Chapter 2

Strain energy functions

The aims of constitutive theories are to develop mathematical models for rep-
resenting the real behavior of matter, to determine the material response and in
general, to distinguish one material from another. As described in the preceding
chapter, constitutive equations for hyperelastic materials postulate the existence
of a strain energy function W. There are several theoretical frameworks for the
analysis and derivation of constitutive equations, for example the Rivlin-Signorini
method where the governing idea is to expand the strain energy function in a power
series of the invariants, or the Valanis-Landel approach expressing the strain energy
directly in terms of the principal stretches [115].

In this chapter, we make no attempt at presenting these methods but instead,
we present some classical explicit forms of strain-energy functions used in the
literature for some isotropic hyperelastic materials. Many other models have been
proposed (for example, a collection of constitutive models for rubber can be found
in [32]).

2.1 Strain energy functions for incompressible
materials

2.1.1 Neo-Hookean model

The neo-Hookean model is one of the simplest strain energy functions. It in-
volves a single parameter and provides a mathematically simple and reliable con-
stitutive model for the non-linear deformation behavior of isotropic rubber-like
materials. Its strain energy function is

W= g(ll _3), (2.1)
where ¢ > 0 is the shear modulus for infinitesimal deformations. The neo-Hookean
model comes out of the molecular theory, in which vulcanized rubber is regarded
as a three-dimensional network of long-chain molecules that are connected at a few
points. The elementary molecular theory of networks is based on the postulate that
the elastic free energy of a network is equal to the sum of the elastic free energies
of the individual chains. In order to derive (2.1), a Gaussian distribution for the
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probability of the end-to-end vector of the single chain is also assumed. While in
a phenomenological theory the constitutive parameters are dictated only by the
functional form considered, in a molecular theory the parameters are introduced
on the basis of the modeled phenomena and consequently, are related ex ante to
physical quantities. In this framework the constitutive parameter p is determined
by micromechanics parameters, as

= nkT, (2.2)

where n is the chain density, k& is the Boltzmann constant and 7' is the absolute
temperature. Although it poorly captures the basic features of rubber behaviour,
the neo-Hookean model is much used in finite elasticity theory because of its “good”
mathematical properties (for example a huge number of exact solutions to bound-
ary value problems may be found using this model).

2.1.2 Mooney-Rivlin model

To improve the fitting to data, Rivlin introduