then (X,Y ) is negatively quadrant dependent.

Proposition 2.2.7. Let the copula C of a pair (X,Y ) of continuous random variables
be twice–differentiable.

(a) If Y is stochastically increasing in X and if X is stochastically increasing in
Y , then C is superharmonic.

(b) If Y is stochastically decreasing in X and if X is stochastically decreasing in
Y , then C is subharmonic.

Proof. In view of Proposition 1.7.3, the property SI(Y |X) is equivalent to the concav-
ity of the function x 7→ C(x, y) for every y ∈ [0, 1], and SI(X|Y ) is equivalent to the
concavity of the function y 7→ C(x, y) for every x ∈ [0, 1]. Because C is twice differen-
tiable, it follows that ∂2

xxC(x, y) ≤ 0 and ∂2
yyC(x, y) ≤ 0, from which ∆C(x, y) ≤ 0.

The proof of part (b) is analogous.

Therefore we can insert the concept of super– and sub– harmonicity in the scheme
of dependence concepts (note that the converse implications in Table 2.1 are, in
general, false).

SI(Y|X) & SI(X|Y) =⇒ Superharmonicity =⇒ PQD(X,Y)

SD(Y|X) & SD(X|Y) =⇒ Subharmonicity =⇒ NQD(X,Y)

Table 2.1: Superharmonicity and dependence concepts
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Example 2.2.1. Let consider the class of copulas given by Cfg(x, y) = xy+λf(x) g(y),
where f and g are suitable functions and λ > 0 (see [132]). We have

∆Cfg(x, y) = λ(f ′′(x) g(y) + f(x) g′′(y)).

If f(t) = t(1− t)2 and g(t) = t(1− t), then Cfg is a PQD copula, but

∆Cfg(x, y) = λ
[
(6x− 4)y(1− y)− 2x(1− x)2

]
is (strictly) positive on the set {(x, y) ∈ [0, 1]2 : x = 1} and it is (strictly) negative
on the set {(x, y) ∈ [0, 1]2 : 0 ≤ x < 2/3}; thus Cfg is neither superharmonic nor
subharmonic.

Analogously, we can find two functions f and g such that Cfg is superharmonic,
but f and g are not both concave and, thus, Cfg is not SI(Y |X) and SI(X|Y ).

2.3 The class of semicopulas

Proposition 2.3.1. If S1 and S2 are semicopulas, then for all θ ∈ [0, 1] both the
weighted arithmetic mean (1− θ)S1 + θS2 and the weighted geometric mean Sθ1 S

1−θ
2

are semicopulas. In other words, the set S is convex and log–convex.

Let X denote the set of all functions from [0, 1]2 to [0, 1] equipped with the product
topology (which corresponds to pointwise convergence).

Theorem 2.3.1. The class S of semicopulas is a compact subset of X (under the
topology of pointwise convergence).

Proof. Since X is a product of compact spaces, it is well known from Tychonoff The-
orem (see, e.g., [76]) that X is compact. The proof is completed by showing that S is
a closed subset of X, viz. given a sequence {Sn}n∈N in S, if Sn converges pointwise to
S, then S belongs to S. In fact, for all x, x′, y ∈ [0, 1] and n ∈ N,

Sn(x, 1) = x −−−−−→
n→+∞

x = S(x, 1),

and, if x ≤ x′, Sn(x, y) ≤ Sn(x′, y) implies S(x, y) ≤ S(x′, y), which is the desired
conclusion.

A sequence {Sn}n∈N of semicopulas is a Cauchy sequence with respect to pointwise
convergence if, for every ε > 0 and for every point (x, y) in [0, 1]2, there exists a natural
number n0 = n0(ε, x, y) such that

|Sn(x, y)− Sm(x, y)| < ε,

whenever n,m ≥ n0. As an immediate consequence, each Cauchy sequence of semi-
copulas converges pointwise to some semicopula; in other words S is complete. Notice
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that it is known that the class T of t–norms is neither a complete nor a compact
subset of S ([83]).

Now, consider the set S equipped with the pointwise ordering. Obviously, (S,≤)
is partially ordered, and not all pairs of semicopulas are comparable: it is sufficient
to consider the following example.

Example 2.3.1. Let S1 and S2 be, respectively, the two ordinal sums given by

S1(x, y) = (〈0, 1/2, Z〉) =

0, if (x, y) ∈ [0, 1/2[2,

min{x, y}, otherwise;

and by

S2(x, y) = (〈1/2, 1, Z〉) =

1/2, if (x, y) ∈ [1/2, 1[2;

min{x, y}, otherwise.

Then
0 = S1(1/4, 1/4) < S2(1/4, 1/4) = 1/4,

but
3/4 = S1(3/4, 3/4) > S2(3/4, 3/4) = 1/2.

Proposition 2.3.2. The set S, equipped with the classical pointwise ordering, is a
complete lattice.

Proof. Let B be a nonempty subset of S. For all x, x′, y ∈ [0, 1] such that x ≤ x′,

∨B(x, 1) = sup{S(x, 1) : S ∈ B} = x,

that is ∨B satisfies the condition (S1) of Definition 2.1.1; moreover,

∨B(x, y) = sup{S(x, y) : S ∈ B} ≤ sup{S(x′, y) : S ∈ B} = ∨B(x′, y),

that is ∨B satisfies the condition (S2) of Definition 2.1.1, and hence ∨B is a semicop-
ula. Analogously ∧B is a semicopula.

In particular, the minimum (and the maximum) of two semicopulas is a semicop-
ula. This result holds also for quasi–copulas, but neither for copulas nor for t-norms,
as the following examples show (see, also, [123]).

Example 2.3.2. Consider the two copulas defined, for α and β in ]0, 1[ by

Aα(x, y) :=

α ∨ (x+ y − 1), if (x, y) ∈ [α, 1]2 ;

x ∧ y, otherwise;

(this is the ordinal sum (〈α, 1,W 〉)) and

Bβ(x, y) :=


xy

β
, if (x, y) ∈ [0, β]2 ;

x ∧ y, otherwise;
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(this is the ordinal sum (〈0, β,Π〉)). Now, for α = 1/3 and β = 1/2, the function
F : [0, 1]2 → [0, 1] defined by F (x, y) := A(1/3)(x, y) ∧B(1/2)(x, y) is not a copula. In
fact, choose s = t = 1/3 and s′ = t′ = 1/2,

F (s′, t′)− F (s′, t)− F (s, t′) + F (s, t) = −1/9 < 0.

Moreover, A(1/3) and B(1/2) are t–norms, but the function F is not associative, be-
cause F (F (1/2, 1/2), 1/3) = 2/9, while F (1/2, F (1/2, 1/3)) = 1/3.

Example 2.3.3. Consider the two copulas:

Aλ(x, y) =


y, 0 ≤ y < λx;

λx, λx ≤ y < 1− (1− λ)x;

x+ y − 1, otherwise;

and Bλ = AT the transpose of A. Then, for λ = 1/2, we have

max
{
A(1/2), B(1/2)

}([1
3
,
2
3

]2)
= −1

6
< 0.

Example 2.3.4. Consider the two t–norms:

T1(x, y) =

x ∧ y, x+ y > 1;

0, otherwise;

and T2(x, y) = Π. Then

T = max{T1(x, y), T2(x, y)} =

x ∧ y, x+ y > 1;

xy, otherwise;

is not associative. In fact,

T

(
T

(
4
10
,

5
10

)
,

7
10

)
= T

(
20
100

,
7
10

)
=

14
100

,

but

T

(
4
10
, T

(
5
10
,

7
10

))
= T

(
4
10
,

5
10

)
=

20
100

.

2.3.1 Extremal semicopulas

Definition 2.3.1. A semicopula S is said to be extremal if it can not be expressed
as a non–trivial convex sum of two semicopulas; in the sense that, if S admits the
representation S = λA+ (1− λ)B for A and B in S and λ ∈ ]0, 1[, then S = A = B.

By connecting Proposition 2.3.1 and Theorem 2.3.1, it follows that S is a compact
and convex subset of X; therefore, in view of the Krein–Millman Theorem (see, e.g.,
[32]), we have:
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Proposition 2.3.3. The class S of semicopulas is the convex hull of the set formed
by extremal semicopulas.

Next we show that the semicopulas Z and M are extremal.
Given the semicopula Z, suppose that there exist B and C in S and λ ∈ ]0, 1[ such

that Z(x, y) = λB(x, y) + (1− λ)C(x, y) on [0, 1]2. For all x, y ∈ [0, 1[, the equality

Z(x, y) = 0 = λB(x, y) + (1− λ)C(x, y)

implies
B(x, y) = 0 = C(x, y),

so that B = Z = C on [0, 1]2.
Using the same notations, we consider the semicopula M and suppose

M(x, y) = λB(x, y) + (1− λ)C(x, y)

on [0, 1]2. In particular, for every x ∈ [0, 1] the equality

M(x, x) = x = λB(x, x) + (1− λ)C(x, x)

implies
δB(x) = δC(x) = x,

which, in view of Proposition 2.1.4, yields B = C = M .
Extremal semicopulas can be easily constructed beginning from root sets. We

recall that a root set A ⊂ [0, 1]2 is defined by the property:

(x, y) ∈ A implies (x′, y′) ∈ A for every 0 ≤ x′ ≤ x and 0 ≤ y′ ≤ y.

Thus, given a root set A, the semicopula SA defined by

SA(x, y) =

0, if (x, y) ∈ A;

x ∧ y, otherwise;

is extremal, and this can be proved by the same arguments of the cases M and Z.
Such SA are called 1–internal semicopulas. Notice that M and Z are 1–internal
semicopulas with root sets, respectively, AM = ∅ and AZ = [0, 1[2. Moreover, SA is a
t–norm if the set A is symmetric with respect to the main diagonal of the unit square.

Remark 2.3.1. For every semicopula S and for every u ∈ [0, 1], we can define the
root set

Au := {(x, y) ∈ [0, 1[2 : S(x, y) < u},

and we have
S(x, y) =

∨
u∈[0,1]

SAu
(x, y).

Thus every semicopula is the supremum of a set formed by 1–internal semicopulas.
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Notice that the semicopula W is not extremal in S. In fact, it suffices to consider
the two semicopulas

S1(x, y) = W (x, y) (2−max{x, y}) andS2(x, y) = W (x, y) ·max{x, y}.

Then W = (S1 + S2)/2.
Analogously, Π is not extremal in S (and also in the class of copulas). In fact,

Π = (C1 + C2)/2, where

C1(x, y) =



xy
2 , (x, y) ∈

[
0, 1

2

]2 ;
3xy−x

2 , (x, y) ∈
[
0, 1

2

]
×
[
1
2 , 1
]
;

3xy−y
2 , (x, y) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
;

xy+x+y−1
2 , (x, y) ∈

[
1
2 , 1
]2 ;

and

C2(x, y) =



3xy
2 , (x, y) ∈

[
0, 1

2

]2 ;
xy+x

2 , (x, y) ∈
[
0, 1

2

]
×
[
1
2 , 1
]
;

xy+y
2 , (x, y) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
;

3xy−x−y+1
2 , (x, y) ∈

[
1
2 , 1
]2 ;

and C1 and C2 are copulas.

2.4 Multivariate semicopulas

The notion of semicopula can be extended in a natural way to the n–dimensional
case (n ≥ 3).

Definition 2.4.1. A function S : [0, 1]n → [0, 1] is said to be an n–semicopula if it
satisfies the two following conditions:

(S1’) S(x) = xi if all coordinates of x are 1 except at most the i–th one;

(S2’) S is increasing in each place.

Higher dimensional semicopulas are easily constructed from lower dimensional
ones, in view of the following results, whose easy proofs will not be reproduced here.

Proposition 2.4.1. Let H be a 2–semicopula and let Sm and Sn be, respectively, an
m–semicopula and an n–semicopula (m,n ∈ N). Then the function S : [0, 1]m+n →
[0, 1] defined by

S(x1, . . . , xm+n) := H (Sm(x1, . . . , xm), Sn(xm+1, . . . , xm+n)) (2.2)

is an (m+ n)–semicopula.
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Aggregation operators of type (2.2) are called double aggregation operators; they
allow to combine two input lists of information coming from different sources into a
single output (see [13] for more details).

In the opposite direction we can construct lower dimensional semicopulas from
higher dimensional ones.

Proposition 2.4.2. Any m–marginal of an n–semicopula Sn, 2 ≤ m < n, is an
m–semicopula, viz., if Sn is an n–semicopula, then the function Sm : [0, 1]m → [0, 1]
defined by

Sm(x1, x2, . . . , xm) = Sn(x1, x2, . . . , xm, 1, 1, . . . , 1)

is an m–semicopula, and so any function obtained from it by permuting its arguments.

From Definition 2.4.1, it follows that all n–quasi–copulas are n–semicopulas. On
the other hand, it is clear that an n–semicopula is a special n–ary aggregation oper-
ator.

In particular, a family of semicopulas {Sn : [0, 1]n → [0, 1]}n∈N is, obviously, a
global aggregation operator, but it need not have the neutral element property (in the
sense of global agop), because, in general, Sn(x1, . . . , xn−1, 1) 6= Sn−1(x1, . . . , xn−1).
Here we propose a possible definition of global semicopula.

Definition 2.4.2. A family of commutative semicopulas {Sn : [0, 1]n → [0, 1]}n∈N is
called a global semicopula if S1 = id[0,1] and, for every n ≥ 2,

Sn−1(x1, . . . , xn−1) = Sn(x1, . . . , xn−1, 1).

Notice that, in this way, a global semicopula is a global aggregation operator with
neutral element 1.

Analogously, we can define the concepts of global quasi–copula and global copula.
In practice, it is not difficult to construct a global semicopula. It suffices to take

a commutative 2–semicopula S and construct the family {Sn : [0, 1]n → [0, 1]}n∈N in
such a way that S1 = id[0,1], and, for every n ≥ 2,

Sn(x1, . . . , xn) := S(Sn−1(x1, . . . , xn−1), xn).

This method can be used also for quasi–copulas, but not for copulas, where it is
not immediate to construct a copula beginning from his margins (see [141] for more
details).

Finally, we present a few comments on a possible use of global copulas in a prob-
abilistic context.

Consider a stochastic process {Xn}n∈N in which all the random variables (=r.v.’s)
are continuous. In view of Sklar’s Theorem, a (unique) k–dimensional copula Ck can
be associated with any choice of k r.v.’s Xi1 , . . . , Xik . In particular, if the r.v.’s of
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the process are exchangeable, the copula Ck is commutative and it does not depend
on the choice of the r.v.’s. Moreover, Ck−1 is the (k − 1)–margin copula of Ck.

Conversely, if {Cn : [0, 1]n → [0, 1]}n∈N is a global copula, in view of the Kol-
mogorov compatibility Theorem (see [94]), we can construct an exchangeable stochas-
tic process {Xn}n∈N (where each r.v. Xn is uniformly distributed on [0, 1]) such that,
for every n ∈ N, Cn is the copula associated with any choice of n r.v.’s of the process.

Thus we have established a one–to–one correspondence between global copulas
and exchangeable stochastic processes.

2.4.1 Multivariate semicopulas and fuzzy measures

Here, we reformulate a result of M. Scarsini (see [136]) through the concept of
multivariate semicopula. To this end, some basic notations will be useful (see [30, 16]).

For every n ≥ 2, let B(Rn) be the class of Borel sets in Rn. A set function
ν : B(Rn) → [0, 1] is called fuzzy measure (or capacity) if it satisfies:

(a) ν(∅) = 0 and ν(Rn) = 1;

(b) ν(A) ≤ ν(B) for all Borel sets A and B, A ⊆ B.

In particular, a fuzzy measure ν is called supermodular (or convex ) if, for all Borel
sets A and B

ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B).

Given a fuzzy measure ν, the distribution function associated with ν is the function
Fν : Rn → R given by

Fν(x1, . . . , xn) = ν ([−∞, x1]× · · · × [−∞, x1]) .

Moreover, we denote by Fνi the marginal d.f. associated with νi, where νi is the i–th
projection of ν (i = 1, 2, . . . , n). Notice that, due to lack of additivity, a fuzzy measure
is not completely characterized by its distribution function.

Theorem 2.4.1 ([136]). Let ν be a supermodular fuzzy measure on (Rn,B(Rn)), Fν
its associated d.f., and Fνi , (i = 1, 2, . . . , n), the marginal d.f.’s associated with the
projections ν1, ν2, . . . , νn of ν. Then there exists a semicopula Sν : [0, 1]n → [0, 1]
such that

∀(x1, . . . , xn) ∈ Rn Fν(x1, . . . , xn) = Sν (Fν1(x1), . . . , Fνn(xn)) .

The above result is a direct generalization of Sklar’s Theorem to fuzzy measures;
in fact, if ν is a probability measure, we obtain Thereom 1.9.1. Moreover, we stress
the fact that as a copula links a joint d.f. to its margins so a semicopula joins the d.f.
of a fuzzy measure to its one–dimensional marginal d.f.’s.





Chapter 3

2–increasing aggregation

operators

The aim of this chapter is the study of the class of binary aggregation operators
(agops, for short) satisfying the 2–increasing property, specifically, by recalling for
sake of completeness the definitions already given, we are interested in the functions
A : [0, 1]2 → [0, 1] such that

• A(0, 0) = 0 and A(1, 1) = 1;

• A(x, y) ≤ A(x′, y′) for x ≤ x′ and y ≤ y′;

• VA(R) ≥ 0 for every rectangle R ⊆ [0, 1]2.

One of the main reasons to study the class A2 of 2–increasing agops is that it contains,
as a distinguished subclass, the restrictions to [0, 1]2 of all the bivariate distribution
functions F such that F (0, 0) = 0 and F (1, 1) = 1; in particular copulas are in this
class. On other hand, the 2–increasing property has a relevant connection with the
theory of fuzzy measures, where it is also known as “supermodularity” (see [30]).

Notice that, we may limit ourselves to considering only 2–increasing agops because,
if A is a 2–increasing agop, it is immediately seen that its dual Ad is 2–decreasing, and
conversely. Therefore, analogous results for the 2–decreasing ones can be obtained by
duality.

In section 3.1, we characterize some subclasses of 2–increasing agops and some
construction methods are presented in section 3.2. Instead, section 3.3 presents the
lattice structure of several subsets of A2. A method for generating a copula using
2–increasing agops is presented in section 3.4.

The results of this chapter are also contained in [38]
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3.1 Characterizations of 2–increasing agops

In this section, some subclasses of agops satistying the 2–increasing property are
characterized.

Proposition 3.1.1. Let A be a 2–increasing agop. The following statements hold:

(a) the neutral element e ∈ [0, 1] of A, if it exists, is equal to 1;

(b) the annihilator a ∈ [0, 1] of A, if it exists, is equal to 0;

(c) if A is continuous on the border of [0, 1]2, then A is continuous on [0, 1]2.

Proof. Let A be a 2–increasing agop.
If A has neutral element e ∈ [0, 1[, then

A(1, 1) +A(e, e) = 1 +A(e, e) ≥ A(e, 1) +A(1, e) = 1 + 1,

a contradiction. Therefore e = 1 (and, as a consequence, A is a copula).
If A has an annihilator a ∈ [0, 1], we assume, if possible, that a > 0. We have

A(a, a)−A(a, 0)−A(0, a) +A(0, 0) = −a ≥ 0,

a contradiction; as a consequence, a = 0.
Let A be continuous on the border of [0, 1]2 and let (x0, y0) be a point in ]0, 1[2

such that A is not continuous in (x0, y0). Suppose, without loss of generality, that
there exists a sequence {xn}n∈N in [0, 1], xn ≤ x0 for every n ∈ N, which tends to x0,
and we have

lim
n→+∞

A(xn, y0) < A(x0, y0).

Therefore, there exists ε > 0 and n0 ∈ N such that A(x0, y0)−A(xn, yn) > ε for every
n ≥ n0. But, because A is continuous on the border of the unit square, there exists
n > n0 such that A(x0, 1)−A(xn, 1) < ε. But this violates the 2–increasing property,
because, in this case,

V ([xn, x0]× [y0, 1]) < 0.

Thus the only possibility is that A is continuous on [0, 1].

Remark 3.1.1. Note that, if A : [0, 1]2 → [0, 1] is 2–increasing and has an annihilator
element (which is necessarily equal to 0), then A is increasing in each place. In fact,
because of the 2–increasing property, for every x1, x2 and y in [0, 1], x1 ≤ x2, we have

A(x2, y)−A(x1, y) ≥ A(x2, 0)−A(x1, 0) = 0.

But, in general, if A : [0, 1]2 → [0, 1] is 2–increasing, then A need not be increasing in
each place. Consider, for example, A(x, y) = (2x− 1)(2y − 1).
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Proposition 3.1.2. Let Mf be a quasi–arithmetic mean, viz. let a continuous strictly
monotone function f : [0, 1] → R exist such that

Mf (x, y) := f−1

(
f(x) + f(y)

2

)
.

Then Mf is 2–increasing if, and only if, f−1 is convex.

Proof. Let s and t be real numbers and set a := f−1(s) and b := f−1(t). If Mf is
2–increasing, we have, because Mf is also commutative,

Mf (a, a) +Mf (b, b) ≥ 2Mf (a, b),

which is equivalent to

f−1(s) + f−1(t) ≥ 2 f−1

(
s+ t

2

)
.

This shows that f−1 is Jensen–convex and hence convex.
Conversely, let f−1 be convex; we have to prove that, whenever x1 ≤ x2 and

y1 ≤ y2,
Mf (x1, y1) +Mf (x2, y2) ≥Mf (x2, y1) +Mf (x1, y2),

or, equivalently, that

f−1(s1) + f−1(s4) ≥ f−1(s2) + f−1(s3),

where

s1 :=
f(x1) + f(y1)

2
, s4 :=

f(x2) + f(y2)
2

,

s2 :=
f(x2) + f(y1)

2
, s3 :=

f(x1) + f(y2)
2

.

Assume now that f is (strictly) increasing; setting

α :=
s4 − s2
s4 − s1

,

we obtain α ∈ [0, 1] and

s2 = α s1 + (1− α) s4, s3 = (1− α) s1 + α s4.

Because f−1 is convex, we have

f−1(s2) + f−1(s3) ≤ f−1(s1) + f−1(s4),

namely the assertion.
If, on the other hand, f is (strictly) decreasing, then we set

α :=
s1 − s2
s1 − s4

in order to reach the same conclusion.
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Corollary 3.1.1. If Mf is a 2–increasing quasi–arithmetic mean generated by f ,
then

Mf (x, y) ≤
x+ y

2
for every (x, y) ∈ [0, 1]2.

Proof. In view of Proposition 3.1.2, Mf is 2–increasing if, and only if, f−1 is convex.
But, if f is increasing, so is f−1, and Mf (x, y) ≤ x+y

2 is equivalent to the fact that
f is Jensen–concave and, thus, f−1 convex. Instead, if f is decreasing, so is f−1,
and Mf (x, y) ≤ x+y

2 is equivalent to the fact that f is Jensen–convex and, thus, f−1

convex.

Proposition 3.1.3. The Choquet integral–based agop, defined for a and b in [0, 1] by

ACh(x, y) =

(1− b)x+ by, if x ≤ y,

ax+ (1− a)y, if x > y,

is 2–increasing if, and only if, a+ b ≤ 1.

Proof. It is easily proved that ACh is 2–increasing on every rectangle contained either
in ∆+ or in ∆−. Now, let R := [s, t]2. Then, for all s and t such that 0 ≤ s < t ≤ 1,

VACh
([s, t]2) = s+ t− [(1− b)s+ bt]− [at+ (1− a)s] ≥ 0

if, and only if, a+b ≤ 1. Now, the assertion follows directly from Proposition 1.6.1.

Notice that, if a+b = 1, ACh is the weighted arithmetic mean; and, if a = b ≤ 1/2,
we have an OWA operator, ACh(x, y) = (1− a) min{x, y}+ amax{x, y} (see [159]).

Remark 3.1.2. The above proposition can be also proved by using some known
results on fuzzy measures. In fact, following [30], it is known that a Choquet integral
operator based on a fuzzy measurem is supermodular if, and only if, the fuzzy measure
m is supermodular. But, in the case of 2 inputs, say X2 := {1, 2}, we can define a
fuzzy measure m on 2X2 by giving the values m({1}) = a and m({2}) = b, where a
and b are in [0, 1]. Moreover, it is also known that m is supermodular if, and only if,
a+ b ≤ 1.

A special subclass of 2–increasing agops is that formed by modular agops, i.e.
those A for which VA(R) = 0 for every rectangle R ⊆ [0, 1]2. For these operators the
following characterization holds.

Proposition 3.1.4. For an agop A the following statements are equivalent:

(a) A is modular;

(b) increasing functions f and g from [0, 1] into [0, 1] exist such that f(0) = g(0) =
0, f(1) + g(1) = 1, and

A(x, y) = f(x) + g(y). (3.1)
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Proof. If A is modular, set f(x) := A(x, 0) and g(y) := A(0, y). From the modularity
of A

0 = VA ([0, x]× [0, y]) = A(x, y)− f(x)− g(y) +A(0, 0),

which implies (b). Viceversa, it is clear that every function of type (3.1) is modular.

3.2 Construction of 2–increasing agops

In the literature, there are a variety of construction methods for agops (see [10]
and the references therein). In this section, some of these methods are used to obtain
an agop satisfying the 2–increasing property.

Proposition 3.2.1. Let f and g be increasing functions from [0, 1] into [0, 1] such
that f(0) = g(0) = 0 and f(1) = g(1) = 1. Let A be a 2–increasing agop. Then, the
function defined by

Af,g(x, y) := A(f(x), g(y)) (3.2)

is a 2–increasing agop.

Proof. It is obvious that Af,g(0, 0) = 0, Af,g(1, 1) = 1 and Af,g is increasing in each
place, since it is the composition of increasing functions. Moreover, given a rectangle
R = [x1, x2]× [y1, y2], we obtain

VAf,g
(R) = VA ([f(x1), f(x2)]× [g(y1), g(y2)]) ≥ 0,

which is the desired assertion.

Example 3.2.1. Let f and g be increasing functions from [0, 1] into [0, 1] with f(0) =
g(0) = 0 and f(1) = g(1) = 1. Then

Af,g(x, y) := f(x) ∧ g(y), Bf,g(x, y) := f(x) · g(y),

Cf,g(x, y) := max{f(x) + g(y)− 1, 0}.

are 2–increasing agops as a consequence of the previous proposition by taking, respec-
tively, A = M , B = Π and C = W .

Corollary 3.2.1. The following statements are equivalent:

(a) H is the restriction to the unit square [0, 1]2 of a bivariate d.f. on [0, 1]2 with
H(0, 0) = 0 and H(1, 1) = 1;

(b) there exist a copula C and increasing and left continuous functions f and g from
[0, 1] into [0, 1], f(0) = g(0) = 0 and f(1) = g(1) = 1, such that H(x, y) :=
C(f(x), g(y)).
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Proof. It is a direct consequence of Sklar’s Theorem 1.6.1.

Corollary 3.2.2. If A is a 2–increasing and continuous agop with annihilator element
0, then there exist two increasing functions f and g from [0, 1] into [0, 1], f(0) =
g(0) = 0 and f(1) = g(1) = 1, such that Af,g defined by (3.2) is a copula.

Proof. Let f and g be the functions given by

f(x) := sup{t ∈ [0, 1] : A(t, 1) = x},

g(y) := sup{t ∈ [0, 1] : A(1, t) = y}.

Then f and g satisfy the assumptions of Proposition 3.2.1 and, hence, Af,g is 2–
increasing. Moreover, it is easily proved that 1 is the neutral element of Af,g and,
thus, Af,g is a copula.

Example 3.2.2. Let B and C be copulas and consider the function A(x, y) = B(x, y)·
C(x, y). As we will show in the sequel (see chapter 8), A is a continuous 2–increasing
agop with annihilator 0. Moreover, we have

f(x) = g(x) = sup{t ∈ [0, 1] : A(t, 1) = x} =
√
x.

Therefore, in view of Corollary 3.2.2 the function

Af,g(x, y) = A(f(x), g(y)) = B(
√
x,
√
y) · C(

√
x,
√
y)

is a copula.

Proposition 3.2.2. Let f be an increasing and convex function from [0, 2] into [0, 1]
such that f(0) = 0 and f(2) = 1. Then the function

Af (x, y) := f(x+ y) (3.3)

is a 2–increasing agop.

Proof. It is obvious that Af (0, 0) = 0, Af (1, 1) = 1 and Af is increasing in each place.
Moreover, given a rectangle R = [x1, x2]× [y1, y2], we obtain

VAf
(R) = f(x2 + y2) + f(x1 + y1)− f(x2 + y1)− f(x1 + y2).

By using an argument similar to the proof of Proposition 3.1.2, the convexity of f
implies that VAf

(R) ≥ 0.

Notice that the agop Af given in (3.3) is Schur–constant.

Example 3.2.3. Consider the function f : [0, 2] → [0, 1], given for every t ∈ [0, 2] by
f(t) := max{t− 1, 0}. Then the function Af defined by (3.3) is W .
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Sometimes, it is useful to construct an agop with specified values on its diagonal,
horizontal or vertical section (see, for example, [91, 81]). Specifically, given a suit-
able function f , the problem is whether there is a 2–increasing agop with (diagonal,
horizontal or vertical) section equal to f .

Proposition 3.2.3. Let h, v and δ be increasing functions from [0, 1] into [0, 1],
δ(0) = 0 and δ(1) = 1. The following statements hold:

• Aδ(x, y) = δ(x) is a 2–increasing agop with diagonal section is δ;

• a 2–increasing agop with horizontal section at b ∈ ]0, 1[ equal to h is given by

Ah(x, y) =


1, if y = 1;

0, if y = 0;

h(x), otherwise;

• a 2–increasing agop with vertical section at a ∈ ]0, 1[ equal to v is given by

Av(x, y) =


1, if x = 1;

0, if x = 0;

v(y), otherwise.

Proof. The proof is a consequence of Proposition 3.1.4 because Aδ, Ah and Av are all
modular agops.

In [107] (see also [10]), an ordinal sum construction for agops is given. Here, we
modify that method in order to ensure that an ordinal sum of 2–increasing agops is
again 2–increasing.

Consider a partition of the unit interval [0, 1] by the points 0 = a0 < a1 < · · · <
an = 1 and let A1, A2,. . . ,An be 2–increasing agops. For every i ∈ {1, 2, . . . , n},
consider the function Ãi defined on the square [ai, ai+1]

2 by

Ãi(x, y) = ai + (ai+1 − ai)Ai

(
x− ai

ai+1 − ai
,
y − ai

ai+1 − ai

)
.

Then we can easily prove that Ãi is 2–increasing on [ai, ai+1]
2. Now, define, for every

point (x, y) such that ai ≤ min{x, y} < ai+1,

A1,n(x, y) := Ãi (min{x, ai+1},min{y, ai+1}) (3.4)

(and A1,n(1, 1) = 1 by definition). Therefore, it is not difficult to prove that A1,n is
also a 2–increasing agop, called the ordinal sum of the agops {Ai}i=1,2,...,n; we write

A1,n = (〈ai, Ai〉)i=1,2,...,n .
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Example 3.2.4. Consider a partition of [0, 1] by means of the points 0 = a0 < a1 <

· · · < an = 1. Let A1, A2, . . . , An be 2–increasing agops such that, for every index i,
Ai = AS , the smallest agop. Let A1,n be the ordinal sum (〈ai, ai+1, Ai〉)i=1,2,...,n. For
every point (x, y) such that ai ≤ min{x, y} < ai+1, A1,n(x, y) = ai. Note that A1,n is
the smallest agop with idempotent elements a0, a1, . . . , an.

3.3 Bounds on sets of 2–increasing agops

Given a (2–increasing) agop A, it is obvious that

AS(x, y) ≤ A(x, y) for every (x, y) in [0, 1],

where AS is the smallest agop defined in section 1.11. Because AS is 2–increasing, it
is also the best–possible lower bound in the set A2, because it is 2–increasing.

The best–possible upper bound in A2 is the greatest agop AG. Notice that AG is
not 2–increasing, e.g. VAG

([0, 1]2) = −1, but it is the pointwise limit of the sequence
{An}n∈N of 2–increasing agops, defined by

An(x, y) =

1, if (x, y) ∈ [1/n, 1]2;

0, otherwise.

In particular, (A,≤) is not a complete lattice. But, the following result holds.

Proposition 3.3.1. Every agop is the supremum of a suitable subset of A2.

Proof. Let A be an agop; we may (and, in fact do) suppose that A 6= AG, since
this case has already been considered, and that A is not 2–increasing, this case being
trivial. For every (x0, y0) in [0, 1], let z0 = A(x0, y0) and consider the following
2–increasing agop

Âx0,y0 :=


1, if (x, y) = (1, 1);

z0, if (x, y) ∈ [x0, 1]× [y0, 1] \ {(1, 1)};

0, otherwise.

Then we have

A(x, y) = sup{Âx0,y0 : (x0, y0) ∈ [0, 1]2}.

The lattice structure of the class of copulas was considered in [123]. Here, other
cases will be considered. The following result, for instance, gives the bounds on the
subsets of 2–increasing agops with the same margins.
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Proposition 3.3.2. Let A be a 2–increasing agop with margins h0, h1, v0 and v1.
Let

A∗(x, y) := max{h0(x) + v0(y), h1(x) + v1(y)− 1} (3.5)

and
A∗(x, y) := min{h1(x) + v0(y)−A(0, 1), h0(x) + v1(y)−A(1, 0)}. (3.6)

Then, for every (x, y) in [0, 1],

A∗(x, y) ≤ A(x, y) ≤ A∗(x, y). (3.7)

Proof. Let A be a 2–increasing agop. Let (x, y) be a point in ]0, 1[2. In view of the
2–increasing property, we have

A(x, y) ≥ A(x, 0) +A(0, y) = h0(x) + v0(y),

A(x, y) ≥ A(x, 1) +A(1, y)− 1 = h1(x) + v1(y)− 1,

which together yield the first of the inequalities (3.7). Analogously,

A(x, y) ≤ A(0, y) +A(x, 1)−A(0, 1) = h1(x) + v0(y)−A(0, 1),

A(x, y) ≤ A(x, 0) +A(1, y)−A(1, 0) = h0(x) + v1(y)−A(1, 0),

namely the second of the inequalities (3.7).

It should be noticed that, in the special case of copulas, the bounds of (3.7)
coincide with the usual Fréchet–Hoeffding bounds (1.13).

The subclasses of 2–increasing agops with prescribed margins have the smallest
and the greatest element (in the pointwise ordering), as stated here.

Theorem 3.3.1. For every 2–increasing agop A, the bounds A∗ and A∗ defined by
(3.5) and (3.6) are 2–increasing agops.

Proof. The functions A∗ and A∗ defined by (3.5) and (3.6), respectively, are obviously
agops. Below we shall prove that they are also 2–increasing. To this end, let R =
[x, x′]× [y, y′] be any rectangle contained in the unit square.

Consider, first, the case of A∗. Then

A∗(x′, y′) := min{h1(x′) + v0(y′)−A(0, 1), h0(x′) + v1(y′)−A(1, 0)},

A∗(x, y) := min{h1(x) + v0(y)−A(0, 1), h0(x) + v1(y)−A(1, 0)},

A∗(x′, y) := min{h1(x′) + v0(y)−A(0, 1), h0(x′) + v1(y)−A(1, 0)},

A∗(x, y′) := min{h1(x) + v0(y′)−A(0, 1), h0(x) + v1(y′)−A(1, 0)}.

There are four cases to be considered.
Case 1. If

A∗(x′, y′) = h1(x′) + v0(y′)−A(0, 1), A∗(x, y) = h1(x) + v0(y)−A(0, 1),
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then

A∗(x′, y′) +A∗(x, y) = h1(x′) + v0(y)−A(0, 1)

+ h1(x) + v0(y′)−A(0, 1) ≥ A∗(x′, y) +A∗(x, y′).

Case 2. If

A∗(x′, y′) = h0(x′) + v1(y′)−A(1, 0), A∗(x, y) = h0(x) + v1(y)−A(1, 0),

then

A∗(x′, y′) +A∗(x′, y′) = h0(x′) + v1(y)−A(1, 0)

+ h0(x) + v1(y′)−A(1, 0) ≥ A∗(x′, y) +A∗(x, y′).

Case 3. If

A∗(x′, y′) = h1(x′) + v0(y′)−A(0, 1), A∗(x, y) = h0(x) + v1(y)−A(1, 0),

then, since A is 2–increasing, we have h1(x′) + h0(x) ≥ h1(x) + h0(x′), so that

A∗(x′, y′) +A∗(x′, y′)

= h1(x′) + h0(x)−A(0, 1) + v0(y′) + v1(y)−A(1, 0)

≥ h1(x) + v0(y′)−A(0, 1) + h0(x′) + v1(y)−A(0, 1)

≥ A∗(x′, y) +A∗(x, y′).

Case 4. If

A∗(x′, y′) = h0(x′) + v1(y′)−A(1, 0), A∗(x, y) = h1(x) + v0(y)−A(0, 1),

then, since A is 2–increasing, we have v1(y′) + v0(y) ≥ v1(y) + v0(y′), so that

A∗(x′, y′) +A∗(x′, y′)

= h0(x′) + v1(y′)−A(1, 0) + h1(x) + v0(y)−A(0, 1)

≥ h0(x′) + v1(y)−A(1, 0) + h1(x) + v0(y′)−A(0, 1)

≥ A∗(x′, y) +A∗(x, y′).

This proves that A∗ is 2–increasing.
A similar proof holds for A∗. Given a rectangle R = [x, x′] × [y, y′] in the unit

square, we have

A∗(x′, y′) := max{h0(x′) + v0(y′), h1(x′) + v1(y′)− 1},

A∗(x, y) := max{h0(x) + v0(y), h1(x) + v1(y)− 1},

A∗(x′, y) := max{h0(x′) + v0(y), h1(x′) + v1(y)− 1},

A∗(x, y′) := max{h0(x) + v0(y′), h1(x) + v1(y′)− 1}.
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Here, again, four cases will be considered.
Case 1. If

A∗(x′, y) = h0(x′) + v0(y), A∗(x, y′) = h0(x) + v0(y′),

then

A∗(x′, y) +A∗(x, y′) = h0(x) + v0(y) + h0(x′) + v0(y′)

≤ A∗(x′, y′) +A∗(x, y).

Case 2. If

A∗(x′, y) = h0(x′) + v0(y), A∗(x, y′) = h1(x) + v1(y′)− 1,

then, since A is 2–increasing, we have h0(x′) + h1(x) ≤ h1(x′) + h0(x) so that

A∗(x′, y) +A∗(x, y′) = h0(x′) + v0(y) + h1(x) + v1(y′)− 1

≤ h1(x′) + v1(y′)− 1 + h0(x) + v0(y)

≤ A∗(x′, y′) +A∗(x, y).

Case 3. If

A∗(x′, y) = h1(x′) + v1(y)− 1, A∗(x, y′) = h0(x) + v0(y′),

then, since A is 2–increasing, we have v1(y) + v0(y′) ≤ v1(y′) + v0(y), so that

A∗(x′, y) +A∗(x, y′) = h1(x′) + v1(y)− 1 + h0(x) + v0(y′)

≤ h1(x′) + v1(y′)− 1 + h0(x) + v0(y)

≤ A∗(x′, y′) +A∗(x, y).

Case 4. If

A∗(x′, y) = h1(x′) + v1(y)− 1, A∗(x, y′) = h1(x) + v1(y′)− 1,

then

A∗(x′, y) +A∗(x, y′) = h1(x′) + v1(y′)− 1 + h1(x) + v1(y)− 1

≤ A∗(x′, y′) +A∗(x, y).

The following result gives a necessary and sufficient condition that ensuresA∗ = A∗

in the case of a symmetric agop A.

Proposition 3.3.3. For a symmetric and 2–increasing agop A, the following state-
ments are equivalent:

(a) A∗ = A∗;
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(b) there exists an interval I ⊆ [0, 1], 0 ∈ I, and a ∈ [0, 1] such that

h1(t) =

h0(t) + a, if t ∈ I,

h0(t) + (1− a), if t ∈ [0, 1] \ I.
(3.8)

Proof. If A is a symmetric agop, then h0 = v0 and h1 = v1. Set a := A(0, 1) = A(1, 0),
a ≤ 1/2. Therefore

A∗(x, y) := max{h0(x) + h0(y), h1(x) + h1(y)− 1}

and
A∗(x, y) := min{h1(x) + h0(y)− a, h0(x) + h1(y)− a}.

If A = A∗, then A(x, x) = h1(x) + h0(x) − a. Now, from A = A∗, we obtain that
either A(x, x) = 2h0(x) or A(x, x) = 2h1(x)− 1. Therefore, either

h1(x)− h0(x) = a, (3.9)

or
h1(x)− h0(x) = 1− a. (3.10)

If a = 1/2, then h1(x) = h0(x) + a on [0, 1]. Otherwise, note that (3.9) holds at the
point x = 0 and (3.10) holds at the point x = 1. Moreover, if (3.9) does not hold at a
point x1, then (3.9) does not hold also for every x2 > x1. In fact, for the 2–increasing
property, we obtain

h1(x2)− h0(x2) ≥ h1(x1)− h0(x1) = 1− a > 1/2.

Thus h1 has the form (3.8), where I is an interval. The converse is just a matter of
straightforward verification.

Note that if A = A∗ = A∗, then A = 2aB + (1 − 2a)C, where B is a symmetric
and modular agop, and C = 1I2 is the indicator function of the set I2.

Example 3.3.1. Consider the arithmetic mean A(x, y) := (x+ y)/2, which is obvi-
ously 2–increasing. Then, we easily evaluate A∗ = A∗ = A.

Consider the 2–increasing agop given by the geometric mean G(x, y) :=
√
xy. We

have

G∗(x, y) = max{0,
√
x+

√
y − 1} and G∗(x, y) = min{

√
x,
√
y},

both of which are 2–increasing.

Remark 3.3.1. In the general case of a 2–increasing agop A such that A = A∗ = A∗,
as above it can be proved that one among the following four equalities holds:

• h1(x)− h0(x) = A(0, 1);
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• h1(x)− h0(x) = 1−A(1, 0);

• v1(y)− v0(y) = 1−A(0, 1);

• v1(y)− v0(y) = A(1, 0).

However, one need not have explicit conditions as in the symmetric case for h1(x)−
h0(x) and v1(y)− v0(y).

Let h, v and δ be increasing functions from [0, 1] into [0, 1], δ(0) = 0 and δ(1) = 1.
Denote by Ah, Av and Aδ, respectively, the subclasses of 2–increasing agops with
horizontal section at b ∈ ]0, 1[ equal to h, vertical section at a ∈ ]0, 1[ equal to v,
diagonal section equal δ, respectively. Notice that the sets Ah, Av and Aδ are not
empty, in view of Proposition 3.2.3. The following results give the best–possible
bounds in these subclasses.

Proposition 3.3.4. Let h : [0, 1] → [0, 1] be an increasing function. For every A in
Ah we obtain

(Ah)∗ ≤ A(x, y) ≤ (Ah)∗, (3.11)

where

(Ah)∗(x, y) :=


1, if (x, y) = (1, 1);

0, if 0 ≤ y < b;

h(x), otherwise;

(Ah)∗(x, y) :=


0, if (x, y) = (0, 0);

1, if b < y ≤ 1;

h(x), otherwise.

Moreover,

(Ah)∗(x, y) =
∧

A∈Ah

A(x, y) and (Ah)∗(x, y) =
∨

A∈Ah

A(x, y),

where (Ah)∗ is a 2–increasing agop and (Ah)∗, while it is still an agop, is not neces-
sarily 2–increasing.

Proof. For all (x, y) ∈ [0, 1]2 and A ∈ Ah, A(x, y) ≥ 0 for every y ∈ [0, b[ and
A(x, y) ≥ h(x) for every y ∈ [b, 1], viz. A(x, y) ≥ (Ah)∗(x, y) on [0, 1]2. Analogously,
A(x, y) ≤ h(x) for every y ∈ [0, b] and A(x, y) ≤ 1 for every y ∈ ]b, 1], viz. A(x, y) ≤
(Ah)∗(x, y) on [0, 1]2. Both (Ah)∗ and (Ah)∗ are agops, as is immediately seen; it
is also immediate to check that (Ah)∗ is 2–increasing and, therefore, that (Ah)∗ =∧
A∈Ah

A. Now, suppose that B is any agop greater than, or at least equal to,
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∨
A∈Ah

A. Then B(x, y) ≥ A1(x, y), where A1 is the 2–increasing agop given by

A1(x, y) :=


0, if y = 0;

h(x), if 0 < y ≤ b;

1, if b < y ≤ 1;

and B(x, y) ≥ A2(x, y), where A2 is the 2–increasing agop given by

A2(x, y) :=


0, if x = 0;

h(x), if x 6= 0 and 0 < y ≤ b;

1, if x 6= 0 and b < y ≤ 1;

therefore B(x, y) ≥ max{A1(x, y), A2(x, y)} = (Ah)∗(x, y) on [0, 1]2 and we obtain
(Ah)∗ =

∨
A∈Ah

A. However (Ah)∗ need not be 2–increasing; in fact,

V(Ah)∗ ([0, 1]× [b, 1]) = h(0)− h(1),

and thus (Ah)∗ is 2–increasing if, and only if, h = 0.

Analogously, we prove the following result for the class Av.

Proposition 3.3.5. Let v : [0, 1] → [0, 1] be an increasing function. For every A in
Av we obtain

(Av)∗ ≤ A(x, y) ≤ (Av)∗, (3.12)

where

(Av)∗(x, y) :=


1, if (x, y) = (1, 1);

0, if 0 ≤ x < a;

v(y), otherwise;

(Av)∗(x, y) :=


0, if (x, y) = (0, 0);

1, if a < x ≤ 1;

v(y), otherwise.

Moreover,

(Av)∗(x, y) =
∧

A∈Av

A(x, y) and (Av)∗(x, y) =
∨

A∈Av

A(x, y),

where (Av)∗ is a 2–increasing agop and (Av)∗, while it is still an agop, is not neces-
sarily 2–increasing.

Proposition 3.3.6. Let δ be an increasing function with δ(0) = 0 and δ(1) = 1. For
every A in Aδ, we obtain

(Aδ)∗ := min{δ(x), δ(y)} ≤ A(x, y) ≤ (Aδ)∗ := max{δ(x), δ(y)}. (3.13)
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Moreover, (Aδ)∗ and (Aδ)∗ are the best–possible bounds, in the sense that

(Aδ)∗(x, y) =
∧

A∈Aδ

A(x, y) and (Aδ)∗(x, y) =
∨

A∈Aδ

A(x, y),

where (Aδ)∗ is a 2–increasing agop and (Aδ)∗, while it is still an agop, is never 2–
increasing.

Proof. For all (x, y) ∈ [0, 1]2 and A ∈ Aδ,

A(x, y) ≥ A(x ∧ y, x ∧ y) = min{δ(x), δ(y)}

and
A(x, y) ≤ A(x ∨ y, x ∨ y) = max{δ(x), δ(y)}.

This proves (3.13). Both (Aδ)∗ and (Aδ)∗ are agops, as is immediately seen; it is
also immediate to check that (Aδ)∗ is 2–increasing (because of Proposition 3.2.1)
and, therefore, that (Aδ)∗ =

∧
A∈Aδ

A. Now, suppose that B is any agop greater
than, or at least equal to,

∨
A∈Aδ

A. Then B(x, y) ≥ A1(x, y) := δ(x) and B(x, y) ≥
A2(x, y) := δ(y), where A1 and A2 are 2–increasing agops. Thus, B(x, y) ≥ (Aδ)∗ so
that (Aδ)∗ =

∨
A∈Aδ

A. This proves that (Aδ)∗ is the best possible upper bound for
the set Aδ. However (Aδ)∗ is never 2–increasing, in fact

V(Aδ)∗

(
[0, 1]2

)
= δ(0)− δ(1) = −1 < 0.

Corollary 3.3.1. Let δ be an increasing function with δ(0) = 0 and δ(1) = 1. For
every symmetric agop A in Aδ, we obtain

(Aδ)∗ := min{δ(x), δ(y)} ≤ A(x, y) ≤ δ(x) + δ(y)
2

,

where (δ(x) + δ(y)) /2 is the maximal element in the subclass of the symmetric agops
in A2.

Proof. If A is symmetric and 2–increasing, we have, for every x, y in [0, 1],

δ(x) + δ(y) = A(x, x) +A(y, y) ≥ 2 A(x, y).

3.4 A construction method for copulas

The main result of this section is to give a simple method of constructing a copula
from a 2–increasing and 1–Lipschitz agop.

Theorem 3.4.1. For every 2–increasing and 1–Lipschitz agop A, the function

C(x, y) := min{x, y,A(x, y)}

is a copula.
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Proof. First, in order to prove that C is a copula, we note that C has neutral element
1 and annihilator 0; in fact, for every x ∈ [0, 1], we have

|A(1, 1)−A(x, 1)| ≤ 1− x

and thus A(x, 1) ≥ x. Consequently, we have

C(x, 1) = min{A(x, 1), x} = x, C(x, 0) = min{A(x, 0), 0} = 0,

and, similarly, C(1, x) = x and C(0, x) = 0. Then, we prove that C is 2–increasing
by using Proposition 1.6.1.

For every rectangle R := [s, t]× [s, t] on [0, 1]2, set

VC(R) = min{A(s, s), s}+ min{A(t, t), t} −min{A(s, t), s} −min{A(t, s), s}.

We have to prove that VC(R) ≥ 0 and several cases are considered.
If A(s, s) ≥ s, then also A(s, t), A(t, s) and A(t, t) are greater than s, because A

is increasing in each variable, and thus

VC(R) = min{A(t, t), t} − s ≥ 0.

If A(s, s) < s, then we distinguish:

• if A(t, t) < t, since A is 2–increasing, we have

A(s, s) +A(t, t) ≥ A(s, t) +A(t, s) ≥ min{A(s, t), s}+ min{A(t, s), s},

viz. VC(R) ≥ 0;

• if A(t, t) ≥ t, since A is 1–Lipschitz, we have

min{A(t, s), s} −min{A(s, s), s} ≤ t− s ≤ t−min{A(t, s), s},

and thus VC(R) ≥ 0.

Now, let R = [x1, x2] × [y1, y2] be a rectangle contained in ∆+. Then VC(R) is
given by

VC(R) =min{A(x1, y1), y1}+ min{A(x2, y2), y2}

−min{A(x2, y1), y1} −min{A(x1, y2), y2}.

If A(x1, y1) ≥ y1, then also A(x2, y1), A(x1, y2) and A(x2, y2) are greater than y1,
because A is increasing in each variable, and thus

VC(R) = min{A(x2, y2), y2} − y1 ≥ 0.

If A(x1, y1) < y1, then we distinguish:
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• if A(x2, y2) < y2, since A is 2–increasing, we have

A(x2, y2) +A(x1, y1) ≥ A(x2, y1) +A(x1, y2)

≥ min{A(x2, y1), y1}+ min{A(x1, y2), y2},

viz. VC(R) ≥ 0;

• if A(x2, y2) ≥ y2, we have

VC(R) = A(x1, y1) + y2 −A(x1, y2)−min{A(x2, y1), y1},

and, since A is 1–Lipschitz,

A(x1, y2) ≤ y2 − y1 +A(x1, y1) ≤ y2,

moreover, from the fact that

A(x1, y2)−A(x1, y1) ≤ y2 − y1 ≤ y2 −min{A(x2, y1), y1},

it follows that VC(R) ≥ 0.

Finally, let R = [x1, x2]× [y1, y2] be a rectangle contained in ∆−. Then VC(R) is
given by

VC(R) =min{A(x1, y1), x1}+ min{A(x2, y2), x2}

−min{A(x2, y1), x2} −min{A(x1, y2), x1}.

If A(x1, y1) ≥ x1, then, because A is increasing in each variable,

VC(R) = min{A(x2, y2), x2} − x1 ≥ 0.

If A(x1, y1) < x1, then we distinguish:

• if A(x2, y2) < x2, since A is 2–increasing, we have

A(x2, y2) +A(x1, y1) ≥ A(x2, y1) +A(x1, y2)

≥ min{A(x2, y1), x1}+ min{A(x1, y2), x2},

viz. VC(R) ≥ 0;

• if A(x2, y2) ≥ x2, we have

VC(R) = A(x1, y1) + x2 −min{A(x1, y2), x1} −A(x2, y1),

and, since A is 1–Lipschitz

A(x2, y1) ≤ x2 − x1 +A(x1, y1) ≤ x2;

moreover, from the inequality

A(x2, y1)−A(x1, y1) ≤ x2 − x1 ≤ x2 −min{A(x1, y2), x1},

it follows that VC(R) ≥ 0.
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Notice that agops satisfying the assumptions of Theorem 3.4.1 are stable under
convex combinations. Thus, many examples can be provided by using, for examples,
copulas, quasi–arithmetic means bounded from above by the arithmetic mean, and
their convex combinations.

Example 3.4.1. Let A be the modular agop A(x, y) = (δ(x) + δ(y))/2, where δ :
[0, 1] → [0, 1] is an increasing and 2–Lipschitz function with δ(0) = 0 and δ(1) = 1.
Then A satisfies the assumptions of Theorem 3.4.1 and it generates the following
copula

Cδ(x, y) = min
{
x, y,

δ(x) + δ(y)
2

}
.

Copulas of this type were introduced in [56] and are called diagonal copulas.

Example 3.4.2. Let consider the following 2–increasing and 1–Lipschitz agop

A(x, y) = λB(x, y) + (1− λ)
x+ y

2
,

defined for every λ ∈ [0, 1] and for every copula B. This A satisfies the assumptions
of Theorem 3.4.1 and, therefore, the following class of copulas is obtained

Cλ(x, y) := min
{
x, y, λB(x, y) + (1− λ)

x+ y

2

}
.

Example 3.4.3. Let A be a 2–increasing agop of the form A(x, y) = f(x) · g(y). If
A is 1–Lipschitz, then A satisfies the assumptions of Theorem 3.4.1. Consider, for
instance, either f(x) = x and g(y) = (y + 1)/2, or f(x) = (x + 1)/2 and g(y) = y,
which yield, respectively, the following copulas

C1(x, y) = min
{
y,
x(y + 1)

2

}
, C2(x, y) = min

{
x,
y(x+ 1)

2

}
.



Chapter 4

A new family of PQD copulas

In this chapter we introduce a new class of bivariate copulas, depending on a
univariate function, that includes some already known families. This class is charac-
terized in section 4.1, where a probabilistic interpretation is given, and its properties
(dependence, measures of association, symmetries, associativity, absolute continuity)
are studied in detail in section 4.2. Section 4.3 is devoted to the introduction of a
similar class in the set of quasi–copulas.

The contents of this chapter can be also found in [36, 42, 43].

4.1 Characterization of the new class

Let f be a mapping from [0, 1] into [0, 1]. Consider the function Cf given, for
every x, y ∈ [0, 1], by

Cf (x, y) := (x ∧ y) f(x ∨ y). (4.1)

It is obvious that every Cf is symmetric and the copulas Π and M are of this type:
it suffices to take, respectively, f(t) = t and f(t) = 1 for all t ∈ [0, 1]. Our aim
is to study under which conditions on f , Cf is a copula. Notice that, in view of
the properties (1.9) and (1.10) of a copula, it is quite natural to require that f is
increasing and continuous and, then, simple considerations of real analysis imply that
f is differentiable almost everywhere on [0, 1] and the left and right derivatives of f
exist for every x ∈ [0, 1] and assume finite values. We aim to characterize the copulas
of type (4.1).

Lemma 4.1.1. Let f : [0, 1] → [0, 1] be a continuous and increasing function, differ-
entiable except at finitely many points. The following statements are equivalent:

(a) for every s, t ∈ ]0, 1], with s ≤ t, sf(s) + tf(t)− 2sf(t) ≥ 0;

(b) the function t 7→ f(t)/t is decreasing on ]0, 1].
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Proof. (a) ⇒ (b): Let si (i = 1, 2, . . . , n) be the points in [0, 1] such that f ′(s+i ) 6=
f ′(s−i ). Set s0 := 0 and sn+1 := 1. For every i ∈ {0, 1, . . . , n}, let s and t be in
]si, si+1[, s < t. The inequality

sf(s) + tf(t)− 2sf(t) ≥ 0

is equivalent to
f(t)
s

≥ f(t)− f(s)
t− s

.

In the limit t ↓ s, we have f(s) ≥ sf ′(s). It follows that(
f(s)
s

)′
=
sf ′(s)− f(s)

s2
≤ 0,

viz. t 7→ f(t)/t is decreasing in each interval ]si, si+1[, (i = 0, 1, . . . , n). But f(t)/t is
continuous and, therefore, it is decreasing on the whole ]0, 1].
(b) ⇒ (a): Let s, t be in ]0, 1], with s < t. Then

f(s)
s

≥ f(t)
t

is equivalent to
f(s)
s

≥ f(t)− f(s)
t− s

,

and, because f is increasing,

f(t)
s

≥ f(t)− f(s)
t− s

,

viz. condition (a).

Theorem 4.1.1. Let f : [0, 1] → [0, 1] be a differentiable function (except at finitely
many points). Let Cf be the function defined by (4.1). Then Cf is a copula if, and
only if, the following statements hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) the function t 7→ f(t)/t is decreasing on ]0, 1].

Proof. It is immediate that Cf satisfies the boundary conditions (C1) if, and only if,
f(1) = 1. We now prove that Cf is 2–increasing if, and only if, (ii) and (iii) hold. Let
x, x′, y, y′ be in [0, 1] with x ≤ x′ and y ≤ y′. First, we suppose that the rectangle
[x, x′]× [y, y′] is a subset of ∆+ (see notations (1.12)). Then

VC([x, x′]× [y, y′]) = (y′ − y) (f(x′)− f(x)) ≥ 0

if, and only if, f is increasing. Analogously, the 2–increasing property is equivalent
to (ii) for rectangles contained in ∆−. If, instead, the diagonal of [x, x′] × [y, y′] lies
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on the diagonal {(x, y) ∈ [0, 1]2 : y = x} of the unit square, then x = y and x′ = y′

and, in view of Lemma 4.1.1,

VC([x, x′]× [x, x′]) = xf(x) + x′f(x′)− 2xf(x′) ≥ 0

if, and only if, (iii) holds. Now, the assertion follows from Proposition 1.6.1.

A function f that satisfies the assumptions of Theorem 4.1.1 is called generator
of a copula of type (4.1). In particular, the class of generators is convex and, because
of condition (iii), it has minimal element id[0,1] and maximal element the constant
function equal to 1. Note that f : [0, 1] → [0, 1] satisfies condition (iii) of Theorem
4.1.1 if, and only if, f is star–shaped, i.e., f(αx) ≥ αf(x) for all α ∈ [0, 1]. Moreover,
every concave function satisfies (iii) (these results can also be found in [103, Chap.
16]). Now, we give a probabilistic interpretation of the generators.

Proposition 4.1.1. Let U and V be r.v.’s uniformly distributed on [0, 1] with copula
Cf of type (4.1). Then

f(t) = P (max{U, V } ≤ t | U ≤ t) .

Proof. For every t in [0, 1], we have

C(t, t) = tf(t) = P (U ≤ t, V ≤ t) ,

and

P (max{U, V } ≤ t | U ≤ t) =
P (U ≤ t, V ≤ t)

P (U ≤ t)
= f(t),

namely the assertion.

In the sequel we give some sub–classes of copulas {Cα} of type (4.1) generated by
a one–parameter family {fα}.

Example 4.1.1 (Fréchet copulas). Given fα(t) := αt+(1−α) (α ∈ [0, 1]), we obtain
Cα = αΠ+(1−α)M , which is a convex sum of Π and M and, therefore, is a member
of the Fréchet family of copulas (see Example 1.6.2) (see, also, family (B11) in [74]).
Notice that C0 = M and C1 = Π.

Example 4.1.2 (Cuadras–Augé copulas). Given fα(t) := tα (α ∈ [0, 1]), Cα is
defined by

Cα(x, y) = (x ∧ y)(x ∨ y)α =

xyα, if x ≤ y;

xαy, if x > y.

Then Cα describes the Cuadras–Augé family of copulas (see Example 1.6.4). Notice
that C0 = M and C1 = Π.
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Example 4.1.3. Given fα(t) := min (αt, 1) (α ≥ 1), Cα is defined by

Cα(x, y) = (x ∧ y)min{α(x ∨ y), 1} =

αxy, if (x, y) ∈ [0, 1/α]2 ;

x ∧ y, otherwise;

viz. Cα is the ordinal sum (〈0, 1/α,Π〉). Notice that C1 = Π and C∞ = M , where, if
g(x) = lim fα(x) as α→ +∞ and x ∈ ]0, 1], C∞ := Cg.

Example 4.1.4. Given the function fα(t) := c exp(tα/α), where α > 0 and c =
exp(−1/α), we obtain the following family

Cα(x, y) =

cx exp(yα/α), if x ≤ y;

cy exp(xα/α), if x > y.

Example 4.1.5. The function fα(t) := 1
sinα sin (αt) (α ∈ ]0, π/2]) is increasing with

fα(t)/t decreasing on ]0, 1], as is easily proved. Therefore, Theorem 4.1.1 ensures that

Cα(x, y) =

 x
sinα sin (αy) , if x ≤ y;
y

sinα sin (αx) , if x > y.

is a copula.

For a copula Cf of type (4.1) the following result holds (see [100] for details).

Theorem 4.1.2. If Cf is the copula given by (4.1) and H(x, y) = Cf (F1(x), F2(y))
for univariate d.f.’s F1 and F2, then the following statements are equivalent:

(a) random variables X and Y with joint d.f. H have a representation of the form

X = max{R,W} and Y = max{S,W}

where R, S and W are independent r.v.’s;

(b) H has the form H(x, y) = FR(x)FS(y)FW (x ∧ y), where FR, FS and FW are
univariate d.f.’s.

4.2 Properties of the new class

In this section we give the most important properties of a copula Cf of type (4.1).

4.2.1 Concordance order

Proposition 4.2.1. Let Cf and Cg be two copulas of type (4.1). Then Cf ≤ Cg if,
and only if, f(t) ≤ g(t) for all t ∈ [0, 1].
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In particular, for every copula Cf , Π ≤ Cf ≤ M and, therefore, every Cf is
positively quadrant dependent.

Example 4.2.1. Consider the family {fα} (α ≥ 1), given by fα(t) := 1− (1− t)α. It
is easily proved by differentation that every fα is increasing with fα(t)/t decreasing
on ]0, 1]. Therefore, this family generates a family of copulas Cα, that is positively
ordered, with C1 = Π and C∞ = M .

Example 4.2.2. Consider the family of copulas generated by the function fα(t) :=
(1 + α)t/(αt+ 1) for every α ≥ 0. This family is positively ordered with C0 = Π and
C∞ = M .

4.2.2 Dependence concepts

Theorem 4.2.1. Let (X,Y ) be a continuous random pair with copula Cf . Then

(a) Y is left tail decreasing in X;

(b) Y is stochastically increasing in X if, and only if, f ′ is decreasing a.e. on [0, 1];

(c) X and Y are left corner set decreasing.

Proof. In order to prove LTD(Y |X), according to Proposition 1.7.2 it suffices to
notice that, for every (x, y) ∈ [0, 1]2

Cf (x, y)
x

=

f(y), if x ≤ y;
yf(x)
x

, if x > y;

is decreasing in x.
Property SI(Y |X) follows from Proposition 1.7.3, observing that ∂xCf is decreas-

ing in the first place if, and only if, f ′ is decreasing a.e. on [0, 1].
In order to prove (c), because of Proposition 1.7.4, it suffices to prove that, for all

x, x′, y, y′ in [0, 1], with x ≤ x′ and y ≤ y′,

Cf (x, y)Cf (x′, y′) ≥ Cf (x, y′)Cf (x′, y) ≥ 0. (4.2)

Because f(t)/t is decreasing and Cf is symmetric, inequality (4.2) follows easily from
simple calculations on rectangles [x, x′]× [y, y′] that have 4, 3 or 2 vertices in the set
∆+. For instance, if [x, x′]× [y, y′] has only two vertices, say (x, y) and (x′, y) in ∆+,
then (4.2) holds if, and only if, x′f(x) ≥ xf(x′), viz. f(t)/t is decreasing.

The following result for the tail dependence holds.

Proposition 4.2.2. Let Cf be a copula of type (4.1). Then, the lower tail dependence
of Cf is f(0+) and the upper tail dependence of Cf is 1− f ′(1−).
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Proof. The diagonal section of Cf is δCf
(t) = tf(t). Therefore, from Proposition

1.7.5, we have λL = δ′C(0+) = f(0+) and λU = 2− δ′C(1−) = 1− f ′(1−).

Remark 4.2.1. As noted, a copula of type (4.1) is PQD and, therefore, it is suitable
to describe positive dependence of a random vector (X,Y ). However, it is very simple
to introduce a copula to describing, for example, the (negative) dependence of the
random vector (X,−Y ). It suffices to consider the copula Cf0,1 given by

Cf0,1(x, y) := x− C(x, 1− y) =

x(1− f(1− y)), if x+ y ≤ 1;

x− (1− y)f(x), otherwise.

4.2.3 Measures of association

Theorem 4.2.2. The values of several measures of association of Cf are, respectively,
given by

τC = 4
∫ 1

0

xf2(x) dx − 1, ρC = 12
∫ 1

0

x2f(x) dx − 3,

γC = 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx

)
− 2,

βC = 2f(1/2)− 1, ϕC = 6
∫ 1

0

xf(x) dx − 2.

Proof. In view of Theorem 1.8.1, the Kendall’s tau of Cf is given by

τC = 1− 4
∫ 1

0

∫ 1

0

∂xC(x, y)∂yC(x, y) dx dy.

Now, we have ∫ 1

0

∫ 1

0

∂xC(x, y)∂yC(x, y) dx dy

=
∫ 1

0

dy

∫ y

0

xf(y)f ′(y) dx+
∫ 1

0

dx

∫ x

0

yf(x)f ′(x) dy

=
∫ 1

0

x2f(x)f ′(x) dx =
1
2
−
∫ 1

0

xf2(x) dx,

where the last equality is obtained through integration by parts. Then

τC = 4
∫ 1

0

xf2(x) dx − 1.

From Theorem 1.8.2, Spearman’s rho is given by:

ρC = 12
∫ 1

0

∫ 1

0

C(x, y) dx dy − 3

= 12
∫ 1

0

dy

∫ y

0

xf(y) dx+
∫ 1

0

dx

∫ x

0

yf(x) dy − 3

= 12
∫ 1

0

x2f(x) dx − 3.
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Following Theorem 1.8.3, we have

γC = 4
(∫ 1

0

C(x, 1− x) dx−
∫ 1

0

(x− C(x, x)) dx
)

= 4

(∫ 1/2

0

xf(1− x) dx−
∫ 1/2

0

[x− xf(x)] dx

)

+
∫ 1

1/2

(1− x)f(x)−
∫ 1

1/2

[x− xf(x)] dx

= 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx − 1
2

)

= 4

(∫ 1/2

0

x [f(x) + f(1− x)] dx+
∫ 1

1/2

f(x) dx

)
− 2.

The expressions of βC and ϕC follow easily from Theorems 1.8.4 and 1.8.5.

As an application of Theorem 4.2.2, the measures of association for the copulas in
Examples 1.6.2 and 1.6.4 can be easily given:

– If C is a copula of the Fréchet family, then

τC =
(α− 1)(α− 3)

3
, ρC = 1− α = γC = ϕC .

– If C is a Cuadras–Augé copula, then

τC =
1− α

1 + α
, ρC =

3− 3α
3 + α

, ϕC =
2− 2α
2 + α

.

4.2.4 Symmetry properties

Theorem 4.2.3. Let (X,Y ) be continuous r.v.’s with copula Cf .

(a) If X and Y are identically distributed, then X and Y are exchangeable.

(b) If X and Y are symmetric about a and b, respectively (a, b ∈ R), then (X,Y ) is
radially symmetric about (a, b) if, and only if, Cf = αΠ + (1 − α)M for some
α ∈ [0, 1].

(c) If X and Y are symmetric about a and b, respectively (a, b ∈ R), then (X,Y ) is
jointly symmetric about (a, b) if, and only if, Cf = Π.

Proof. Statement (a) is a consequence of the symmetry of Cf . From Proposition 1.6.3,
statement (b) holds if, and only if, Cf satisfies the following functional equation:

∀x, y ∈ [0, 1] Cf (x, y) = x+ y − 1 + Cf (1− x, 1− y). (4.3)

But, equality (4.3) is equivalent to

(x ∧ y)f(x ∨ y) = x+ y − 1 + [1− (x ∨ y)] f [1− (x ∧ y)] ;
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in particular, for all y ∈ [x, 1[, we have

xf(y) = x+ y − 1 + (1− y)f(1− x)

=⇒ x (1− f(y)) + (1− y)f(1− x) = 1− y

=⇒ x · 1− f(y)
1− y

+ f(1− x) = 1 =⇒ f(1− x) = 1− x · f(y)− 1
y − 1

.

In the limit y ↑ 1, we can derive

1− f(y)
1− y

−→ f ′(1−),

where f ′(1−) is a real number in [0, 1]. Thus f(1−x) = 1−cx, i.e. f(x) = cx+(1−c),
which corresponds to the family Cf = cΠ + (1− c)M .

From Proposition 1.6.3, (X,Y ) is jointly symmetric about (a, b) if, and only if, for
all (x, y) ∈ [0, 1]2

Cf (x, y) = x− Cf (x, 1− y) and Cf (x, y) = y − Cf (1− x, y). (4.4)

In particular, for x = y, we obtain

∀x ∈ [0, 1] xf(x) = x− [x ∧ (1− x)] f [x ∨ (1− x)] ,

which implies

∀x ∈ [1/2, 1] xf(x) = x− (1− x)f(x),

∀x ∈ [0, 1/2] xf(x) = x− xf(1− x),

viz. f(x) = x on [0, 1], which corresponds to Cf = Π.

4.2.5 Associativity

Lemma 4.2.1. Let Cf be a copula of type (4.1). Then Cf is Archimedean if, and
only if, Cf = Π.

Proof. If Cf is an Archimedean copula, then, there exists a convex function ϕ :
[0, 1] → [0,+∞], which is continuous and strictly increasing, ϕ(1) = 0, such that
Cf (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)). In view of Theorem 1.6.8,

ϕ′(x)
∂Cf (x, y)

∂y
= ϕ′(y)

∂Cf (x, y)
∂x

a.e. on [0, 1]2.

In particular, if x = y, we obtain ϕ′(x) ·xf ′(x) = ϕ′(x) ·f(x), which leads to xf ′(x) =
f(x). In the class of the generators of a copula of type (4.1), this differential equation
has as unique solution the function f(x) = x, viz. Cf = Π.

Theorem 4.2.4. Let Cf be a copula of type (4.1). Then Cf is associative if, and
only if, Cf is an ordinal sum of type (〈0, a,Π〉) with a ∈ [0, 1].
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Proof. First, notice that every ordinal sum of type (〈0, a,Π〉) is associative and it is
generated by the function f(t) = min{t/a, 1}.

Conversely, let Cf be an associative copula. As asserted in Theorem 1.6.9, the
representation of Cf depends on the set ID of idempotent elements of Cf , given by
ID := {0} ∪ [a, 1], where a := inf{t ∈ [0, 1] : f(t) = 1}. If ID = {0, 1}, then Cf

is Archimedean and, therefore, Lemma 4.2.1 ensures that Cf = Π = (〈0, 1,Π〉). If
ID = [0, 1], then Cf = M = (〈0, 0,Π〉). Otherwise, Cf is an ordinal sum of type
(〈0, a,D〉) for a suitable Archimedean copula D. Therefore, if ϕ is a generator of D,
for all x, y in [0, a],

Cf (x, y) = aϕ[−1]
(
ϕ
(x
a

)
+ ϕ

(y
a

))
.

Hence, applying the chain rule to ϕ(Cf (x, y)/a) = ϕ(x/a) + ϕ(y/a), we obtain

ϕ′
(
Cf (x, y)

a

)
∂Cf (x, y)

∂x
= ϕ′

(x
a

)
, ϕ′

(
Cf (x, y)

a

)
∂Cf (x, y)

∂y
= ϕ′

(y
a

)
.

Therefore, a.e. on [0, 1]2, we have

ϕ′
(x
a

) ∂Cf (x, y)
∂y

= ϕ′
(y
a

) ∂Cf (x, y)
∂x

.

An argument similar to the proof of Lemma 4.2.1 gives D = Π, as asserted.

4.2.6 Absolute continuity

Proposition 4.2.3. The only absolutely continuous copula of type (4.1) is Π.

Proof. Let Cf be a copula of type (4.1). If Cf is absolutely continuous, then

1 = Cf (1, 1) =
∫ 1

0

∫ 1

0

∂2C

∂x∂y
dx dy =

∫ 1

0

∫ 1

0

f ′(x ∨ y) dx dy.

It follows that
1
2

=
∫ 1

0

ds

∫ s

0

f ′(s) dt =
∫ 1

0

sf ′(s) ds;

integrating by parts, we have ∫ 1

0

f(x) dx =
1
2
.

The function f(x) = x is a solution of the above equation and, because all functions
generating a copula of type (4.1) are greater than id[0,1], it follows that id[0,1] is the
only solution in this class.

Remark 4.2.2. Let Cf be a copula of type (4.1), C 6= Π. Consider the first derivative
of Cf

∂1Cf (x, y) =

f(y), if x < y;

y · f ′(x), otherwise.
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For a fixed y0, the mapping t 7→ ∂1Cf (t, y0) has a jump discontinuity in y0, and, thus,
Cf has a singular component along the main diagonal of the unit square. By using
[74, Theorem 1.1], the mass of this singular component is given by

m =
∫ 1

0

(f(x)− xf ′(x)) dx = 2 ·
∫ 1

0

f(x) dx − 1.

This m has a graphical interpretation if f admits an inverse: in fact, m is the area of
the region of the unit square between the graph of f and the graph of f−1.

4.3 A similar new class of quasi–copulas

Given a function f : [0, 1] → [0, 1], we are also interested in studying under which
conditions on f , the following function

Qf (x, y) := (x ∧ y) f(x ∨ y), for all (x, y) ∈ [0, 1]2 , (4.5)

is a quasi–copula. The following result provides a characterization.

Theorem 4.3.1. Let f : [0, 1] → [0, 1] be a continuous function and let Qf be defined
by (4.5). Then Qf is a quasi–copula if, and only if, the three following statements
hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) x1 ·
f(x2)− f(x1)

x2 − x1
≤ 1 for every x1, x2 ∈ [0, 1], with x1 < x2.

Proof. First, observe that Qf satisfies (Q1) if, and only if, f(1) = 1 and Qf satisfies
(Q2) if, and only if, (ii) holds. In order to prove that Qf satisfies (Q3), let x1, x2 and
y be three points in [0, 1] with x1 < x2. We distinguish three cases. If x1 < x2 ≤ y,
then

Qf (x2, y)−Qf (x1, y) = x2f(y)− x1f(y) ≤ x2 − x1

because f ≤ 1. If y ≤ x1 < x2, then

Qf (x2, y)−Qf (x1, y) = y · (f(x2)− f(x1)) ≤
y

x1
· (x2 − x1) ≤ x2 − x1

if, and only if, (iii) holds. Finally, if x1 ≤ y ≤ x2, in view of the two above cases we
obtain

Qf (x2, y)−Qf (x1, y) = (Qf (x2, y)−Qf (y, y)) + (Qf (y, y)−Qf (x1, y))

≤ (x2 − x1)

if, and only if, (iii) holds. In every case, (iii) is a necessary and sufficient condition
that ensures that Qf satisfies (1.10).
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Corollary 4.3.1. Let f : [0, 1] → [0, 1] be a differentiable function and let Qf be
defined by (4.5). Then Qf is a quasi–copula if, and only if, the three following state-
ments hold:

(i) f(1) = 1;

(ii) f is increasing;

(iii) xf ′(x) ≤ 1 for every x ∈ [0, 1].

Notice that if Qf is a copula, then t 7→ f(t)/t is decreasing and

f(x2)− f(x1)
x2 − x1

≤ f(x1)
x1

for every x1, x2 ∈ [0, 1], with x1 < x2, from which the condition (iii) of Theorem 4.3.1
follows, viz. Qf is a quasi–copula. The converse implication need not be true, as the
following example shows.

Example 4.3.1. Consider the function f(t) := t + t2 − t3 on [0, 1]. So, f satisfies
the assumptions of Theorem 4.3.1, viz. f ′(t) ≤ 1/t on [0, 1], but f(t)/t is increasing
on [0, 1/2]. So Qf is a proper quasi–copula. Another (not everywhere) differentiable
function g, which leads to a proper quasi–copula, is given by

g(x) =


x, if x ∈ [0, 1/4] ;

2x− 1/4, if x ∈ ]1/4, 1/2[ ;

(x+ 1)/2, if x ∈ [1/2, 1] .

We have g′(x) ≤ 1/x and thus Qg is a quasi-copula; however, h(x) := g(x)/x is not
decreasing (e.g. h(1/4) = 1 but h(1/2) = 3/2).





Chapter 5

A family of copulas with

given diagonal section

Given a copula C, its diagonal δ satisfies the following properties:

(D1) δ(1) = 1;

(D2) δ(t) ≤ t for all t ∈ [0, 1];

(D3) δ is increasing;

(D4) |δ(t)− δ(s)| ≤ 2|t− s| for all t, s ∈ [0, 1].

We recall that D denotes the set of functions δ : [0, 1] → [0, 1] satisfying (D1)–(D3)
and D2 denotes the subset of D of the functions satisfying also (D4). In literature the
question of determining a copula beginning from a function δ ∈ D2 has been already
studied, as showed in subsection 1.6.3.

In this chapter, we give another class of copulas that can be derived from the
diagonal section. Specifically, we are interested on copulas C satisfying the functional
equation:

C(x, y) + |x− y| = C(x ∨ y, x ∨ y) whenever C(x, y) > 0.

In other words, we analyse under which conditions on δ ∈ D2 the function

Dδ(x, y) := max{0, δ(x ∨ y)− |x− y|} for all x, y ∈ [0, 1], (5.1)

is a copula. Notice that t–norms of type (5.1) were already studied by G. Mayor and
J. Torrens ([105]), who obtained the following characterization.
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Theorem 5.0.2. Let T be a continuous t–norm with diagonal section δ. Then T

satisfies the functional equation

T (x, y) + |x− y| = δ(x ∨ y),

whenever T (x, y) > 0, if, and only if, T belongs to the Mayor–Torrens family of
t–norms presented in Example 1.4.1.

For these reasons, we shall use the prefix MT to indicate a function of type (5.1)
(e.g. MT–copula, MT–quasicopula, MT–semicopula), where “MT” stands for “à la
Mayor and Torrens”.

MT–copulas are characterized in section 5.1 and their properties are studied in
section 5.2. Section 5.3 is devoted to the study of a simple procedure to generate an
aggregation operator with additional properties (Lipschitz, 2–increasing, etc.) begin-
ning from two aggregation operators of the same type and with the same diagonal
section.

The results of this chapter are also contained in [39, 40].

5.1 Characterization of MT–copulas

In order to characterize MT–copulas, first, we establish an analogous characteri-
zation for semicopulas of the same type.

Lemma 5.1.1. The following statements are equivalent:

(a) δ ∈ D and there exists a ∈ [0, 1[ such that δ(x) = 0 on [0, a] and the function
x 7→ (δ(x)− x) is increasing on [a, 1].

(b) Dδ is an MT–semicopula;

Proof. (a) =⇒ (b): For all t ∈ [0, 1]

Dδ(t, 1) = max{0, δ(1)− |t− 1|} = t = Dδ(1, t).

In order to ensure that Dδ is increasing in each variable, consider x, x′, y ∈ [0, 1] with
x ≤ x′ such that Dδ(x, y) > 0 and Dδ(x′, y) > 0. If y ≥ x′, then

Dδ(x, y) = δ(y)− y + x ≤ δ(y)− y + x′ = Dδ(x′, y).

If y ≤ x, then, since t 7→ (δ(t)− t) is increasing,

Dδ(x, y) = δ(x)− x+ y ≤ δ(x′)− x′ + y = Dδ(x′, y). (5.2)

Finally, if x < y ≤ x′, then, again since t 7→ (δ(t)− t) is increasing,

Dδ(x, y) = δ(y)− y + x ≤ δ(x′)− x′ + y = Dδ(x′, y). (5.3)
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(b) =⇒ (a): Set a := sup{t ∈ [0, 1] : Dδ(t, t) = 0} that satisfies the required condi-
tions. The isotony of (δ(t)−t) is established in the same way of the proof of (a) ⇒ (b)
(see inequalities (5.2) and (5.3)).

Theorem 5.1.1. The following statements are equivalent:

(a’) δ ∈ D2 and there exists a ∈ [0, 1/2] such that δ(x) = 0 on [0, a] and the function
x 7→ (δ(x)− x) is increasing on [a, 1];

(b’) Dδ is a copula.

Proof. (a′) =⇒ (b′): In view of Proposition 1.6.1, it suffices to prove that

Dδ(x′, y′) +Dδ(x, y)−Dδ(x′, y)−Dδ(x, y′) ≥ 0 (5.4)

in three cases: on a rectangle R := [x, x′]× [y, y′] contained in ∆− or in ∆+, and on
a rectangle R := [x, y]× [x, y].

In the first case, put F (x, y) := δ(y)− y + x. Then

F (x′, y′) + F (x, y) = F (x, y′) + F (x′, y)

and Dδ(x, y) = max{0, F (x, y)}. If two terms on the left hand side of (5.4) are equal
to 0, then inequality (5.4) follows from the monotony of δ. If one of the terms in the
left hand side of (5.4) is 0, then it is necessarily the value on the left–lower corner of
the rectangle R and, on the remaining three corners, the values of Dδ are equal to
those of F . Then F (x, y) ≤ Dδ(x, y) implies

0 = VF (R) ≤ VDδ
(R).

If R is contained on ∆+, the proof follows from the commutativity of Dδ.
In the third case, it suffices to prove that, for every x ≤ y, δ(x) + δ(y) ≥ 2(δ(y)−

y+x), i.e. (δ(y)− y)− (δ(x)−x) ≤ y−x. However, this inequality follows from (D4)
because, if δ ∈ D2, then (δ(t)− t) is 1-Lipschitz.
(b′) =⇒ (a′): It follows directly from Lemma 5.1.1, by observing that, because of the
Fréchet–Hoeffding bounds (1.13), we have a ∈ [0, 1/2].

Corollary 5.1.1. The following statements are equivalent:

(a’) δ ∈ D2 and there exists a ∈ [0, 1/2] such that δ(x) = 0 on [0, a] and the function
x 7→ (δ(x)− x) is increasing on [a, 1];

(c’) Dδ is a quasi–copula.

In other words, no proper MT–quasi–copula exists.

Proof. As in Theorem 5.1.1, we prove that (c′) =⇒ (a′). The assertion follows directly,
since every copula is a quasi–copula.
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5.2 Properties of MT–copulas

In this section, we denote by D an MT–copula and by δ its diagonal satisfying the
assumptions of Theorem 5.1.1.

Proposition 5.2.1. Every MT–copula D is a simple Bertino copula.

Proof. First, observe that D(x, y) = 0 if, and only if, x∨ y ≤ a. In fact, if there exist
x, y ∈ [0, 1] such that D(x, y) = 0 with x∨ y > a, we have δ(x∨ y)− |x− y| ≤ 0, from
which, for all x > a∨y, δ(x)−x ≤ −y ≤ δ(y)−y: a contradiction, because (δ(x)−x)
is increasing on [a, 1].

Let x, y be in [0, 1] such that D(x, y) > 0 so that x and y both belong to [a, 1].
By Theorem 5.1.1, x 7→ (x− δ(x)) is decreasing on [a, 1]. If x ≥ y, we have

D(x, y) = δ(x)− x+ y = min{x, y} −min{x− δ(x), y − δ(y)}.

In the other case x < y, the proof is analogous.

As a consequence, the following statistical characterization of MT–copulas can be
formulated ([57, Corollary 3.2])

Corollary 5.2.1. Let U and V be r.v.’s uniformly distributed on [0, 1] whose joint
distribution function is the copula D. Then, for each (x, y) ∈ [0, 1]2, either

P (U ≤ x, V ≤ y) = P (max{U, V } ≤ min{x, y})

or

P (U > x, V > y) = P (min{U, V } > max{x, y}).

Moreover, since t 7→ (t−δ(t)) has slope 1 in the interval [0, a] on which it is strictly
increasing, in view of [57, Theorem 4.1], it follows

Proposition 5.2.2. Every MT–copula D is extremal, in the sense that, if there exist
two copulas A and B such that D = αA+(1−α)B, with α ∈ ]0, 1[, then D = A = B.

Remark 5.2.1. The support of D contains the part of the main diagonal of the unit
square corresponding to the union of the intervals on which δ > 0 and δ′ < 2 and a
line which is the boundary of its zero region (see also [57, Theorem 2.2]).

Remark 5.2.2. Observing that the family Tα of Theorem 5.0.2 is an ordinal sum of
W , Tα = (〈0, α,W 〉), and thus it is a copula for every α in [0, 1], we have that, as a
consequence of Theorem 5.0.2, the only associative MT–copulas are of this type.

Now, we present a result on symmetries.
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Proposition 5.2.3. Let X and Y be continuous r.v.’s with copula D. If X and Y are
symmetric about α and β, respectively (α, β ∈ R), then (X,Y ) is radially symmetric
about (α, β) if, and only if, there exists a ∈ [0, 1/2] such that D is a member of the
family of copulas given by

Ca(x, y) = max{W (x, y),M(x, y)− a}. (5.5)

Proof. Let D be an MT–copula with diagonal δ. From Proposition 1.6.3, it suffices
to show that D = D̂, viz. for every (x, y) ∈ [0, 1]2

max{0, δ(x ∨ y)− |x− y|} = x+ y − 1 + max{0, δ(1− x ∧ y)− |x− y|}, (5.6)

which is equivalent to

δ(t) = 2t− 1 + δ(1− t) for every t ∈ [0, 1].

For some a ∈ [0, 1/2], δ(t) = 0 on [0, a] and D = D̂ implies that δ(t) = 2t − 1 on
[1−a, 1]. Since δ(a)−a = −a = δ(1−a)−(1−a) and, from Theorem 5.1.1, (δ(x)−x)
is increasing on [a, 1], this latter function must necessarily be a constant, which can
only be equal to −a on [a, 1− a], so that δ(t) = t− a on [a, 1− a]. Thus we have that
there exists a ∈ [0, 1/2] such that

δ(t) =


0, if t ∈ [0, a];

t− a, if t ∈ [a, 1− a];

2t− 1, if t ∈ [1− a, 1];

and D coincides with Ca.

Notice that the copula Ca is a shuffle of Min, as showed in Example 1.6.8.
It is known from [57] that the Bertino copulas are the weakest (in the pointwise

ordering) copulas with given diagonal section. Moreover, the following result is easily
derived.

Proposition 5.2.4. Let Dδ and Dγ be two MT–copulas with diagonals δ and γ,
respectively. Then Dδ ≤ Dγ if, and only if, δ(t) ≤ γ(t) for all t ∈ [0, 1].

Thus, the concordance order on MT–copulas depends on the pointwise ordering of
their diagonals. In the same way, the diagonal of an MT–copula describes the most
common non–parametric measures of association between random variables.

Theorem 5.2.1. Let D be the MT–copula associated with the random pair (X,Y ).
The values of the measures of association between X and Y are given, respecively, by

τD = 8
∫ 1

0

δ(x) dx − 3, ρD = 12 ·
∫ 1

0

δ2(x) dx − 3,

γD = 4 ·

[
3
∫ 1

1/2

δ(x)dx+
∫ 1/2

0

δ(x)dx− 1

]
,

βD = 4 · δ(1/2)− 1, ϕD = 6
∫ 1

0

δ(x) dx− 2.
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Proof. Let D be an MT–copula and let Ω, Ω+ and Ω− be the three subsets of the
unit square defined by:

Ω := {(x, y) ∈ [0, 1]2 : D(x, y) > 0};

Ω+ := ∆+ ∩ Ω; Ω− := ∆− ∩ Ω.

In view of Theorem 1.8.1, we have

τD = 1− 4
∫ ∫

[0,1]2
∂xD(x, y) · ∂yD(x, y) dx dy,

where

∂xD(x, y) · ∂yD(x, y) =


δ′(x)− 1, if (x, y) ∈ Ω+;

δ′(y)− 1, if (x, y) ∈ Ω−;

0, otherwise.

Now ∫ ∫
[0,1]2

∂xD(x, y) · ∂yD(x, y) dx dy

=
∫ ∫

Ω+

∂xD(x, y) · ∂yD(x, y) dx dy +
∫ ∫

Ω−

∂xD(x, y) · ∂yD(x, y) dx dy

= 2 ·
∫ 1

0

(δ′(x)− 1) dx
∫ x

x−δ(x)
dy = 1− 2

∫ 1

0

δ(x)dx.

Simple calculations lead to the value of τD.
By using Theorem 1.8.2, ρD is given by:

ρD = 12
∫ ∫

[0,1]2
D(x, y)dxdy − 3 = 24

∫ ∫
Ω+

(δ(x)− x+ y) dxdy − 3

= 24 ·
∫ 1

0

(δ(x)− x) dx
∫ x

x−δ(x)
dy + 24 ·

∫ 1

0

dx

∫ x

x−δ(x)
y dy − 3

= 24 ·
∫ 1

0

(
δ2(x)− xδ(x)

)
dx+ 12 ·

∫ 1

0

(
−δ2(x) + 2xδ(x)

)
dx − 3

= 12 ·
∫ 1

0

δ2(x) dx − 3.

In the same manner, from Theorem 1.8.3

γD = 4
[∫ 1

0

D(x, 1− x)dx−
∫ 1

0

(x−D(x, x)) dx
]
.

For all x ∈ [0, 1]

D(x, 1− x) =

max (0, δ(1− x)− 1 + 2x) if x ≤ 1/2;

max (0, δ(x)− 2x+ 1) if x > 1/2.
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It is easy to show that∫ 1

0

D(x, 1− x)dx = 2
∫ 1

1/2

δ(x)dx− 1/2

and ∫ 1

0

(x− δ(x)) dx = 1/2−
∫ 1

0

δ(x)dx,

from which we have the asserted value of γD.
The expressions of βD and ϕD follow directly from Theorems 1.8.4 and 1.8.5.

5.3 A construction method

Let ∆+ and ∆− be the two subsets of the unit square given in (1.12). For two
binary aggregation operators A and B, we introduce the function FA,B : [0, 1]2 → [0, 1]
given, for all x, y in [0, 1], by

FA,B(x, y) := A(x, y) 1∆+(x, y) +B(x, y) 1∆−(x, y).

In other words, if we divide the unit square by means of its diagonal, then FA,B is
equal to A in the lower triangle and equal to B in the upper one.

Figure 5.1: The function FA,B

Proposition 5.3.1. If A and B are agops with the same diagonal section, then FA,B

is an agop. Moreover, if A and B are semicopulas, so is FA,B.

Proof. It is obvious that FA,B(0, 0) = 0 and FA,B(1, 1) = 1. Moreover, FA,B is
increasing in each place because δA = δB . Finally, notice that, if A and B are
semicopulas, then

FA,B(x, 1) = B(x, 1) = x, FA,B(1, x) = A(1, x) = x,

for every x ∈ [0, 1]. Therefere FA,B has neutral element 1.
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Notice that, if A and B are agops such that δA 6= δB , then FA,B need not be
increasing. For example, if A = M and B = Π, then

FA,B(0.5, 0.4) = 0.4 > 0.3 = FA,B(0.5, 0.6).

In the following results we consider the case in which A and B are copulas or
quasi–copulas.

Proposition 5.3.2. If A and B are quasi–copulas with the same diagonal section,
then FA,B is a quasi–copula.

Proof. In view of Proposition 5.3.1 we have to prove only that FA,B is 1–Lipschitz.
Let x, x′, y, y′ be points in [0, 1]. If (x, y) and (x′, y′) are both in ∆+ (or ∆−), then
FA,B is obviously 1–Lipschitz. Therefore, suppose that, for example, (x, y) ∈ ∆+ and
(x′, y′) ∈ ∆− and, without loss of generality, x > x′ and y < y′.

Figure 5.2: Proof of Proposition 5.3.2

Let (w,w) be the point of intersection between the segment line joining (x, y) and
(x′, y′) and the diagonal section of the unit square. We have

|FA,B(x, y)− FA,B(x′, y′)| ≤ |FA,B(x, y)− FA,B(w,w)|+ |FA,B(w,w)− FA,B(x′, y′)|

≤ |A(x, y)−A(w,w)|+ |B(w,w)−B(x′, y′)|

≤ (x− w) + (w − y) + (w − x′) + (y′ − w)

≤ |x− x′|+ |y − y′|.

The other cases can be proved in an analogous manner.

Corollary 5.3.1. If A and B are 1–Lipschitz agops with the same diagonal section,
then FA,B is a 1–Lipschitz agop.

Proposition 5.3.3. Let A and B be copulas with the same diagonal section. If A
and B are symmetric, then FA,B is a copula.
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Proof. In view of Proposition 5.3.1, we have to proof only the 2–increasing property
for FA,B . On the rectangles entirely contained in either ∆+ or ∆−, the rectangular
inequality (C2) follows directly from the 2–increasing property of A and B. Therefore,
in view of Proposition 1.6.1, it suffices to show that, for all s, t ∈ [0, 1] with s < t,

VFA,B
([s, t]2) := A(s, s) +A(t, t)−B(s, t)−A(t, s) ≥ 0.

Because A and B are both symmetric, we have

VFA,B
([s, t]2) :=

1
2
(
VA([s, t]2) + VB([s, t]2)

)
≥ 0,

which concludes the proof.

Remark 5.3.1. In Proposition 5.3.3, the assumption of the symmetry of the copulas
A and B is essential. If, for example, A is a non–symmetric copula, then FA,B need
not be a copula. We consider, for example, the copula A given by

A(x, y) =


max

(
x+

1
2
(y − 1), 0

)
, if x ∈

[
0,

1
2

]
;

min
(
x+

1
2
(y − 1), y

)
, if x ∈

]
1
2
, 1
]

;

and the copula B given by

B(x, y) := min
{
x, y,

δA(x) + δA(y)
2

}
.

If R := [1/3, 2/3]2, we have

VFA,B
(R) = −1/12 < 0,

viz. FA,B is not a copula. Specifically, because of Proposition 5.3.2, FA,B is a proper
quasi–copula.

Remark 5.3.2. In [108], a general method was described to symmetrize an agop.
Specifically, let A be an agop (generally, non-symmetric), for every x, y ∈ [0, 1], the
symmetrized version of A is defined by

Ã(x, y) =

A(x, y), if x ≥ y;

A(y, x), if x < y.
(5.7)

Since it is a clear that, if A is an agop (quasi–copula), then the transpose AT is an
agop (quasi–copula), it follows from Proposition 5.3.1 (Proposition 5.3.2) that Ã is
an agop (quasi–copula). Notice that, given a copula C, C̃ need not be a copula. We
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consider, for example, the copula Cλ (λ ∈ ]0, 1[) defined by

Cλ(x, y) =


y, if y ≤ λx;

λx, if λx < y ≤ 1− (1− λ)x;

x+ y − 1, if 1− (1− λ)x < y ≤ 1.

For a fixed ε ∈
]
0, 1

2

[
, we have

V
C̃λ

([
1
2
,
1
2

+ ε

]
×
[
1
2
− ε,

1
2

+ ε

])
=
λ

2
− λ(

1
2

+ ε) < 0.

A similar construction method can also be introduced for agops that have the
same values in some fixed linear sections ([80]), for example, with the same opposite
diagonal sections. In this case, let Γ+ and Γ− be the two subsets of the unit square
defined by

Γ+ := {(x, y) ∈ [0, 1]2 : x+ y ≤ 1}, Γ− := {(x, y) ∈ [0, 1]2 : x+ y > 1}.

Given the agops A and B, we introduce the function FA,B : [0, 1]2 → [0, 1] given, for
all x, y ∈ [0, 1], by

FA,B(x, y) := A(x, y) 1Γ+(x, y) +B(x, y) 1Γ−(x, y).

As above, we have

Proposition 5.3.4. If A and B are agops with the same opposite diagonal section,
then FA,B is an agop. Moreover, if A and B are quasi–copulas, then FA,B is a
quasi–copula too.

Theorem 5.3.1. Let A and B be copulas with the same opposite diagonal section. If
B(x, y) ≥ A(x, y) for every (x, y) ∈ Γ−, then FA,B is a copula.



Chapter 6

A generalization of

Archimedean copulas

In this chapter, we introduce and study a class of bivariate copulas that depend on
two univariate functions. This new family, which contains the Archimedean copulas
(see section 1.6.4), is presented in section 6.1. Several examples are then provided in
section 6.2. Section 6.3 is devoted to the study of the concordance order in our class.
The same circle of ideas will also enable us to construct and characterize a new family
of quasi–copulas (section 6.4).

The contents of this chapter can be also found in the papers [41, 42].

6.1 The new family

We denote by Φ the class of all functions ϕ : [0, 1] → [0,+∞] that are continuous
and strictly decreasing, and by Φ0 the subset of Φ formed by the functions ϕ that
satisfy ϕ(1) = 0. Moreover, we denote by Ψ the class of all functions ψ : [0, 1] →
[0,+∞] that are continuous, decreasing and such that ψ(1) = 0. Notice that Φ0 ⊂ Ψ.

For all (ϕ,ψ) ∈ Φ×Ψ, we introduce the function Cϕ,ψ : [0, 1]2 → [0, 1] defined by

Cϕ,ψ(x, y) := ϕ[−1] (ϕ(x ∧ y) + ψ(x ∨ y)) . (6.1)

Evidently, Cϕ,ψ is symmetric and, by using the properties (1.1) of the pseudo–inverse
of a function, it is easily proved that, for all x ∈ [0, 1],

Cϕ,ψ(x, 1) = ϕ[−1] (ϕ(x)) = x = Cϕ,ψ(1, x)

and

0 ≤ Cϕ,ψ(x, 0) = ϕ[−1] (ϕ(0) + ψ(x)) = Cϕ,ψ(0, x) ≤ ϕ[−1] (ϕ(0)) = 0,
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viz. Cϕ,ψ satisfies the boundary conditions (C1).
Below we shall investigate under which conditions on ϕ and ψ, the function Cϕ,ψ

defined by (6.1) is a copula.

Theorem 6.1.1. Let ϕ and ψ belong to Φ and to Ψ, respectively, and let C = Cϕ,ψ

be the function defined by (6.1). If ϕ is convex and (ψ − ϕ) is increasing in [0, 1],
then C is a copula.

Proof. Since C satisfies the boundary conditions (C1), it suffices to show that C is
2–increasing. Let R = [x1, x2] × [y1, y2] be a rectangle contained in the unit square.
We distinguish three cases. If R ⊂ ∆+, then

VC(R) =ϕ[−1] (ϕ(y1) + ψ(x1)) + ϕ[−1] (ϕ(y2) + ψ(x2))

− ϕ[−1] (ϕ(y2) + ψ(x1))− ϕ[−1] (ϕ(y1) + ψ(x2)) .

Set

s1 := ϕ(y1) + ψ(x1), s2 := ϕ(y2) + ψ(x2),

t1 := ϕ(y2) + ψ(x1), t2 := ϕ(y1) + ψ(x2).

Then (t1, t2) ≺ (s1, s2) and ϕ[−1] is convex, because ϕ is convex. Thus Theorem 1.2.2
implies VC(R) ≥ 0.

Since C is symmetric, the same argument yields VC(R) ≥ 0 if the rectangle R is
entirely contained in the region ∆−.

Next, consider the case in which the diagonal of R lies on the diagonal of the unit
square, viz. x1 = y1 and x2 = y2. If x1 = 0, then VC(R) = ϕ[−1] (ϕ(x2) + ψ(x2)) ≥ 0.
Assume then that x1 > 0. We obtain

VC(R) =ϕ[−1] (ϕ(x1) + ψ(x1)) + ϕ[−1] (ϕ(x2) + ψ(x2))

− ϕ[−1] (ϕ(x1) + ψ(x2))− ϕ[−1] (ϕ(x1) + ψ(x2)) .

Now, set

s1 := ϕ(x1) + ψ(x1), s2 := ϕ(x2) + ψ(x2), t1 := ϕ(x1) + ψ(x2) =: t2.

Since t 7→ (ψ(t)− ϕ(t)) is increasing in [0, 1], we obtain

min{t1, t2} = ϕ(x1) + ψ(x2) ≥ ϕ(x2) + ψ(x2) = min{s1, s2}

and
t1 + t2 ≥ s1 + s2.

Therefore (t1, t2) ≺w (s1, s2), and since ϕ[−1] is convex and decreasing, from Tomic’s
Theorem 1.2.3 we have VC(R) ≥ 0. By using the Proposition 1.6.1, we have the
desired assertion.
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Remark 6.1.1. Notice that, since t 7→ (ψ(t)− ϕ(t)) is increasing, then ϕ(t) ≥ ψ(t)
for all t ∈ [0, 1]. In fact, if there existed x0 ∈ (0, 1) such that ϕ(x0) < ψ(x0), then

0 < ψ(x0)− ϕ(x0) ≤ ψ(1)− ϕ(1) = −ϕ(1) ≤ 0,

which is a contradiction.

If (ϕ,ψ) is a pair of functions that generate a copula C of type (6.1), then, for any
c > 0, also (cϕ, cψ) generates C.

Given a copula C of type (6.1) generated by ϕ and ψ, let h and k be the two
functions given by h(t) := exp(−ϕ(t)) and k(t) := exp(−ψ(t)). Then, we have

C(x, y) = ϕ[−1] (− ln(h(x ∧ y))− ln(k(x ∨ y)))

= h[−1] (exp [ln(h(x ∧ y)) + ln(k(x ∨ y))])

= h[−1] (h(x ∧ y) · k(x ∨ y)) .

In particular, Theorem 6.1.1 can be easily reformulated in a multiplicative form.

Theorem 6.1.2. Let h, k be two continuous and increasing functions from [0, 1] into
[0, 1] such that k(1) = 1. If h is log–concave and t 7→ h(t)/k(t) is increasing, then

Ch,k(x, y) := h[−1] (h(x ∧ y) · k(x ∨ y)) (6.2)

is a copula.

6.2 Examples

The most important family of copulas of type (6.1) is the Archimedean one. Specif-
ically, given a function ϕ in Φ0, Cϕ,ϕ is an Archimedean copula with additive generator
ϕ. In particular, the copulas Π and W are of this type. On account of this fact, a
copula of type (6.1) is called generalized Archimedean copula (briefly GA–copula).

Notice that also the copula M is of type (6.1): it suffices to take ψ = 0 and ϕ ∈ Φ.
As a consequence, the family of copulas of type (6.1) is comprehensive, viz. M , Π and
W are GA–copulas.

Example 6.2.1. Given an increasing and differentiable function f : [0, 1] → [0, 1],
let ϕ(t) = − ln t and ψ(t) = − ln f(t) be two functions satisfying the assumptions of
Theorem 6.1.1. The corresponding copula of type (6.1) is given by

Cϕ,ψ(x, y) := (x ∧ y)f(x ∨ y),

which is a member of the family of copulas studied in chapter 4. In fact, notice that,
if ψ − ϕ is increasing, then we can deduce that tf ′(t) ≤ f(t) on [0, 1] and, therefore,
f satisfies the assumptions of Theorem 4.1.1.
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Example 6.2.2. Let δ : [0, 1] → [0, 1] be in the class D2 of the diagonals of a copula.
Take ϕ(t) = 1 − t and ψ(t) = t − δ(t). If ψ is decreasing, then (ψ − ϕ) is increasing
and Theorem 6.1.1 ensures that the pair (ϕ,ψ) generates a copula Cϕ,ψ = Cδ given
by

Cδ(x, y) := max{0, δ(x ∨ y)− |x− y|} for all x, y ∈ [0, 1].

Thus Cδ is a member of the family of MT–copulas, characterized and studied in
chapter 5.

Example 6.2.3. Take ϕ ∈ Φ0 and ψ(t) = αϕ for α ∈ [0, 1]. Then ψ ∈ Ψ and the
corresponding copula, Cϕ,ψ = Cα, is given by

Cα(x, y) = ϕ[−1] (ϕ(x ∧ y) + αϕ(x ∨ y))

= ϕ[−1]

(
(ϕ(x) + ϕ(y)) ·A

(
ϕ(x)

ϕ(x) + ϕ(y)

))
,

where

A(t) =

1− (1− α)t, t ∈ [0, 1/2] ;

α+ (1− α)t, t ∈ [1/2, 1] .

Therefore Cα belongs to the Archimax family of copulas presented in Example 1.6.9.

Example 6.2.4. Take ϕ(t) = −αt+α (α ≥ 1) and ψ(t) = 1− t. Then the pair (ϕ,ψ)
belongs to Φ×Ψ and satisfies the assumptions of Theorem 6.1.1. The corresponding
copula, Cϕ,ψ = Cα, is given by

Cα(x, y) = max
{

0, x ∧ y − 1
α

(1− x ∨ y)
}

=


α(x ∧ y) + (x ∨ y)− 1

α
, α(x ∧ y) + (x ∨ y) ≥ 1;

0, otherwise.

The copula Cα has a probability mass 2
α+1 uniformly distributed on the two segments

connecting the point
(

1
α+1 ,

1
α+1

)
with (0, 1) and (1, 0), respectively, and a probability

mass α−1
α+1 uniformly distributed on the segment joining the point

(
1

α+1 ,
1

α+1

)
to (1, 1)

(see also page 57 of [114]). In particular, we obtain C1 = W and C∞ = M . Notice
that this class of copulas has been also used in [29].

Example 6.2.5. Take ϕ(t) = 1− t and, for α ∈ [0, 1],

ψ(t) =


α/2, if t ∈ [0, α/2] ;

α− t, if t ∈ [α/2, α] ;

0, if t ∈ [α, 1] .
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Figure 6.1: Support of the copula Cα (α = 2) in Example 6.2.4

Then the pair (ϕ,ψ) belongs to Φ×Ψ and satisfies the assumptions of Theorem 6.1.1.
The corresponding copula, Cϕ,ψ = Cα, is given by

Cα(x, y) :=

max{0, x+ y − α} if (x, y) ∈ [0, α]2 ;

min{x, y} otherwise.

Therefore, Cα spreads uniformly the mass on the two segments connecting, respec-
tively, the points (1, 1) with (α, α) and (α, 1) with (1, α). Notice that Cα is a member
of the Mayor–Torrens family (1.5).

Note that copulas of type (6.1) that are ordinal sums of copulas are characterized
in the following

Proposition 6.2.1. The only (non trivial) ordinal sum of copulas that can be ex-
pressed in the form (6.1) is the ordinal sum (〈0, a, C〉), where C is a suitable copula
and a ∈ ]0, 1[.

Proof. It suffices to observe that the set of idempotent elements of C is given by
{0} ∪ [a, 1], where a := inf{t ∈ [0, 1] : ψ(t) = 0}. In fact, given the copula C, let δ be
its diagonal section given by δ(t) := C(t, t) = ϕ[−1] (ϕ(t) + ψ(t)). In particular, for
all t ∈ ]0, 1[ we have δ(t) < t if, and only if, min{ϕ(t) + ψ(t), ϕ(0)} > ϕ(t), which is
equivalent to ψ(t) > 0. Since ψ is decreasing and ψ(1) = 0, we have δ(t) < t if, and
only if, t is in ]0, a[ where a := inf{t ∈ [0, 1] : ψ(t) = 0}.

Theorem 6.1.1 highlights the importance of finding generators in order to construct
GA–copulas. To this purpose the following result provides useful methods (the proofs
are the same given in [61]).

Theorem 6.2.1. Let (ϕ,ψ) be a pair in Φ×Ψ. The following statements hold:

(a) if f : [0, 1] → [0, 1] is an increasing and concave bijection, then (ϕ ◦ f, ψ ◦ f) is
in Φ×Ψ;
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(b) if f : [0,+∞[ → [0,+∞[ is an increasing convex function such that f(0) = 0,
then (f ◦ ϕ, f ◦ ψ) is in Φ×Ψ;

(c) if 0 < α < 1, then (ϕ(αt)− ϕ(α), ψ(αt)− ψ(α)) is in Φ×Ψ.

Notice that additive generators of Archimedean copulas can be combined together
in order to construct copulas of the type (6.1). In fact, let ϕ and ψ belong to Φ0; in
view of Theorem 6.1.1, the convexity of ϕ and the condition that (ψ−ϕ) be increasing
ensure that Cϕ,ψ is a copula. Consider, for instance, the functions α(t) := 1 − t,
β(t) := − ln t and γ(t) := 1/t − 1, which are, respectively, the additive generators of
the Archimedean copulas W , Π and the Hamacker copula

Π
Σ−Π

(x, y) :=
xy

x+ y − xy
;

then we obtain the following copulas:

Cβ,α(x, y) = (x ∧ y) exp
(
(x ∨ y)− 1

)
,

Cγ,α(x, y) =
x ∧ y

1 + (x ∧ y)− xy
,

Cγ,β(x, y) =
x ∧ y

1− (x ∧ y) ln(x ∨ y)
.

6.3 Concordance order

The concordance order between two GA–copulas is determined only by the prop-
erties of their generators.

Theorem 6.3.1. Let C and D be two GA–copulas generated, respectively, by the
pairs (ϕ,ψ) and (γ, η). Let α := ϕ ◦ γ[−1] and β := ψ ◦ η[−1]. Then C ≤ D if, and
only if,

α(a+ b) ≤ α(a) + β(b) for all a, b ∈ [0,+∞] . (6.3)

Proof. Let x and y be in [0, 1] and suppose, first, that x ≤ y. Then C ≤ D if, and
only if,

ϕ[−1] (ϕ(x) + ψ(y)) ≤ γ[−1] (γ(x) + η(y)) .

Let γ(x) = a and η(y) = b, then the above inequality is equivalent to

ϕ[−1]
(
ϕ ◦ γ[−1](a) + ψ ◦ η[−1](b)

)
≤ γ[−1] (a+ b) .

Applying the function γ to both sides, we obtain

α[−1] (α(a) + β(b)) ≥ a+ b,

viz. condition (6.3).
If x > y, the proof can be completed by using the same arguments.
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Notice that, if C and D are Archimedean copulas generated, respectively, by ϕ

and γ, then α = β and condition (6.3) is equivalent to the subadditivity of α, as
stated in Theorem 4.4.2 of [114].

In two particular cases, the concordance order can be expressed in a form simpler
than (6.3).

Corollary 6.3.1. Let C and D be two copulas of type (6.1) generated, respectively,
by the pairs (ϕ,ψ) and (γ, η). Let α := ϕ ◦ γ[−1] and β := ψ ◦ η[−1].

(a) If ϕ = γ is a strictly decreasing function with ϕ(0) = +∞, then C ≤ D if, and
only if, ψ(t) ≥ η(t) for every t ∈ [0, 1].

(b) If ψ = η is a strictly decreasing function with ψ(0) = +∞, then C ≤ D if, and
only if, α is 1–Lipschitz.

Proof. Since ϕ = γ admits an inverse, α(t) = t. Therefore condition (6.3) is equivalent
to

b ≤ β(b) = ψ ◦ η[−1](b) for all a, b ∈ [0,+∞] .

Taking b := η(t), we have C ≤ D if, and only if, ψ(t) ≥ η(t) for every t ∈ [0, 1].
Analogously, for (b), since ψ = η admits an inverse, we have β(t) = t, and (6.3) is

equivalent to

α(a+ b)− α(a) ≤ b for all a, b ∈ [0,+∞] ,

as asserted.

6.4 A similar new class of quasi–copulas

It is interesting to ascertain under which conditions the function Cϕ,ψ defined by
(6.1) is a quasi–copula; the following theorem provides a characterization of quasi–
copulas in the class {Cϕ,ψ : ϕ ∈ Φ, ψ ∈ Ψ}.

Theorem 6.4.1. Let ϕ and ψ belong to Φ and to Ψ, respectively. Let Cϕ,ψ be the
function defined by (6.1). Then Cϕ,ψ is a quasi–copula if, and only if, both the fol-
lowing statements hold:

(a) for all r ≤ s and t ∈
[
0,
(
ψ ◦ ϕ[−1]

)
(r)
]

ϕ[−1](r + t)− ϕ[−1](s+ t) ≤ ϕ[−1](r)− ϕ[−1](s);

(b) for all r ≤ s and t ≥
(
ϕ ◦ ψ[−1]

)
(r)

ϕ[−1](r + t)− ϕ[−1](s+ t) ≤ ψ[−1](r)− ψ[−1](s).
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Proof. We already know that, when ϕ and ψ belong to Φ and to Ψ respectively, the
function C := Cϕ,ψ given by (6.1) satisfies condition (Q1) for a quasi–copula. That
both x 7→ C(x, y) and y 7→ C(x, y) are increasing functions for every y ∈ [0, 1] and for
every x ∈ [0, 1], respectively, is an obvious consequence of the fact that both ϕ and
ψ are decreasing functions. Therefore, in order to complete the proof, it suffices to
show that the assumptions are equivalent to the Lipschitz condition (Q3) for C.

Assume, first, that x1 < x2 ≤ y. The inequality

C(x2, y)− C(x1, y) ≤ x2 − x1 (6.4)

is equivalent to

ϕ[−1] (ϕ(x2) + ψ(y))− ϕ[−1] (ϕ(x1) + ψ(y))

≤ x2 − x1 = ϕ[−1](ϕ(x2))− ϕ[−1](ϕ(x1)).

By setting r := ϕ(x2), s := ϕ(x1) and t := ψ(y), we obtain that t belongs to[
0,
(
ψ ◦ ϕ[−1]

)
(r)
]

and r ≤ s; moreover, the last inequality is equivalent to (a).
Next assume y ≤ x1 < x2. The inequality (6.4) is equivalent to

ϕ[−1] (ϕ(y) + ψ(x2))− ϕ[−1] (ϕ(y) + ψ(x1)) ≤ x2 − x1

= ψ[−1](ψ(x2))− ψ[−1](ψ(x1)).

By setting r := ψ(x2), s := ψ(x1), t := ϕ(y), we have t ≥
(
ϕ ◦ ψ[−1]

)
(s) and r ≤ s.

For the arbitrariness of s ≥ r, it follows that t ≥
(
ϕ ◦ ψ[−1]

)
(r) and the last inequality

is equivalent to condition (b).
The final case, x1 ≤ y ≤ x2, follows from the two previous cases, since

C(x2, y)− C(x1, y) = C(x2, y)− C(y, y) + C(y, y)− C(x1, y)

≤ x2 − y + y − x1 = x2 − x1,

which concludes the proof.

Although Theorem 6.4.1 characterizes quasi–copulas of the type (6.1), conditions
(a) and (b) may be somewhat impractical. However, these conditions are equivalent
to the convexity of ϕ, when ϕ = ψ, as is shown in the following

Corollary 6.4.1. Let ϕ belong to Φ0 and let Cϕ,ϕ be a function of the type (6.1).
Then Cϕ,ϕ is a quasi–copula if, and only if, ϕ is convex.

Proof. By Theorem 6.4.1, Cϕ,ϕ is a quasi–copula if, and only if, for every r ≤ s and
for every t ≥ 0, we have

ϕ[−1](r + t)− ϕ[−1](s+ t) ≤ ϕ[−1](r)− ϕ[−1](s),

which can be written in the form

ϕ[−1](r + t) + ϕ[−1](s) ≤ ϕ[−1](s+ t) + ϕ[−1](r). (6.5)
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If ϕ is convex, so is ϕ[−1], and therefore (6.5) follows directly from Theorem 1.2.2,
observing that (r+ t, s) ≺ (s+ t, r). Conversely, if (6.5) holds, for all a, b ≥ 0 we can
put

r = a, t =
b− a

2
s =

a+ b

2
.

Then, we have

2ϕ[−1]

(
a+ b

2

)
≤ ϕ[−1](a) + ϕ[−1](b),

viz. ϕ[−1] is mid–convex and, because ϕ[−1] is continuous, it follows that ϕ[−1] is
convex, and hence so is ϕ.

The following result provides a sufficient condition for Cϕ,ψ to be a quasi–copula.

Proposition 6.4.1. Let ϕ and ψ belong to Φ and to Ψ, respectively. If ϕ is convex,
then, for the function Cϕ,ψ defined by (6.1), the following statements are equivalent:

(a) Cϕ,ψ is a quasi–copula;

(b) for every λ ∈ [ϕ(1), ϕ(0)] the function ρλ :
[
ϕ[−1](λ), 1

]
→ R given by

ρλ(t) := ϕ[−1] (λ+ ψ(t))− t

is decreasing.

Proof. From Theorem 6.4.1, it suffices to show that C satisfy the 1–Lipschitz condition
(Q3). Assume, first, that x1 ≤ x2 ≤ y. The inequality

C(x2, y)− C(x1, y) ≤ x2 − x1 (6.6)

is equivalent to

ϕ[−1] (ϕ(x2) + ψ(y)) + ϕ[−1](ϕ(x1)) ≤ ϕ[−1] (ϕ(x1) + ψ(y)) + ϕ[−1](ϕ(x2)).

By setting s1 := ϕ(x2) + ψ(y), s2 := ϕ(x1), t1 := ϕ(x1) + ψ(y) and t2 := ϕ(x2),
we have (s1, s2) ≺ (t1, t2) and therefore, since ϕ[−1] is convex, Theorem 1.2.2 ensures
that (6.6) is satisfied. In this case, the Lipschitz condition is a consequence of the
convexity of ϕ alone.

Next assume y ≤ x1 < x2. The inequality (6.6) is equivalent to

ϕ[−1] (ϕ(y) + ψ(x2))− ϕ[−1] (ϕ(y) + ψ(x1)) ≤ x2 − x1;

viz. condition (b).
The final case, x1 ≤ y ≤ x2, follows from the two previous cases.

Example 6.4.1. Take the functions

ϕ(t) := − ln t and ψ(t) := − ln
(
t+ t2 − t3

)
.
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For every λ ∈ [0,+∞] the function ρλ : [exp(−λ), 1] → R is given by

ρλ(t) := exp(−λ)
(
t+ t2 − t3

)
− t.

Now, (ϕ,ψ) is in (Φ×Ψ) and ρλ is decreasing, therefore Theorem 6.4.1 ensures that
the function Cϕ,ψ, given by (6.1) is a quasi–copula. Notice that Cϕ,ψ is not a copula, as
shown in Example 4.3.1. This implies that the family {Cϕ,ψ : ϕ ∈ Φ, ψ ∈ Ψ}, where ϕ
and ψ satisfy conditions (a) and (b) of Theorem 6.4.1, contains proper quasi–copulas.



Chapter 7

Binary operations on

bivariate d.f.’s

Let H be a binary operation on [0, 1] and let ∆2 be the set of bivariate d.f.’s. A
binary operation η on ∆2 is said to be induced pointwise by H if, for all A and B in
∆2 and for all (x, y) ∈ R2

,

η(A,B)(x, y) = H(A(x, y), B(x, y)). (7.1)

The function η(A,B) : [0, 1]2 → [0, 1] given by (7.1) is called composition of A and B
via H.

The major result of this chapter is the characterization of the induced pointwise
operations on the set ∆2 (section 7.2). A similar operation has been studied, in the
univariate case, by C. Alsina et al. ([4]) in order to solve some problems arising in
the theory of probabilistic metric spaces. However, in the bivariate case, the charac-
terization is quite different and involves the new notion of “P–increasing function”,
a generalization of the 2–increasing functions, here introduced and studied (section
7.1). Section 7.3 is devoted mainly to questions related to the Fréchet classes and the
convergence of d.f.’s. We conclude with some remarks of this problem on the class of
copulas (section 7.4). These results can be also found in [45, 48, 38].

7.1 P–increasing functions

The focus of this section is on the new concept of P–increasing function, which
will be needed for the characterization of induced pointwise operations on bivariate
d.f.’s.
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Definition 7.1.1. A function H : [0, 1]2 → [0, 1] is said to be P–increasing (i.e.
probabilistically increasing) if, and only if,

H(s1, t1) +H(s4, t4) ≥ max [H(s2, t2) +H(s3, t3),H(s3, t2) +H(s2, t3)] , (7.2)

for all si, ti ∈ [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4, t1 ≤ t2 ∧ t3 ≤ t2 ∨ t3 ≤ t4, (7.3)

s1 + s4 ≥ s2 + s3, t1 + t4 ≥ t2 + t3. (7.4)

Here we present a geometric interpretation of the P–increasing property.
Given si, ti (i ∈ {1, 2, 3, 4}) as in Definition 7.1.1, let

u1 := s2 ∧ s3, u4 := s2 ∨ s3, v1 := t2 ∧ t3, v4 := t2 ∨ t3.

Set

p = (s1, t1), q = (s4, t1), r = (s4, t4), s = (s1, t4)
p’ = (u1, v1), q’ = (u4, v1), r’ = (u4, v4), s’ = (u1, v4)

Consider the rectangle R1 with vertices p, q, r and s, and the rectangle R2 with
vertices p’, q’, r’ and s’. Hence R2 ⊆ R1 and conditions (7.3) and (7.4) imply that
the centre of R2 lies below and to the left of the centre of R1 (unless R1 = R2).

Figure 7.1: Geometric interpretation of the P–increasing property

Now, there are four choices for (u1, v1) – namely (s2, t2), (s2, t3), (s3, t2) and (s3, t3)
– each leading to corresponding choices for the other vertices of R2. For example, if
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(u1, v1) = (s2, t2) then (u4, v4) = (s3, t3), and so on. In each case, (7.2) yields the two
inequalities

H(p) +H(r) ≥ H(p’) +H(r’),

H(p) +H(r) ≥ H(q’) +H(s’).

In particular, when R1 = R2, the above inequalities establish that the P–increasing
property implies the 2–increasing property.

Remark 7.1.1. Notice that conditions (7.3) and (7.4) on the points si and ti (i =
1, 2, 3, 4) ensure that (s2, s3) ≺w (s1, s4) and (t2, t3) ≺w (t1, t4).

Remark 7.1.2. In the sequel, in order to prove that a function H is P–increasing,
we restrict ourselves to showing that, for all si, ti as in Definition 7.1.1,

H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3), (7.5)

instead of inequality (7.2) that can be easily obtained by means of a relabelling of
the points. In fact, this was the primary definition of P–increasing function (see
[45]). The equivalent definition given above was suggested by A. Sklar in a personal
communication and it is adopted here because of its straightforward geometrical in-
terpretation.

The P–increasing property is connected with the property of being directionally
convex ([147, 111, 99]). We recall that a function H : [0, 1]2 → [0, 1] is called direc-
tionally convex if, for all si, ti (i ∈ {1, 2, 3, 4}) in [0, 1] such that (7.3) holds together
with the condition, stronger than (7.4),

s1 + s4 = s2 + s3, t1 + t4 = t2 + t3, (7.6)

we have
H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3).

Theorem 7.1.1. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a) H is P–increasing;

(b) H is directionally convex and increasing in each place.

Proof. (a) =⇒ (b): Given a P–increasing function H, it suffices to show that H is
increasing in each place. Consider b ∈ [0, 1] and, for all i ∈ {1, 2, 3, 4}, take si and ti

as in Definition 7.1.1, but satisfying the further conditions s1 = s2 and ti = b. Hence

H(s4, b)−H(s3, b)−H(s2, b) +H(s2, b) ≥ 0,
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from which H(s4, b) ≥ H(s3, b), viz. t 7→ H(t, b) is increasing. The isotony of H in
the other variable is established in an analogous manner.

(b) =⇒ (a): Let the s1’s and the ti’s (i ∈ {1, 2, 3, 4}) be as in Definition 7.1.1 and
choose v4 and w4 in [0, 1] such that v4 ∈ [s2 ∨ s3, s4], w4 ∈ [t2 ∨ t3, t4] and

s1 + v4 = s2 + s3, t1 + w4 = t2 + t3.

Hence

H(s2, t2) +H(s3, t3) ≤ H(s1, t1) +H(v4, w4) ≤ H(s1, t1) +H(s4, t4),

which is the desired conclusion.

In particular, by using a characterization of the directionally convex functions
([111, Theorem 2.5]), we can obtain the following

Theorem 7.1.2. A function H : [0, 1]2 → [0, 1] is P–increasing if, and only if, the
following statements hold:

(a) H is 2–increasing;

(b) H is increasing in each place;

(c) H is convex in each place.

Note that the convex combinations of two P–increasing functions are P–increasing.

Corollary 7.1.1. Let H : [0, 1]2 → [0, 1] be P–increasing. The following statements
hold:

(a) H is jointly continuous on [0, 1[2;

(b) H ≤ Π.

Proof. (a): By classical properties of convex functions, it follows that every P–
increasing function H : [0, 1]2 → [0, 1] is continuous in each variable on [0, 1[ and
then, in view of Proposition 2.1.2, it is jointly continuous on [0, 1[2.

(b) If there exists (x0, y0) in ]0, 1[ such that H(x0, y0) > x0y0, then the horizontal
section of H at y0 is not be convex and, thus, H is not be P–increasing.

Corollary 7.1.2. Let H : [0, 1]2 → R be twice differentiable. Then H is P–increasing
if, and only if, all the derivatives of the first and the second order of H are greater
than (or equal to) 0 on [0, 1]2.

Example 7.1.1. The copulas Π and W are P–increasing, and so is their convex sum
Cα = αΠ + (1− α)W . But, the copula M is not P–increasing; in fact, if we consider
si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 = 2/10 ≤ s2 = 3/10 = s3 ≤ s4 = 5/10,

t1 = 0 ≤ t2 = 3/10 = t3 ≤ t4 = 1,
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then

M(2/10, 0)−M(3/10, 3/10)−M(3/10, 3/10) +M(5/10, 1) = −1/10 < 0.

Notice that P–increasing copulas are associated with a random pair (X,Y ) that is
both SD(X|Y ) and SD(Y |X) (see Proposition 1.7.3). For example, we can consider
the family of copulas given, for every α ∈ ]−1, 0], by

Cα(x, y) = xy + αxy(1− x)(1− y),

which is a subclass of the FGM class (see Example 1.6.3).

Important examples of P–increasing functions are given by the following result.

Proposition 7.1.1. Let f and g be increasing and convex functions from [0, 1] into
[0, 1]. Let H : [0, 1]2 → [0, 1] be P–increasing. Then, the function Hf,g defined by

Hf,g(x, y) := H(f(x), g(y))

is P–increasing.

Proof. From Proposition 3.2.1, it follows that the function Hf,g is a 2–increasing
agop. Moreover, every horizontal (resp., vertical) section of H is convex, because it
is composition of the convex and increasing horizontal (resp., vertical) section of A
with f (resp. g). Now, the desired assertion follows from Theorem 7.1.2.

Example 7.1.2. For every α, β ≥ 1, Λα,β(x, y) := λxα + (1− λ)yβ (λ ∈ [0, 1]) and
Πα,β(x, y) := xα · yβ are P–increasing. In particular, the weighted arithmetic mean
is P–increasing, but it is not the case of the weighted geometric mean. Consider, for
instance, si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) given by

s1 = 0 < s2 =
4
10

= s3 < s4 =
8
10
, t1 =

4
10

< t2 =
7
10

= t3 < t4 = 1,

then
√
s1 t1 +

√
s4 t4 −

√
s2 t2 −

√
s3 t3 =

√
80

10
−
√

112
10

< 0.

7.2 Induced pointwise operations on d.f.’s

Here we characterize the induced pointwise operations on ∆2.

Lemma 7.2.1. If H is a 2–increasing agop, then, for all s, s′, t, t′ in [0, 1], it satisfies
the condition

|H(s′, t′)−H(s, t)| ≤ |H(s′, 1)−H(s, 1)|+ |H(1, t′)−H(1, t)| .
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Family Parameters

Λα,β(x, y) := λxα + (1− λ)yβ α, β ≥ 1

Πα,β(x, y) := xα · yβ α, β ≥ 1

Fα(x, y) := αxy + (1− α) max{x+ y − 1, 0} α ∈ [0, 1]

Gα(x, y) := xy + αxy(1− x)(1− y) α ∈ [−1, 0]

Sα(x, y) := xy + α sinπx
x

sinπy
y α ∈ [−1, 0]

Mα(x, y) := xy + αmin{x, 1− x}min{y, 1− y} α ∈ [−1, 0]

Table 7.1: Family of P–increasing functions

Proof. Let s and s′ be in [0, 1] with s ≤ s′. Then, for every t ∈ [0, 1],

H(s′, 1)−H(s, 1) ≥ H(s′, t)−H(s, t).

Similarly, for all s ∈ [0, 1] and for t and t′ in [0, 1], with t ≤ t′,

H(1, t′)−H(1, t) ≥ H(s, t′)−H(s, t).

Therefore, for all s, s′, t, t′ in [0, 1], we have

|H(s′, t′)−H(s, t)| ≤ |H(s′, t′)−H(s, t′)|+ |H(s, t′)−H(s, t)|

≤ |H(s′, 1)−H(s, 1)|+ |H(1, t′)−H(1, t)| .

Theorem 7.2.1. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a) H induces pointwise a binary operation η on ∆2;

(b) H fulfils the conditions

(b.1) H(0, 0) = 0 and H(1, 1) = 1,

(b.2) H is P–increasing,

(b.3) H is left–continuous in each place.

Proof. (a) =⇒ (b): Let H induce pointwise the binary operation η on ∆2, viz. for all
A and B in ∆2 and (x, y) ∈ R2

, the function

η(A,B)(x, y) := H(A(x, y), B(x, y))

is in ∆2. For all 2–d.f.’s A and B we have

H(0, 0) = H (A(x,−∞), B(x,−∞)) = η(A,B)(x,−∞) = 0
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and

H(1, 1) = H (A(+∞,+∞), B(+∞,+∞)) = η(A,B)(+∞,+∞) = 1.

Let si and ti be in [0, 1] (i ∈ {1, 2, 3, 4}) such that (7.3) and (7.4) hold. Hence, there
exist two d.f.’s A and B in ∆2 and four points x1, x2, y1, y2 in R, with x1 ≤ x2 and
y1 ≤ y2, such that

s1 = A(x1, y1), s2 = A(x1, y2), s3 = A(x2, y1), s4 = A(x2, y2),

t1 = B(x1, y1), t2 = B(x1, y2), t3 = B(x2, y1), t4 = B(x2, y2).

Since η(A,B) is 2–increasing,

η(A,B)(x1, y1) + η(A,B)(x2, y2)− η(A,B)(x1, y2)− η(A,B)(x2, y1) ≥ 0,

which, with the above positions, is equivalent to

H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3).

But we may exchange s2 and s3 and find a bivariate d.f. A′ such that

s1 = A′(x1, y1), s3 = A′(x1, y2), s2 = A′(x2, y1), s4 = A′(x2, y2).

Hence, with B unchanged, we have

H(s1, t1) +H(s4, t4) ≥ H(s3, t2) +H(s2, t3),

from which it follows (7.2).
In order to prove (b.3), let s be any point in [0, 1] and let {sn} be any sequence

in [0, 1] that increases to s, sn ↑ s. Let A and B be in ∆2 such that (i) the margin
F (x) := A(x,+∞) of A is continuous and strictly increasing and (ii) the margin
G(x) := B(x,+∞) of B is constant on R and equal to t, G(x) = t for all x ∈ R. Thus
the sequence {xn}, where xn := F−1(sn) for all n ∈ N, converges to x := F−1(s),
xn ↑ x. Now, for all t ∈ [0, 1]

H(sn, t) = H (F (xn), G(xn)) = H (A(xn,+∞), B(xn,+∞))

= η(A,B)(xn,+∞) n→+∞−−−−−→ η(A,B)(x,+∞)

= H (A(x,+∞), B(x,+∞)) = H (F (x), G(x)) = H(s, t).

In an analogous manner, the function t 7→ η(A,B)(s, t) is proved to be left–continuous
for all s ∈ [0, 1].
(b) =⇒ (a): Let H satisfy conditions (b.1) through (b.3) and define an operation η

on ∆2 via

η(A,B)(x, y) := H(A(x, y), B(x, y)) for all A,B ∈ ∆2.
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It is a straightforward matter to verify that η(A,B) thus defined satisfies the boundary
conditions η(A,B)(+∞,+∞) = 1, and η(A,B)(t,−∞) = 0 = η(A,B)(−∞, t) for all
t ∈ R. Moreover, given x, x′, y, y′ in R with x ≤ x′ and y ≤ y′, we have

η(A,B)(x′, y′)− η(A,B)(x′, y)− η(A,B)(x, y′) + η(A,B)(x, y)

= H(A(x′, y′), B(x′, y′))−H(A(x′, y), B(x′, y))

−H(A(x, y′), B(x, y′)) +H(A(x, y), B(x, y)).

Now, take

s1 = A(x, y), s2 = A(x′, y), s3 = A(x, y′), s4 = A(x′, y′)

t1 = B(x, y), t2 = B(x′, y), t3 = B(x, y′), t4 = B(x′, y′);

then si and ti (i ∈ {1, 2, 3, 4}) satisfy (7.3) and (7.4) and, because H is P–increasing,
it follows that η(A,B) is 2-increasing. Thus it remains to verify that η(A,B) is left–
continuous in each variable. Let x be in R, let y be any point in R, and let {xn} be
a sequence of reals such that xn ↑ x. Hence

|η(A,B)(xn, y)− η(A,B)(x, y)|

= |H (A(xn, y), B(xn, y))−H (A(x, y), B(x, y))| −−−−−→
n→+∞

0,

since s 7→ A(s, y) and s 7→ B(s, y) are left–continuous and Proposition 2.1.2 holds. In
an analogous manner, t 7→ η(A,B)(x, t) is proved to be left–continuous for all x ∈ R.
This completes the proof.

The class of all functions that induce pointwise a binary operation on ∆2 shall be
denoted by P. In particular, notice that if H is in P, then H is a binary aggregation
operator.

Theorem 7.2.1 is similar to the characterization of induced pointwise operations
on ∆, which is reproduced here (see [4]).

Theorem 7.2.2. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a’) H induces pointwise a binary operation η on ∆, viz. for every F and G in ∆,
η(F,G)(t) := H(F (t), G(t)) is a d.f.;

(b’) H fulfils the conditions

(b.1’) H(0, 0) = 0 and H(1, 1) = 1,

(b.2’) H is increasing in each variable,

(b.3’) H is left–continuous in each place.

Because every P–increasing function satisfies (b.2’) (see section 7.1), every function
in P induces pointwise also a binary operation on ∆.
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7.3 Some connected questions

Let A and B be bivariate d.f.’s defined for all x, y ∈ R by

A(x, y) = C (F1(x), G1(y)) and B(x, y) = D (F2(x), G2(y)) ,

where Fi, Gi (i = 1, 2) are their respective margins and C and D are their respective
copulas (we adopt, if necessary, the method of bilinear interpolation in order to single
out one copula, see [140]). In other words, A and B are, respectively, in the Fréchet
classes Γ(F1, G1) and Γ(F2, G2). If H is in P, we can obtain some information on the
margins of the pointwise induced d.f. η(A,B) defined as in (7.1).

Proposition 7.3.1. Under the above assumptions, η(A,B) belongs to the Fréchet
class determined by the (unidimensional) d.f.’s

x 7→ H(F1(x), F2(x)) and y 7→ H(G1(y), G2(y)).

Proof. For all x, y ∈ R, we have

η(A,B)(x,+∞) = H(A(x,+∞), B(x,+∞)) = H(F1(x), F2(x)),

and, analogously,

η(A,B)(+∞, y) = H(A(+∞, y), B(+∞, y)) = H(G1(y), G2(y)),

as claimed.

Moreover, if H satisfies the assumptions of Theorem 7.2.1 and, then, it induces
pointwise a binary operation η on ∆2, it is entirely natural to ask whether anything
may be said about the copula C̃ of η(A,B) for all A and B in ∆2.

Proposition 7.3.2. Under the above assumptions, if F1 = F2 = F , G1 = G2 = G

and H is idempotent, then C̃(x, y) = H(C(x, y), D(x, y)).

Proof. For every H in the Fréchet class Γ(F,G), (x, y) 7→ H(A(x, y), B(x, y)) is a
bivariate d.f. with marginal d.f.’s given by

H(F (x), F (x)) = F (x) and H(G(y), G(y)) = G(y).

It follows that there exists a copula C̃ such that

C̃ (F (x), G(y)) = H (A(x, y), B(x, y)) = H [C(F (x), G(y)), D(F (x), G(y))] ,

from which an argument similar to that used in the proof of Sklar’s theorem ([114])
yields C̃(s, t) = H (C(s, t), D(s, t)) for all s, t ∈ [0, 1].

In general, when F1 6= F2 and G1 6= G2, the above result is not true.



110 Chap. 7 Binary operations on bivariate d.f.’s

Example 7.3.1. Let H(x, y) = λx+ (1− λ)y be the weighted arithmetic mean and
let C = D = Π be the product copula, then, for λ ∈ ]0, 1[, we have

H(A(x, y), B(x, y)) = λF1(x)G1(y) + (1− λ)F2(x)G2(y)

6= [λF1(x) + (1− λ)F2(x)] [λG1(y) + (1− λ)G2(y)]

= Π(H(F1(x), F2(x)),H(G1(y), G2(y))).

We conclude this section with a remark on the convergence in ∆2. Assume that
{An} and {Bn} are two sequences of d.f.’s in ∆2 that converge weakly to the d.f.’s
A and B, respectively; in other words, if C(A) and C(B) are the dense subsets of R2

formed by the points of continuity of A and B, respectively, then

∀(x, y) ∈ C(A) lim
n→+∞

An(x, y) = A(x, y),

and

∀(x, y) ∈ C(B) lim
n→+∞

Bn(x, y) = B(x, y).

The question naturally arises of whether, for H ∈ P that induces the operation η on
∆2, the sequence of bivariate d.f.’s {η(An, Bn)} converges weakly to η(A,B). While
we do not know a general answer to this question, the following result provides a
useful sufficient condition.

Theorem 7.3.1. Under the conditions just specified, if H is continuous in each place,
then the sequence {η(An, Bn)}n∈N converges weakly to η(A,B).

Proof. The set C(A) ∩ C(B) is dense in R2
. For every point (x, y) in C(A) ∩ C(B)

An(x, y) −−−−−→
n→+∞

A(x, y) and Bn(x, y) −−−−−→
n→+∞

B(x, y).

In view of Lemma (7.2.1), we have

|η(An, Bn)(x, y) − η(A,B)(x, y)|

= |H (An(x, y), Bn(x, y))−H (A(x, y), B(x, y))|

≤ |H (An(x, y), 1)−H (A(x, y), 1)|+ |H (1, Bn(x, y))−H (1, B(x, y))| .

The assertion now follows directly from the continuity of H.

7.4 Remarks on the composition of copulas

Since every copula is also the restriction of a bivariate d.f. to the unit square, it
is natural to study also induced pointwise binary operations on C. Note that the
function H(x, y) = λx+ (1− λ)y induces pointwise a binary operation on C, which is
a convex set.
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Proposition 7.4.1. If H : [0, 1]2 → [0, 1] induces pointwise a binary operation ρ on
C, then H is idempotent.

Proof. Suppose that there exists a binary aggregation operator H that induces point-
wise a binary operation ρ on C, namely, for all A and B in C,

ρ(A,B)(x, y) = H(A(x, y), B(x, y))

is a copula. It can be easily proved that ρ(A,B) satisfies the boundary conditions
(C1) if, and only if, H(x, x) = x for all x in [0, 1].

In particular, no copula induces pointwise a binary operation on C: in fact, M is
the only idempotent copula but the minimum of two copulas need not be a copula
(see Example 2.3.2).

Because the P–increasing property preserves the 2–increasing property, we have
that, if H is a P–increasing and idempotent agop, then H induces pointwise a binary
operation on copulas. However, this procedure is not useful in view of the following
result.

Proposition 7.4.2. Let A be a binary aggregation operator such that A(x, x) ≥ x for
every x ∈ [0, 1]. Then A is P–increasing if, and only if, there exists a ∈ [0, 1] such
that A(x, y) = ax+ (1− a)y.

Proof. Let A be a P–increasing agop such that A(x, x) ≥ x for every x ∈ [0, 1].
In particular, on account of Theorem 7.1.2, A is 2–increasing and its horizontal and
vertical sections are convex. Set a := A(1, 0) and b := A(0, 1) and notice that a+b ≤ 1.

In view of the 2–increasing property, for every y ∈ [0, 1] we have

A(0, y) +A(y, 1) ≥ A(y, y) +A(0, 1) ≥ y + b, (7.7)

and, from the convexity of y 7→ A(0, y),

A(0, y) ≤ yA(0, 1) + (1− y)A(0, 0) = by.

Therefore, connecting the two inequalities above, we obtain A(y, 1) ≥ y + (1 − y)b.
On the other hand, from the convexity of y 7→ A(y, 1),

A(y, 1) ≤ yA(1, 1) + (1− y)A(0, 1) = y + (1− y)b,

viz. A(y, 1) = y + (1− y)b. Analogously A(1, y) = (1− a)y + a.
From (7.7), it follows also that

A(0, y) ≥ y + b− (1− b)y − b = by

and, because A(0, y) ≤ yA(0, 1) = by, we have A(0, y) = by. In the same manner,
A(x, 0) = ax.
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Now, because A is 2–increasing, for every y ≥ x, we have

A(x, y) ≥ A(x, 1) +A(y, y)−A(y, 1) ≥ (1− b)x+ by

and
A(x, y) ≤ A(x, 1) +A(0, y)− b = (1− b)x+ by,

viz. A(x, y) = (1 − b)x + by. In the same manner, for every x ≥ y, we obtain
A(x, y) = ax+ (1− a)y.

Finally, notice that

A(x, 1/2) =

(1− b)x+ b/2, if x ≤ 1/2;

ax+ (1− a)/2, if x > 1/2;

and, from the convexity of x 7→ A(x, 1/2), we have

A

(
1
2
,
1
2

)
≤ 1

2
A

(
0,

1
2

)
+

1
2
A

(
1,

1
2

)
,

which is equivalent to a + b ≥ 1. Therefore a + b = 1 and, for every (x, y) ∈ [0, 1]2,
A(x, y) = ax+ (1− a)y.

Corollary 7.4.1. Let A be a P–increasing agop. The following statements are equiv-
alent:

(a) A is idempotent;

(b) there exists a ∈ [0, 1] such that A(x, y) = ax+ (1− a)y.

Thus, in the class of copulas, the characterization of induced pointwise operation
is still an open problem.



Chapter 8

Generalized composition of

aggregation operators

Let A be the class of binary aggregation operators (=agops). In this section, we
denote by Θ the class of all increasing functions f : [0, 1] → [0, 1]. Given f1, f2, g1
and g2 in Θ and a binary operation H on [0, 1], let F be the mapping defined on
[0, 1]2 by

F (x, y) := H (A(f1(x), g1(y)), B(f2(x), g2(y))) , (8.1)

for all A and B in A. The function F is called generalized composition of (A,B) with
respect to the 5–ple (f1, g1, f2, g2,H), which is called generating system. The prefix
“generalized” is used here to distinguish the function F from the classical composition
that is obtained when f1 = g1 = f2 = g2 = id[0,1], and already studied for agops (see,
for instance, [10, 90]).

This chapter aims to establish which conditions on the generating system ensure
that, for every choice of A and B in a given subset B ⊆ A (for instance, B is the set
of copulas, semicopulas, etc.), F is also an agop belonging to B. Thus, in section 8.1
we analyse the case of agops and sections 8.2, 8.3 and 8.4 are devoted, respectively,
to the study of generalized composition in the class of semicopulas, 1–Lipschitz and
2–increasing agops. The case of copulas is considered in section 8.5, where several
examples are given together with an interesting application of this method.

The results of this chapter can be also found in [35, 38, 37].

8.1 Composition of agops

As above, given a generating system (f1, g1, f2, g2,H), for all agops A and B, let
F be the mapping defined by (8.1). If H is an agop, then F is increasing, because it
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is a composition of increasing functions. Moreover, in order to ensure that

F (0, 0) = H (A(f1(0), g1(0)), B(f2(0), g2(0))) = 0,

one among the following conditions is sufficient:

f1(0) = g1(0) = 0 and f2(0) = g2(0) = 0, (8.2)

f1(0) = g1(0) = 0 and H(0, b) = 0, for every b ∈ [0, 1], (8.3)

f2(0) = g2(0) = 0 and H(a, 0) = 0, for every a ∈ [0, 1]. (8.4)

Analogously, in order to obtain

F (1, 1) = H (A(f1(1), g1(1)), B(f2(1), g2(1))) = 1,

one among the following conditions is sufficient:

f1(1) = g1(1) = 1 and f2(1) = g2(1) = 1, (8.5)

f1(1) = g1(1) = 1 and H(1, b) = 1, for every b ∈ [0, 1], (8.6)

f2(1) = g2(1) = 1 and H(a, 1) = 1, for every a ∈ [0, 1]. (8.7)

In the sequel, we suppose that a generating system satisfies one condition among
(8.2)–(8.4) and another one among (8.5)–(8.7).

Proposition 8.1.1. Let (A,B) ∈ A×A and (f1, g1, f2, g2,H) be a generating system.
Then the function F given by (8.1) is an agop.

The very general form of composition (8.1) allows a great flexibility in constructing
new agops and, in particular, the new method includes well-known procedures (see
[10] for more details about them), as the following examples show.

Example 8.1.1. Let (f1, g1, f2, g2,H) be a generating system such that, for every
(x, y) ∈ [0, 1]2, H(x, y) = x. For every A and B in A, the function F given in (8.1) is
equal to the agop A(f1(x), g1(y)). In particular, if f1 and g1 are greater than id[0,1],
this transformation was used for augmenting the output given by A (see [92]).

Example 8.1.2. If f1 = g1 = f2 = g2 = id[0,1] and H is an agop, then the generating
system (f1, g1, f2, g2,H) generates, for all agops A and B, an agop F that is the
classical composition in A, which includes as special cases the weighted arithmetic
mean of agops, by taking H(x, y) = λx + (1 − λ)y (λ ∈ [0, 1]), and the weighted
geometric mean of agops, by taking H(x, y) = xλ · y1−λ (λ ∈ [0, 1]). In particular,
if A is a t–norm and B is a t–conorm, F is a triangular norm–based compensatory
operator, a special agop introduced as a means for providing compensation between
the small and the large degrees of memberships when we combine fuzzy sets (see [92]
and the references therein).
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Example 8.1.3. Let A,B ∈ A and let (f1, g1, f2, g2,H) be a generating system of
the function F given by (8.1). If f1 = g1 is a bijection and H(x, y) := f−1

1 (x),
then F (x, y) = f−1

1 (A(f1(x), f1(y))) is the transformation of A by f1, considered in
chapter 9.

Example 8.1.4. Let A,B ∈ A and let (f1, g1, f2, g2,H) be a generating system of
the function F given by (8.1). If f1 = g1 = f2 = g2 = id[0,1], take H(x, y) =
min{1, x + βy} (β ∈ [0, 1]). Then F is the augmentation of A. Similarly, taking
H(x, y) = max{0, x − β(1 − y)} (β ∈ [0, 1]), the corresponding F is the reduction of
A. This is another method proposed in [31] for augmenting (reducing) the outputs.

Remark 8.1.1. Given two associative agops A and B and a generating system
(f1, g1, f2, g2,H) with f1 = g1 and f2 = g2, the function F defined by (8.1) is called
a quasi–associative operator (see [158]).

8.2 Composition of semicopulas

Now, we give some sufficient conditions for the generalized composition of semi-
copulas.

Proposition 8.2.1. Let (A,B) be in S× S and let (f1, g1, f2, g2,H) be a generating
system satisfying (8.5) and one condition among (8.2)–(8.4). The function F given
by (8.1) is a semicopula if, and only if,

H(f1(x), f2(x)) = x and H(g1(x), g2(x)) = x for every x ∈ [0, 1]. (8.8)

Proof. In view of Proposition 8.1.1 it suffices to show that F has neutral element
equal to 1. Let x be in [0, 1]. We have

F (x, 1) = H (A(f1(x), g1(1)), B(f2(x), g2(1))) = H(f1(x), f2(x)) = x,

and, analogously, F (1, x) = x.

Example 8.2.1. For every a ≥ 1, we consider the following generating system:

f1(x) = g1(x) = min{ax, 1}, f2(x) = g2(x) = x, H = min{x, y}.

For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) :=

min{A(ax, ay), B(x, y)}, if (x, y) ∈ [0, 1/a[2;

B(x, y), otherwise.

Example 8.2.2. For every a ≥ 1, we consider the following generating system:

f1(x) = g1(x) = max{ax+ (1− a), 0}, f2(x) = g2(x) = x, H = max{x, y}.
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For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) :=

B(x, y), if (x, y) ∈
[
0,
a− 1
a

]2
;

max {A(ax+ (1− a), ay + (1− a)), B(x, y)} , otherwise.

Example 8.2.3. For all α, β > 0, we consider the following generating system:

f1(x) = xα, g1(x) = xβ , f2(x) = x1−α, g2(x) = x1−β , H = Π.

For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) := A(xα, yβ) ·B(x1−α, y1−β),

which is a non–symmetric agop for α 6= β.

In the case of semicopulas, we can give a full characterization of the classical
composition. To this end, first, we give a technical result.

Lemma 8.2.1. Let s1, s2 and t be points in [0, 1[ with s1 ≤ s2. Then there exist two
semicopulas A and B and two points (x1, y1) and (x2, y2) in [0, 1]2, with x1 ≤ x2 and
y1 ≤ y2 such that

A(x1, y1) = s1 and A(x2, y2) = s2, B(x1, y1) = t = B(x2, y2).

Proof. Three cases will be considered.
Case 1: t ≤ s1 ≤ s2. Let A be the ordinal sum given by

A = (〈si, si+1, Z〉)i∈I ,

with I = {0, 1, 2, 3} and s0 = 0, s3 = 1, so that

A(x, y) =


0, if (x, y) ∈ [0, s1[

2 ;

s1, if (x, y) ∈ [s1, s2[
2 ;

s2, if (x, y) ∈ [s2, 1[2 ;

x ∧ y, otherwise;

and let B be the ordinal sum given by B = (〈0, t, Z〉 , 〈t, 1, Z〉), so that

B(x, y) =


0, if (x, y) ∈ [0, t[2 ;

t, if (x, y) ∈ [t, 1[2 ;

x ∧ y, otherwise.

Then
A(s1, s1) = s1, A(s2, s2) = s2, B(s1, s1) = t = B(s2, s2).
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Case 2: s1 ≤ t ≤ s2. Choose B as in the previous case and let A be the frame
semicopula defined by

A(x, y) :=



0, (x, y) ∈ [0, 1[2 \ [s1, 1[2 ,

s1, (x, y) ∈ [s1, 1[2 \ ]t, 1[2 ,

t, (x, y) ∈ ]t, 1[2 \ [s2, 1[2 ,

s2, (x, y) ∈ [s2, 1[2 ,

x ∧ y, x ∨ y = 1.

Then

A(t, t) = s1, A(s2, s2) = s2 and B(t, t) = B(s2, s2) = t.

Case 3: s1 ≤ s2 ≤ t. Choose B as in the two previous cases and let A be the frame
semicopula

A(x, y) :=


0, (x, y) ∈ [0, 1[2 \ [t, 1[2 ,

s1, (x, y) ∈ [t, 1[2 \ [x1, 1[2 ,

s2, (x, y) ∈ [x1, 1[2 ,

x ∧ y, x ∨ y = 1,

where the point x1 belongs to ]t, 1]. Then we have

A(t, t) = s1, A(x1, x1) = s2, B(x1, x1) = B(t, t) = t,

which proves the assertion.

Theorem 8.2.1. Let A and B be semicopulas and let H be a binary operation on
[0, 1]. Let F (x, y) := H (A(x, y), B(x, y)). The following statements are equivalent:

(a) for all semicopulas A and B, F is a semicopula;

(b) H is an idempotent agop.

Proof. (a) =⇒ (b): If F is a semicopula, then for every x ∈ [0, 1]

x = F (x, 1) = H (A(x, 1), B(x, 1)) = H(x, x).

Let s1, s2 and t be in [0, 1[ with s1 ≤ s2. Hence, because of Lemma 8.2.1, there
are two points (x1, y1) and (x2, y2) in [0, 1]2 with x1 ≤ x2 and y1 ≤ y2 such that
A(x1, y1) = s1, A(x2, y2) = s2 and B(x1, y1) = B(x2, y2) = t. Therefore

H(s1, t) = H (A(x1, y1), B(x1, y1)) = F (x1, y1)

≤ F (x2, y2) = H (A(x2, y2), B(x2, y2)) = H(s2, t).

In an analogous manner, we prove that, for all s ∈ [0, 1[, the function t 7→ H(s, t) is
increasing. Thus H is an idempotent agop.

The converse implication, (b) =⇒ (a), is a consequence of Proposition 8.2.1.
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8.3 Composition of 1–Lipschitz agops

The following result gives a sufficient condition for the generalized composition of
1–Lipschitz agops, whose class is denoted by A1.

Theorem 8.3.1. Let (A,B) be in A1 ×A1 and let (f1, g1, f2, g2,H) be a generating
system. Let F be the function defined by (8.1). If H has the kernel property and fi

and gi are 1–Lipschitz (i = 1, 2), then F is in A1.

Proof. Set Ã(x, y) := A(f1(x), g1(y)) and B̃(x, y) := B(f2(x), g2(y)). For every x, x′,
y, y′ in [0, 1] we have

|F (x, y)− F (x′, y′)| = |H
(
Ã(x, y), B̃(x, y)

)
−H

(
Ã(x′, y′), B̃(x′, y′)

)
|

≤ max{|Ã(x, y)− Ã(x′, y′)|, |B̃(x, y)− B̃(x′, y′)|}

≤ max{|f1(x)− f1(x′)|+ |g1(y)− g1(y′)|, |f2(x)− f2(x′)|+ |g2(y)− g2(y′)|}

≤ |x− x′|+ |y − y′|,

which concludes the proof.

Example 8.3.1. Let (A,B) be in A1×A1 and let (id[0,1], id[0,1], id[0,1], id[0,1],Ha) be
a generating system where, for every a ∈ [0, 1], Ha(x, y) = med(x, y, a) is the median
among x, y and a. Then the corresponding 1–Lipschitz agop Fa defined by (8.1) is

Fa(x, y) = med (A(x, y), B(x, y), a) .

In particular, if a = 0 (resp. a = 1), then we obtain that the minimum (resp.
maximum) of two 1–Lipschitz agops is a 1–Lipschitz agop.

Example 8.3.2. Let (A,B) be in A1 × A1 and let (fa, fa, id[0,1], id[0,1],H) be a
generating system where a ∈ ]0, 1[ and

fa(x) =
ax

a+ (1− a)x
, H(x, y) = min{x, y}.

Then the corresponding 1–Lipschitz agop Fa defined by (8.1) is

Fa(x, y) = min
{
A

(
ax

a+ (1− a)x
,

ay

a+ (1− a)y

)
, B(x, y)

}
.

Notice that the range of fa is not the whole [0, 1].

Corollary 8.3.1. Let A and B be quasi–copulas and let (f1, g1, f2, g2,H) be a gen-
erating system satisfying the assumptions of Proposition 8.2.1. Let F be the function
defined by (8.1). If one of the following statementes holds:

(a) fi = gi = id[0,1] (i = 1, 2) and H is a kernel agop;
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(b) f1 = g1 = id[0,1], f2 and g2 are 1–Lipschitz and H(x, y) = min{x, y};

(c) f1 and g1 are 1–Lipschitz, f2 = g2 = id[0,1] and H(x, y) = min{x, y};

then F is a quasi–copula.

Proof. The assertion follows easily from both Theorem 8.3.1 and Proposition 8.2.1
because the function id[0,1] is 1–Lipschitz and the function H(x, y) = min{x, y} is a
kernel agop.

The characterization of the classical composition of quasi–copulas was given in
[90] and it is reproduced here.

Proposition 8.3.1. Let H be a binary operation on [0, 1] and denote by Ω the subset
of the unit square defined by

Ω :=
{

(u, v) ∈ [0, 1]2 : v ∈
[
max{2u− 1, 0}, u+ 1

2

]}
.

The following statements are equivalent:

(a) for all quasi–copulas A and B, H(A(x, y), B(x, y)) is a quasi–copula;

(b) H is an agop which satisfies the kernel property on Ω.

8.4 Composition of 2–increasing agops

We denote by A2 the class of 2–increasing agops.

Theorem 8.4.1. Let A and B be 2–increasing agops and let (f1, g1, f2, g2,H) be a
generating system. If H is P–increasing, then the function F defined by (8.1) is a
2–increasing agop.

Proof. Set Ã(x, y) := A(f1(x), g1(y)) and B̃(x, y) := B(f2(x), g2(y)). The function F
given by (8.1) satisfies the 2–increasing property if, and only if, for all x, x′, y, y′ in
[0, 1], x ≤ x′ and y ≤ y′,

F (x′, y′)− F (x′, y)− F (x, y′) + F (x, y)

= H(Ã(x′, y′), B̃(x′, y′))−H(Ã(x′, y), B̃(x′, y))

−H(Ã(x, y′), B̃(x, y′)) +H(Ã(x, y), B̃(x, y)) ≥ 0.

Now, take

s1 = Ã(x, y), s2 = Ã(x′, y), s3 = Ã(x, y′), s4 = Ã(x′, y′)

t1 = B̃(x, y), t2 = B̃(x′, y), t3 = B̃(x, y′), t4 = B̃(x′, y′).

The functions Ã and B̃ are increasing in each place and 2–increasing (in view of
Proposition 3.2.1). Therefore the points si and ti (i ∈ {1, 2, 3, 4}) satisfy (7.3) and
(7.4) and, because H is P–increasing, it follows that F is 2-increasing.
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Notice that the assumptions of Theorem 8.4.1 are only sufficient: for particular
agops A and B, in fact, they could be weakened, as the following example shows.

Example 8.4.1. Let AS be the smallest agop. Consider fi = gi = id[0,1] (i = 1, 2)
and let B be an agop in A2. For every P–increasing agop H, the composition F of
AS and B given by (8.1) is equal to H(0, B(x, y)) for every (x, y) 6= (1, 1). Therefore,
in order to ensure that F is 2–increasing, it is sufficient to give conditions only on the
vertical section y 7→ H(0, y), and no other assumption on the values of H on [0, 1]2 is
required.

The classical composition of 2–increasing agops is characterized here.

Theorem 8.4.2. Let H be an agop. The following statements are equivalent:

(a) H is P–increasing;

(b) for every (A,B) ∈ A2 × A2, F (x, y) = H(A(x, y), B(x, y)) is a 2–increasing
agop.

Proof. Part (a) =⇒ (b) is a particular case of Theorem 8.4.1. Conversely, let si, ti ∈
[0, 1] (i ∈ {1, 2, 3, 4}) such that (7.3) and (7.4) hold, namely

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4, t1 ≤ t2 ∧ t3 ≤ t2 ∨ t3 ≤ t4, (8.9)

s1 + s4 ≥ s2 + s3, t1 + t4 ≥ t2 + t3. (8.10)

Define the following agops:

A(x, y) :=



0, if min{x, y} = 0;

s1; if (x, y) ∈ ]0, 1/2]× ]0, 1/2];

s2; if (x, y) ∈ ]0, 1/2]× ]1/2, 1];

s3; if (x, y) ∈ ]1/2, 1]× ]0, 1/2];

s4; if (x, y) ∈ ]1/2, 1[× ]1/2, 1[;

1; if (x, y) = (1, 1);

B(x, y) :=



0, if min{x, y} = 0;

t1; if (x, y) ∈ ]0, 1/2]× ]0, 1/2];

t2; if (x, y) ∈ ]0, 1/2]× ]1/2, 1];

t3; if (x, y) ∈ ]1/2, 1]× ]0, 1/2];

t4; if (x, y) ∈ ]1/2, 1[× ]1/2, 1[;

1; if (x, y) = (1, 1).

Let F (x, y) = H(A(x, y), B(x, y)) be the composition of A and B. Then

VH
(
[1/3, 2/3]2

)
= H(s1, t1) +H(s4, t4)−H(s2, t2)−H(s3, t3) ≥ 0,

viz. H is P–increasing.
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Corollary 8.4.1. Let f : [0, 1] → [0, 1] be such that f(0) = 0 and f(1) = 1. The
following statements are equivalent:

(a) f is convex and increasing;

(b) for every (A,B) ∈ A2 ×A2, F (x, y) = f(A(x, y)) is a 2–increasing agop.

Proof. It suffices to apply the above Theorem to the function H(x, y) = f(x), which
is P–increasing because of Theorem 7.1.2.

8.5 Composition of copulas

The following result on the generalized composition of copulas is a direct conse-
quence of Theorem 8.4.1 and Proposition 8.2.1.

Proposition 8.5.1. Let (A,B) be in C× C and let (f1, g1, f2, g2,H) be a generating
system satisfying the assumptions of Proposition 8.2.1. If H is P–increasing, then
the function F defined by (8.1) is a copula.

Example 8.5.1. Consider, for all 0 < α < β < 1,

f1(x) =
βx

(β − α)x+ α
and f2(x) =

(β − α)x+ α

β
;

for every γ ∈ [0, 1],
g1(x) = xγ and g2(x) = x1−γ ;

and H = Π. For all copulas A and B, in view of Proposition 8.5.1 we have the
following family of copulas:

Cα,β,γ(x, y) = A

(
βx

(β − α)x+ α
, yγ
)
·B
(

(β − α)x+ α

β
, y1−γ

)
.

Example 8.5.2. Consider, for all α and β in ]0, 1],

f1(x) = αx+ (1− α), f2(x) = (1− α)x+ α,

g1(x) = βx+ (1− β), f2(x) = (1− β)x+ β,

and H = W . For all copulas A and B, in view of Proposition 8.5.1 we obtain the
following family of copulas:

Cα,β(x, y) = max
(
A(αx+ α, βx+ β) +B(αx+ α, βx+ β)− 1, 0

)
,

where α := 1− α and β := 1− β.
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Remark 8.5.1. For particular copulas A and B, the conditions of the previous
proposition are only sufficient. In fact, let (A,B) be in C×C with B(x, y) = min{x, y}
and let (f, g,H) be the generating triple defined, for every λ ≥ 1, by

f(x) = min{λx, 1}, g(x) = x, H(x, y) = min{x/λ, y}.

Thus H is not P–increasing (the horizontal section of H is concave), but, for every
copula A, the function F given in (8.1) is

F (x, y) =


1
λ
A(λx, λy), if (x, y) ∈

[
0, 1

λ

]2 ;

min{x, y}, otherwise;

and F is the ordinal sum (〈0, 1/λ,A〉) and, hence, it is a copula.

In Proposition 8.5.1, when either f1 6= g1 or f2 6= g2, we generate a family of
non–symmetric copulas. In fact, the idea of this kind of composition arises from the
paper [61] where the following mechanism is given.

Proposition 8.5.2 (Khoudraji, 1995). Let C be a symmetric copula, C 6= Π. A
family of non–symmetric copulas Cα,β with parameters 0 < α, β < 1 (α 6= β) that
includes C as a limiting case is defined by

Cα,β(x, y) := x1−αy1−βC(xα, yβ).

Proof. It suffices to apply Proposition 8.5.1 with H = Π, f2(t) = tα, f1 = f−1
2 ,

g2(t) = tβ , g1 = g−1
2 . Then Cα,β is the generalized composition of (Π, C) with respect

to the generating system (f1, f2, g1, g2,Π).

In the same manner, we prove:

Proposition 8.5.3. Let A and B be symmetric copulas. A family of non–symmetric
copulas Cα,β with parameter 0 < α, β < 1, α 6= 1/2, is defined by

Cα,β(x, y) := A(xα, yβ) ·B(x1−α, y1−β). (8.11)

An interesting statistical interpretation can be given for this family. Let U1, V1,
U2 and V2 be random variables uniformly distributed on [0, 1]. If A is the connecting
copula of (U1, V1) and B is the connecting copula of (U2, V2) and the pairs (U1, V1)
and (U2, V2) are independent, then Cα,β is the joint d.f. of

U = max{U1/α
1 , U

1/(1−α)
2 } and V = max{V 1/β

1 , V
1/(1−β)
2 }.

Example 8.5.3. In the recent paper [96], a generalization of the bivariate survival
d.f. of type Marshall–Olkin was considered. This function is given, for every x, y ≥ 0,
by

S∗(x, y) = S(x, y) exp(−λ12 max{x, y}),
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where S is a bivariate survival d.f. with continuous survival marginal d.f.’s F (x) =
e−λx, λ > 0 and λ12 > 0. If A is the copula of S, it is an easy computation to
obtain that the copula of S∗ is of the type (8.11), where A = C, B = M and
α = β = λ/(λ+ λ12).

Example 8.5.4. Let A and B two Archimedean copulas generated, respectively, by ϕ
and φ. In view of Proposition 8.5.3, for every α and β in [0, 1] the following functions
are copulas

Cα,β(x, y) := ϕ[−1](ϕ(xα) + ϕ(yβ)) · φ[−1](φ(x1−α) + φ(y1−β)). (8.12)

In particular, if ϕ(t) = φ(t) = (− ln t)γ (γ ≥ 1), then A and B are the members of
the so–called Gumbel–Hougaard family of copulas. By considering (8.12), we obtain
a three–parameter family of non–symmetric copulas,

Cα,β,γ(x, y) := exp
(
− [(−α lnx)γ + (−β ln y)γ ]1/γ −

[
(−α lnx)γ + (−β ln y)γ

]1/γ)
,

where α := 1− α and β := 1− β, which can be considered a non–symmetric general-
ization of the Gumbel–Hougaard family.

The importance of having at disposal families of asymmetric copulas is crucial in
copula modelling. In applications, in fact, we have a (bivariate) data set and we have
interested in the joint d.f. H that is the best–possible approximation to our data.
Thanks to Sklar’s theorem, this problem can be decomposed into two steps: the
modelling of the marginal d.f.’s and the estimating of a copula that summarizes the
dependence between the margins. In several practical cases, we select a large family of
copulas Cθ, where θ = (θ1, . . . , θn) is a multiparameter belonging to a subset Jn ⊆ Rn,
and we choose θ̂ ∈ Jn such that Cθ̂ optimaly fits our data (see [60] for more details on
the copula modelling). A suitable family Cθ could have a simple representation (like
the Archimedean copulas), or a simple way to computing it by numerical procedure
(like the normal copula), and a sufficiently large dependence structure. In particular,
and this is often neglected, no assumptions on the simmetry of the copulas should be
made, unless it is explicitly required by the problem at hand. In fact, if the copula
C is symmetric and the marginals d.f.’s F1 and F2 are continuous and both equal
to a d.f. F , then the joint d.f. H = C(F, F ) is exchangeable and, therefore, it is
not suitable to describe situations in which the appropriateness of this symmetry
condition is doubtful.





Chapter 9

Copula and semicopula

transforms

In this chapter, a method will be studied for transforming a copula into another
one via a continuous and strictly increasing function. For the first time, this method
appeared in the theory of semigroups and it was already used for triangular norms
([141, 83]). Recently, it has been studied in the theory of copulas in [49], where strong
conditions on the transformating function are given, and in [87], where the authors
are interested, in particular, in the study of the invariance of copulas under such
transformations. However, the approach presented here takes into account the ideas
presented in [7], where transformations of copulas and semicopulas are a useful tool
to investigate bivariate notions of aging.

Therefore, in section 9.1 we study first the transformation of semicopulas; then
sections 9.2 and 9.3 are devoted to a characterization of this transformation in the
class of copulas and to the study of its properties.

For the results here presented, we can also see [46].

9.1 Transformation of semicopulas

We denote by Θ the set of continuous and strictly increasing functions h : [0, 1] →
[0, 1] with h(1) = 1 and we denote by Θi the subset of Θ defined by those h ∈ Θ that
are invertible. The following theorem is basic for what follows.

Theorem 9.1.1. For all h ∈ Θ and S ∈ S, the function Sh : [0, 1]2 → [0, 1], defined,
for all x and y in [0, 1], by

Sh(x, y) := h[−1] (S(h(x), h(y))) (9.1)

is a semicopula. Moreover, if S is continuous, then also Sh is continuous.
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Proof. If t is in [0, 1], then

Sh(t, 1) = h[−1] (S(h(t), h(1))) = h[−1](h(t)) = t = Sh(1, t).

Let x, x′, y be in [0, 1] with x ≤ x′. Then

h(x) ≤ h(x′) =⇒ S(h(x), h(y)) ≤ S(h(x′), h(y))

=⇒ h[−1] (S(h(x), h(y))) ≤ h[−1] (S(h(x′), h(y))) ,

namely x 7→ Sh(x, y) is increasing; similarly, y 7→ Sh(x, y) is increasing.

The function Sh given by (9.1) is said to be the transformation of S via h, or the
h–transformation of S.

Theorem 9.1.1 introduces a mapping Ψ : S × Θ → S defined, for all x and y in
[0, 1], by

Ψ(S, h)(x, y) := h[−1] (S(h(x), h(y))) .

We shall often set Ψh S := Ψ(S, h).
The set {Ψh, h ∈ Θ} is closed with respect to the composition ◦. Moreover, given

h, g ∈ Θ, for all S ∈ S we have

(Ψg ◦Ψh) (S(x, y)) = Ψ (Ψ(S, h), g) (x, y) = g[−1] (Ψh S (g(x), g(y)))

= g[−1]
(
h[−1] S ((h ◦ g)(x), (h ◦ g)(y))

)
= (h ◦ g)[−1] (S ((h ◦ g)(x), (h ◦ g)(y))) = Ψh◦gS(x, y).

The identity mapping in S, which coincides with Ψid[0,1] , is, obviously, the neutral
element of the composition operator ◦ in {Ψh, h ∈ Θ}. Moreover, if h ∈ Θi, then Ψh

admits an inverse function given by Ψ−1
h = Ψh−1 and the mapping Ψ : S×Θi → S is

the so–called action of the group Θi on S.
Notice that, given the copula Π, for all h ∈ Θ ΨhΠ is an Archimedean and continu-

ous t-norm with additive generator ϕ(t) = − ln(h(t)) (see Theorem 1.4.2). Moreover,
for all h ∈ Θ, we have ΨhM = M and ΨhZ = Z.

Definition 9.1.1. A subset B of S is said to be stable (or closed) with respect to (or
under) Ψ if the image of B×Θ under Ψ is contained in B, ΨhB ⊆ B for every h ∈ Θ.

It is easily proved that the subsets of commutative and continuous semicopulas
are closed under Ψ. Moreover, the following result can be proved (see also [141, 83]).

Proposition 9.1.1. The class T of all t–norms is closed under Ψ.

Proof. For each h ∈ Θ and T ∈ T, it suffices to show that the function Th := ΨhT ,
defined by

Th(x, y) := h[−1] (T (h(x), h(y))) for all x, y ∈ [0, 1] ,
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is associative. Set δ := h(0) ≥ 0. For all s, t and u all belonging to [0, 1], simple
calculations lead to the two expressions

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)) ∨ δ, h(u)]}

Th [s, Th(t, u)] = h[−1] {T [h(s), T (h(t), h(u)) ∨ δ]} .

If T (h(s), h(t)) ≤ δ, then

Th [Th(s, t), u] = h[−1] (T (δ, h(u))) ≤ h[−1](δ) = 0,

and either

Th [s, Th(t, u)] = h[−1] (T (h(s), T (h(t), h(u))))

= h[−1] (T (T (h(s), h(t)), h(u)))) ≤ h[−1] (T (δ, h(u)) ≤ h[−1](δ) = 0,

or
Th [s, Th(t, u)] = h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0.

Therefore Th is associative.
If T (h(s), h(t)) > δ, then

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)), h(u)]}

and either

Th [s, Th(t, u)] = h[−1] (T (h(s), T (h(t), h(u))))

= h[−1] (T (T (h(s), h(t)), h(u)))) = Th [Th(s, t), u] ,

or
Th [s, Th(t, u)] = h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0,

but, in this case, we have also

Th [Th(s, t), u] = h[−1] {T [T (h(s), h(t)), h(u)]}

= h[−1] (T (h(s), T (h(t), h(u)))) ≤ h[−1] (T (h(s), δ)) ≤ h[−1](δ) = 0;

which is the desired assertion.

A t–norm T is said to be isomorphic to a t–norm T ′ if, and only if, there exists
h ∈ Θi such that T ′ = Th, viz. T ′ is the h–transformation of T . The following result
characterizes in terms of transformations two important subsets of t–norms (see [83]).

Theorem 9.1.2. Let T be a function from [0, 1]2 to [0, 1].

(i) T is a strict t–norm if, and only if, T is isomorphic to Π.

(ii) T is a nilpotent t–norm if, and only if, T is isomorphic to W .
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9.2 Transformation of copulas

Given a copula C and a function h ∈ Θ, let Ch be the h–transformation of C,

Ch(x, y) := h[−1] (C(h(x), h(y))) . (9.2)

From Theorem 9.1.1, it follows that Ch is a semicopula for all h ∈ Θ and for every
copula C ∈ C. However, it is easily checked that Ch need not be a copula, as the
following example shows.

Example 9.2.1. Let h be in Θ defined by h(t) := t2. Then

Wh(x, y) = h−1 (W (h(x), h(y))) =
√

max{x2 + y2 − 1, 0},

namely

Wh(x, y) =

0, if x2 + y2 ≤ 1,√
x2 + y2 − 1, otherwise.

And we have

Wh

(
1,

6
10

)
−Wh

(
6
10
,

6
10

)
=

6
10

>
4
10
.

Thus Wh is not 1–Lipschitz, therefore neither the class of copulas nor the class of
quasi–copulas are stable under Ψ.

In the following result, we characterize the transformations of copulas.

Theorem 9.2.1. For each h ∈ Θ, the following statements are equivalent:

(a) h is concave;

(b) for every copula C, the transform (9.2) is a copula.

Proof. (a) =⇒ (b) In view of Theorem 9.1.1, it suffices to show that Ch satisfies the
rectangular inequality (C2). To this end, let x1, y1, x2, y2 be points of [0, 1] such that
x1 ≤ x2 and y1 ≤ y2. Then the points si (i = 1, 2, 3, 4), defined by

s1 = C(h(x1), h(y1)), s2 = C(h(x1), h(y2)),

s3 = C(h(x2), h(y1)), s4 = C(h(x2), h(y2)),

satisfy

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4 and s1 + s4 ≥ s2 + s3, (9.3)

viz. (s3, s2) ≺w (s4, s1). Because h[−1] is convex, continuous and increasing, it follows
from Tomic’s theorem 1.2.3 that

h[−1](s3) + h[−1](s2) ≤ h[−1](s4) + h[−1](s1).
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Therefore we have

h[−1](C(h(x2), h(y1))) + h[−1](C(h(x1), h(y2)))

≤ h[−1](C(h(x2), h(y2))) + h[−1](C(h(x1), h(y1))),

namely Ch satisfies (C2).
(b) =⇒ (a) It suffices to show that h[−1] is mid–convex, that is

∀s, t ∈ [0, 1] h[−1]

(
s+ t

2

)
≤ h[−1](s) + h[−1](t)

2
, (9.4)

because, then, h[−1] is convex and, hence, h is concave.
Without loss of generality consider the copula W and s and t in [0, 1] with s ≤ t.

If (s+ t)/2 is in [0, h(0)], then (9.4) is immediate. If (s+ t)/2 is in ]h(0), 1], then we
have

W

(
s+ 1

2
,
s+ 1

2

)
= s, W

(
t+ 1

2
,
t+ 1

2

)
= t

W

(
s+ 1

2
,
t+ 1

2

)
=
s+ t

2
= W

(
t+ 1

2
,
s+ 1

2

)
.

There are points x1 and x2 in [0, 1] such that

h(x1) =
1 + s

2
and h(x2) =

1 + t

2
.

Since Wh is a copula, we have

Wh(x1, x1)−Wh(x1, x2)−Wh(x2, x1) +Wh(x2, x2) ≥ 0;

and, as a consequence

h[−1] (s)− h[−1]

(
s+ t

2

)
− h[−1]

(
s+ t

2

)
+ h[−1] (t) ≥ 0,

which is the desired conclusion.

Remark 9.2.1. In a special case, an interesting probabilistic interpretation of formula
(9.2) is presented in [59, Theorem 5.2.3]: if h(t) = t1/n for some n ≥ 1, then Ch

is the copula associated with componentwise maxima, X = max{X1, . . . , Xn} and
Y = max{Y1, . . . , Yn}, of a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of i.i.d.
random vectors with the same copula C. Power transformations of copulas are useful
in the theory of extreme value distributions ([104, 14, 20, 87]).

Remark 9.2.2. Let H be a bivariate distribution function with marginals F and G
and let h be a concave and strictly increasing function. From the proof of Theorem
9.2.1, it is easily proved that the function H̃ given, for every (x, y) ∈ R2

, by

H̃(x, y) = h(H(x, y)) (9.5)
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is a bivariate distribution function with margins h(F ) and h(G). Moreover, if the
margins are continuous, the copula of H̃ is Ch−1 . Transformations of type (9.5) were
used in the field of insurance pricing ([58, 156]) and they are also called distorted
probability measure in the context of non–additive probabilities ([30]).

9.3 Properties of the transformed copula

We denote by ΘC the set of concave functions in Θ. These properties can be easily
proved:

Proposition 9.3.1. Let h and g be two functions in ΘC . Then

(a) λh+ (1− λ)g is in ΘC for every α ∈ [0, 1];

(b) h ◦ g is in ΘC ;

(c) h(tα) and (h(t))α are in ΘC for all α ∈ ]0, 1[.

h(x) h[−1](x) Parameter

x1/α xα α ≥ 1

1−e−αx

1−e−α − 1
α log (1− x(1− e−α)) α > 0

bx
bx+a(1−x)

ax
ax−bx+b 0 < a < b

sin(πx/2) (2/π) arcsinx

(4/π) arctanx tan(πx/4)

Table 9.1: Examples of functions in ΘC

Example 9.3.1. Let C be a copula and let r be a function defined on [0, 1] by
r(t) = at + b, with a, b ∈ ]0, 1[, a + b = 1. Then r[−1](t) = max{0, (t − b)/a} and we
have

Cr(x, y) =

 1
a [C(ax+ b, ay + b)− b] , if C(ax+ b, ay + b) ≥ b;

0, otherwise.

The copula Cr is said to be linear transformation of C.
In particular, given r(t) = (t+1)/2, let C ′ be an ordinal sum of type (〈0, 1/2, C〉).

Then Cr = M .

Remark 9.3.1. Let h and g be in ΘC . Given a copula C, the transformations Ch
and Cg may be equal, Ch = Cg, even though the functions h and g are not equal,
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h 6= g. For instance, we consider the copula W and let h be the function defined on
[0, 1] by h(t) = (t+ 1)/2. Then Wh = W and Wid = W , but id 6= h.

Conversely, Let C and D be copulas. Given h ∈ ΘC , we may have Ch = Dh even
though C 6= D. In fact, Ch(x, y) = Dh(x, y) if, and only if,

max{h(0), C(h(x), h(y))} = max{h(0), D(h(x), h(y))},

viz. it suffices C = D on [h(0), 1]2.

Theorem 9.2.1 introduces, for all h ∈ ΘC , a mapping

Ψh : C → C, C 7→ ΨhC := Ch,

which verifies the properties given in the proposition below.

Proposition 9.3.2. For every h and g in ΘC , we have

(a) Ψh ◦Ψg = Ψg◦h;

(b) if {Cn} is a sequence of copulas that converges pointwise to the copula C, then
{ΨhC

n} converges pointwise to ΨhC;

(c) Ψh is continuous, in the sense that, for every ε > 0 there exists δ > 0 such that

∀A,B ∈ C ‖A−B‖∞ < δ =⇒ ‖ΨhA−ΨhB‖∞ < ε.

(d) Ψh is convex, in the sense that, for every A,B ∈ C and λ ∈ [0, 1]

Ψh(λA+ (1− λ)B) ≤ λΨhA+ (1− λ)ΨhB.

Proof. Let h and g be in ΘC .
(a) For every copula C, we have

Ψh ◦Ψg(C) = Ψh

(
g[−1] (C(g(x), g(y)))

)
= h[−1]

(
g[−1] (C(g(h(x)), g(h(y)))

)
= Ψg◦hC,

and, from Proposition 9.3.1, g ◦ h is in ΘC .
(b) For every (x, y) in [0, 1]2, we have

Cn(x, y)
n→+∞−−−−−→ C(x, y);

and, in particular,

Cn(h(x), h(y))
n→+∞−−−−−→ C(h(x), h(y)).

Now, the assertion follows from the continuity of h[−1].
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(c) Given two copulas A and B, since h[−1] is convex, we obtain

Ψh (λA(x, y) + (1− λ)B(x, y))

= h[−1] (λA(h(x), h(y)) + (1− λ)B(h(x), h(y)))

≤ λh[−1] (A(h(x), h(y))) + (1− λ)h[−1] (B(h(x), h(y)))

= λΨhA(x, y) + (1− λ)ΨhB(x, y),

which concludes the proof.

As in section 9.1, a subset B of C is said to be stable with respect to Ψ if the image
of B×ΘC under Ψ is contained in B, Ψ(B×ΘC) ⊆ B.

Proposition 9.3.3. The following class of copulas are stable with respect to Ψ:

(a) the Archimedean family;

(b) the class of associative copulas;

(c) the Archimax family.

Proof. (a) Let C be an Archimedean copula additively generated by ϕ. For every
h ∈ ΘC , the h–transformation of C is given by

Ch(x, y) = h[−1]
(
ϕ[−1] (ϕ(h(x)) + ϕ(h(y)))

)
,

viz. Ch is the Archimedean copula generated by ϕ ◦ h.
Part (b) is a direct consequence of Proposition 9.1.1.
(c) Let C be an Archimax copula defined by the dependence function A and the
Archimedean generator ϕ (see Example 1.6.9). As in part (a), we can prove that the
h–transformation of C, Ch, is also an Archimax copula defined by the dependence
function A and the Archimedean generator ϕ ◦ h.

In [7] some results are presented about the preservation of some dependence prop-
erties of a copula C that is transformed via a concave bijection (see Propositions 6.6
and 6.7). Here, we present only a result about the concordance order.

Proposition 9.3.4. Given C and C ′ in C, and h in ΘC , we have

(a) the operation Ψh is order–preserving in the first place, i.e., C ≤ C ′ implies
ΨhC ≤ ΨhC

′;

(b) if ΨhC ≤ ΨhC
′, then C(x, y) ≤ C ′(x, y) for all (x, y) ∈ [h(0), 1]2.

Proof. Part (a) is a consequence of the fact that h and h[−1] are both increasing. Part
(b) follows by considering that the restriction of h on [h(0), 1] is a bijection.
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Notice that, in general, C and its transformation Ch are not ordered in concordance
order. It suffices to take, for α ∈]0, 1[, the copula

Cα(x, y) :=
xy

[1 + (1− xα)(1− yα)]1/α
,

and h(t) = t1/2 a function in ΘC . Then ΨhCα = Cα/2 and Cα/2 ≤ Cα if, and only if,
xα/2 + yα/2 ≤ 1 (see also [114, Example 4.15]).





Chapter 10

Copulas and Schur–concavity

The notion of Schur–concavity (and the closely related concept of Schur–convexity)
has a great importance in the recent applications of statistics; witness of this is the
recent monograph of Spizzichino [152] where Schur–concavity is one of the central
themes in the Bayesian models of aging. However, the study of Schur–concavity of
copulas does not seem to have yet received any attention in the literature, although
twenty years ago Alsina studied the same question for t–norms (see [1]). To this topic
this chapter is devoted.

In section 10.1 we present some results about the class of Schur–concave copulas
and several examples are given in section 10.2. The concept of Schur–concavity,
moreover, allows us to discuss an open problem on the classes of copulas and triangular
norms (section 10.3).

The presented resulted are also contained in [44, 33].

10.1 The class of Schur–concave copulas

At the beginning of the study on Schur–concavity of copulas, we recall some prop-
erties that can be directly derived from section 1.2.

Proposition 10.1.1. Let C : [0, 1]2 → [0, 1] be a semicopula.

(a) If C is Schur–concave (or Schur-convex), then it is symmetric.

(b) If C is Schur–concave (or Schur–convex) on ∆+ := {(x, y) ∈ [0, 1]2 : x ≥ y},
then C is Schur–concave (or Schur–convex) on [0, 1]2.

Proposition 10.1.2. A semicopula C : [0, 1]2 → [0, 1] is Schur–concave if, and only
if, for all x, y and λ in [0, 1]

C(x, y) ≤ C(λx+ (1− λ)y, (1− λ)x+ λy).
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Proof. It suffices to consider the definition of Schur–concavity and Corollary 1.2.1.

Example 10.1.1. Consider the copula M . For every x ≥ y, we have y ≤ λx+(1−λ)y
and y ≤ (1− λ)x+ λy, so that

M(x, y) ≤M(λx+ (1− λ)y, (1− λ)x+ λy);

and, analogously, we have the same result for x < y. Therefore M is Schur–concave.

Proposition 10.1.3. Let C be a continuously differentiable semicopula. Then C is
Schur–concave on [0, 1]2 if, and only if,

(i) C is symmetric;

(ii) for all (x, y) ∈ ∆+, ∂1C(x, y) ≤ ∂2C(x, y).

As a consequence, it is easily proved that the copula Π is Schur–concave. Note
that not every symmetric copula is Schur–concave, as the following example shows.

Example 10.1.2. Let C be the absolutely continuous copula defined by

C(x, y) :=


xy/2, if (x, y) ∈ [0, 1/2]× [0, 1/2];

x (3y − 1)/2, if (x, y) ∈ [0, 1/2]× [1/2, 1];

y (3x− 1)/2, if (x, y) ∈ [1/2, 1]× [0, 1/2];

(xy + x+ y − 1) /2, if (x, y) ∈ [1/2, 1]× [1/2, 1].

This copula is symmetric and has a density c given by

c(x, y) :=

1/2, if (x, y) ∈ [0, 1/2]2 ∪ [1/2, 1]2;

3/2, otherwise.

The three points x = (6/10, 4/10), y = (7/10, 3/10) and z = (8/10, 2/10) are such
that x ≺ y ≺ z, but

C

(
6
10
,

4
10

)
=

32
200

<
33
200

= C

(
7
10
,

3
10

)
,

C

(
7
10
,

3
10

)
=

33
200

>
28
200

= C

(
8
10
,

2
10

)
.

Therefore C is not Schur–concave.

The following result allows us to investigate only on the class of Schur–concave
copulas.

Proposition 10.1.4. The copula W is the only Schur–convex (quasi–)copula.
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Proof. Let C be a Schur–convex copula. Given x, y ∈ [0, 1] such that x + y ≤ 1, we
have (x, y) ≺ (x+ y, 0), from which

C(x, y) ≤ C (x+ y, 0) = 0.

Furthermore, given x, y ∈ [0, 1] such that x + y > 1, we have (x, y) ≺ (1, x+ y − 1),
from which

C (x, y) ≤ C (1, x+ y − 1) = x+ y − 1.

Then, for all x, y ∈ [0, 1]

C (x, y) ≤ max (x+ y − 1, 0) = W (x, y) ,

but, from the Fréchet–Hoeffding bounds inequalities (1.13) it follows that C = W .

Notice that W is also the only Schur–constant (semi–)copula, as showed in Propo-
sition 2.2.2.

Now, we give some results about the class CSC of Schur–concave copulas.

Proposition 10.1.5. The class CSC is a compact subset of C with respect to the
topology of uniform convergence.

Proof. It is known that C is compact space with respect to the topology of uniform
convergence. But, if (Cn)n∈N is a sequence in CSC , then the pointwise limit

C (x, y) = lim
n→+∞

Cn (x, y)

is Schur–concave. It follows that the set CSC is a closed subset of C, and therefore it
is also compact.

Proposition 10.1.6. The class CSC is a convex subset of C.

Proof. Let (x1, x2) and (y1, y2) be two points in [0, 1]2 such that (x1, x2) ≺ (y1, y2)
and suppose that C1 and C2 are Schur–concave copulas. Then, for every λ ∈ [0, 1]

C(x1, x2) = λC1(x1, x2) + (1− λ)C2(x2, y2)

≥ λC1(y1, y2) + (1− λ)C2(y1, y2) = C(y1, y2),

which concludes the proof.

Proposition 10.1.7. A copula C is Schur–concave if, and only if, the survival copula
Ĉ associated with C is Schur–concave.

Proof. If C is Schur–concave, then, given (x1, x2), (y1, y2) two points in ∆+ such that
(x1, x2) ≺ (y1, y2), we have

(1− x1, 1− x2) ≺ (1− y1, 1− y2),
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from which
C(1− x1, 1− x2) ≥ C(1− y1, 1− y2),

and
x1 + x2 − 1 + C(1− x1, 1− x2) ≥ y1 + y2 − 1 + C(1− y1, 1− y2),

Then Ĉ is Schur-concave. The same argument applies if Ĉ is assumed to be Schur–
concave

In view of Sklar’s Theorem, given a copula C and two univariate d.f.’s F and G, it
is possible to construct a bivariate d.f. H(x, y) := C(F (x), G(y)) for every (x, y) ∈ R2.
Now, it is useful to stress the fact that, with suitable marginal d.f.’s, Schur–concave
copulas may yield Schur–concave, –convex or constant bivariate d.f.’s (see [115]).

10.2 Families of Schur–concave copulas

Theorem 10.2.1. Every associative copula is Schur–concave.

In order to prove this result, first we establish the following two lemmas.

Lemma 10.2.1. An ordinal sum of Schur–concave copulas is a Schur–concave copula.

Proof. Let {Ji = [ai, bi]}i∈I be a partition of the unit square and let {Ci}i∈I be a
family of Schur–concave copulas. Let C be the ordinal sum of {Ci}i∈I with respect
to {Ji}i∈I, viz.

C(x, y) :=

ai + (bi − ai) Ci

(
x− ai
bi − ai

,
y − ai
bi − ai

)
, if (x, y) ∈ J2

i ;

M(x, y), otherwise.

Notice that C is symmetric and we shall show that, if every Ci is Schur–concave, then
C is Schur–concave. Let (x1, x2), (y1, y2) be two points in ∆+ such that (x1, x2) ≺
(y1, y2). Suppose that there exists an index i0 ∈ I such that (x1, x2), (y1, y2) ∈ J2

i0
.

We observe that (
x1 − ai0
bi0 − ai0

,
x2 − ai0
bi0 − ai0

)
≺
(
y1 − ai0
bi0 − ai0

,
y2 − ai0
bi0 − ai0

)
,

that implies

Ci0

(
x1 − ai0
bi0 − ai0

,
x2 − ai0
bi0 − ai0

)
≥ Ci0

(
y1 − ai0
bi0 − ai0

,
y2 − ai0
bi0 − ai0

)
,

since Ci0 is Schur–concave, and it follows C(x1, x2) ≥ C(y1, y2). Similarly, if (x1, x2)
and (y1, y2) does not belong to J2

i for all i ∈ I, since M is also Schur–concave, it
follows C(x1, x2) ≥ C(y1, y2). Finally, suppose that exists an index i0 such that
(x1, x2) ∈ J2

i0
and (y1, y2) 6∈ J2

i for all i ∈ I. We set k := x1 + x2 = y1 + y2 and we
distinguish two cases.
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Case 1. If 2ai0 ≤ k ≤ ai0 + bi0 , then (x1, x2) ≺ (k − ai0 , ai0) and

C(x1, x2) ≥ C(k − ai0 , ai0) = ai0 ≥M(y1, y2) = C(y1, y2);

hence C is Schur–concave.
Case 2. If ai0 + bi0 < k < 2bi0 , then (x1, x2) ≺ (bi0 , k − bi0) and

C(x1, x2) ≥ C(bi0 , k − bi0) = k − bi0 ≥M(y1, y2) = C(y1, y2),

from which it follows that C is Schur–concave.

Lemma 10.2.2. Every Archimedean copula is Schur–concave.

Proof. Let (x1, x2) and (y1, y2) two points in [0, 1]2 such that (x1, x2) ≺ (y1, y2). It
follows from Corollary 1.2.1 that there exists α ∈ [0, 1] such that, if α := 1− α, then

x1 = α y1 + α y2, x2 = α y1 + α y2.

Let Cϕ be an Archimedean copula with additive generator ϕ. Since ϕ is convex and
strictly decreasing

C(x1, x2) = C(α y1 + α y2, αy1 + α y2)

= ϕ[−1] (ϕ(α y1 + α y2) + ϕ(α y1 + α y2))

≥ ϕ[−1] (αϕ(y1) + αϕ(y2) + αϕ(y1) + αϕ(y2))

= ϕ[−1] (ϕ(y1) + ϕ(y2)) = C(y1, y2),

which concludes the proof.

Proof. (Theorem 10.2.1) It was shown that M and every Archimedean copula are
Schur–concave, moreover the ordinal sum of two Schur–concave copulas is Schur–
concave too. In view of Representation Theorem for associative copulas (Theorem
1.6.9), the assertion follows.

Here we give some other examples of Schur–concave copulas.

Example 10.2.1 (The Fréchet family). Every copula Cα,β belonging to the Fréchet
family (see Example 1.6.2), defined by

Cα,β(x, y) = αM(x, y) + (1− α− β) Π(x, y) + βW (x, y)

is Schur–concave, because it is a convex sum of Schur–concave copulas.

Example 10.2.2 (The FGM family). For all x, y ∈ [0, 1] and θ ∈ [−1, 1]

Cθ(x, y) = xy + θxy (1− x) (1− y)
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is a member of the FGM family (see Example 1.6.3). For every x, y ∈ [0, 1] we have

∂1Cθ(x, y) = y + θy (1− x) (1− y)− θxy (1− y),

∂2Cθ(x, y) = x+ θx (1− x) (1− y)− θxy (1− x).

As a consequence of the inequality |1− x− y + 2xy| ≤ 1, which holds for all x and y
in [0, 1], if x ≥ y we have

∂2Cθ(x, y)− ∂1Cθ(x, y) = (x− y)[1 + θ(1− x− y + 2xy)] ≥ 0.

Thus, it follows from Proposition 10.1.3 that Cθ is Schur–concave.

Example 10.2.3 (The Plackett family). For all u, v ∈ [0, 1] and θ > 0, θ 6= 1,

Cθ(u, v) =
[1 + (θ − 1) (u+ v)]−

√
[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
2 (θ − 1)

is a family of copulas, known as Plackett family (see [130]). For all x, y ∈ [0, 1], we
have

∂1Cθ(u, v) =
1
2
− 1 + (θ − 1) (u+ v) − 2θv

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
,

∂2Cθ(u, v) =
1
2
− 1 + (θ − 1) (u+ v) − 2θu

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
.

Moreover, for u ≥ v, it follows that

∂2Cθ(u, v)− ∂1Cθ(u, v) =
θ (u− v)

2
√

[1 + (θ − 1) (u+ v)]2 − 4θuv (θ − 1)
≥ 0.

Thus Cθ is Schur–concave.

10.3 Solution of an open problem for associative

copulas

Recently, E.P. Klement, R. Mesiar and E. Pap ([85]) posed some open problems
concerning triangular norms and related operators. In particular, the following prob-
lem was formulated:

Problem 10.3.1. Let T be a continuous Archimedean t–norm. Prove or disprove
that:

T (max{x− a, 0},min{x+ a, 1}) ≤ T (x, x) (10.1)

holds for all x ∈ [0, 1] and for all a ∈ ]0, 1/2[.
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In particular, the authors added that “a positive solution of this problem would
induce a new characterization of associative copulas”. This comment spurs us to
investigate inequality (10.1) in the class of copulas: to this end, the notion of Schur–
concavity will be useful.

First, notice that inequality (10.1) is not true for every copula.

Example 10.3.1. Let C be the copula given in [114, Example 3.3],

C(x, y) :=


x, if 0 ≤ x ≤ y

2
≤ 1

2
;

y

2
, if 0 ≤ y

2
< x < 1− y

2
;

x+ y − 1, if
1
2
≤ 1− y

2
≤ x ≤ 1.

Then

C

(
4
10
,

6
10

)
=

3
10

> C

(
1
2
,
1
2

)
=

1
4
.

Note that C is not associative:

C

(
C

(
1
2
,
1
2

)
,
1
2

)
= C

(
1
4
,
1
2

)
=

1
4
6= 1

8
= C

(
1
2
, C

(
1
2
,
1
2

))
.

But, in general, we have

Lemma 10.3.1. Let A be a semicopula. If A is Schur–concave, then A satisfies
(10.1).

Proof. Let a be in ]0, 1/2[. We distinguish three cases. If x ≤ a, then (10.1) follows
since A is positive. If a < x ≤ 1 − a, then (10.1) is equivalent to A(x − a, x + a) ≤
A(x, x), which is a direct consequence of the Schur–concavity. If x > 1 − a, then
(10.1) is equivalent to x − a ≤ A(x, x) and this last inequality follows from the fact
that

A(x, x) ≥ A(2x− 1, 1) = 2x− 1 > x− a.

Lemma 10.3.1 and Theorem 10.2.1 together yield:

Theorem 10.3.1. If C is an associative copula, then C satisfies (10.1).

Notice that, if a copula C satisfies (10.1), then it need not be associative.

Example 10.3.2. We consider the FGM family of copulas given, for all x, y ∈ [0, 1]
and θ ∈ [−1, 1], by Cθ(x, y) = xy + θxy (1 − x) (1 − y). From Example 10.2.2, Cθ is
Schur–concave, and thus satisfies (10.1), but, if θ 6= 0, Cθ is not associative.

Notice also that, if a copula C satisfies (10.1), then it need not be Schur–concave.
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Example 10.3.3. Let C be the copula defined by

C(x, y) :=



1
3M(3x, 3y − 2), if (x, y) ∈

[
0, 1

3

]
×
[
2
3 , 1
]
;

1
3M(3x− 1, 3y − 1), if (x, y) ∈

[
1
3 ,

2
3

]
×
[
1
3 ,

2
3

]
;

1
3M(3x− 2, 3y), if (x, y) ∈

[
2
3 , 1
]
×
[
0, 1

3

]
;

W (x, y), otherwise.

This copula is obtained by using the block–based construction method introduced
in [28]. Simple, but tedious, calculations show that C satisfies (10.1), but C is not
Schur–concave. In fact, given the points (2/10, 7/10) and (3/10, 6/10), we have

C

(
3
10
,

6
10

)
= 0 <

1
30

= C

(
2
10
,

7
10

)
,

which implies that C is not Schur–concave.

Remark 10.3.1. A geometrical interpretation can be given of the difference between
inequality (10.1) and Schur–concavity. If z = C(s, t) is the surface associated with
a copula C that satisfies (10.1), the intersections of the surface with all the vertical
planes of the form s+ t = 2x, for all x ∈ [0, 1] and s ∈ [0, x], are curves that take the
maximum value in the point (x, x). But, if C is Schur–concave, we have the stronger
condition that such curves are also decreasing from (x, x) to (2x, 0) (resp. (2x−1, 1)).

10.3.1 Discussion in the class of triangular norms

In the class of continuous Archimedean t–norms, inequality (10.1) was character-
ized in [67] (see also [98, 127]).

Theorem 10.3.2. Let T be a continuous Archimedean t–norm with additive generator
t. Let ξ be defined by ξ := t−1 (t(0)/2). Then T satisfies (10.1), for all a ∈ ]0, 1/2[
and x ∈ [0, 1], if, and only if, the two following statements hold:

(a) for all z ∈ ]0,min{ξ, 1− ξ}[, t(ξ − z) + t(ξ + z) ≥ 1;

(b) t is convex on [ξ, 1].

In particular, if T is strict (viz. t(0) = +∞), then the following statements are equiv-
alent:

(a’) T satisfies (10.1), for all a ∈ ]0, 1/2[ and x ∈ [0, 1];

(b’) t is convex on [0, 1].

On the other hand, we have also the characterization of continuous Archimedean
t–norms that are Schur–concave (see [1]).

Theorem 10.3.3. Let T be a continuous Archimedean t–norm with additive generator
t. Then we have:
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(a) if T is strict, then T is Schur–concave if, and only if, t is convex;

(b) if T is nilpotent, then T is Schur–concave if, and only if, t satisfies the following
inequality:

t (αx+ (1− α)y) + t ((1− α)x+ αy) ≤ t(x) + t(y)

for every α in [0, 1] and for all x, y in [0, 1] such that t(x) + t(y) ≤ 1.

From the two previous results, we derive

Theorem 10.3.4. Let T be a strict Archimedean t–norm with additive generator t.
The following statements are equivalent:

(i) T is a copula;

(ii) T is Schur–concave;

(iii) T satisfies (10.1).

Proof. From Theorem 1.6.6, T is a copula if, and only if, the additive generator t
is convex and, then, T is Schur–concave (Theorem 10.3.3). Moreover, from Lemma
10.3.1, (ii) implies (iii), which, in its turn, is equivalent to the convexity of t (Theorem
10.3.2), which concludes the proof.

Remark 10.3.2. The previous result also holds in the case of a continuous t–norm
T which is jointly strictly monotone, i.e. T (x, y) < T (x, z) whenever x > 0 and y < z

(see [88]).

Looking at Theorem 10.3.4 in the class of nilpotent t–norm, we have (i) =⇒
(ii) =⇒ (iii). But, there exists a Schur–concave nilpotent t–norm T , which is not
a copula: consider, for example, a t–norm additively generated by t(x) := 1+cos(πx)

2

(see [1, Example 2.1]). Moreover, in the class of nilpotent t–norms, inequality (10.1)
does not imply Schur–concavity as the following example shows.

Example 10.3.4. Consider a t–norm T with additive generator t given by

t(x) :=


1− x

10 , if x ∈
[
0, 1

10

]
;

− 49
√

2

10(9
√

2−10)
(
x− 1

10

)
+ 99

100 if x ∈
]

1
10 , 1−

1√
2

]
;

(1− x)2, otherwise.

Then T satisfies the assumptions of Theorem 10.3.2, and thus the inequality (10.1),
but

T (5/100, 95/100) = 25/1000 > 0 = T (1/10, 9/10),

which implies that T is not Schur–concave.





Bibliography

[1] C. Alsina, On Schur–concave t–norms and triangle functions, in: General Inequalities

4, (E.F. Bechenbach and W. Walter, Eds.), Birkhäuser, Basel, 1984, pp. 241–248.
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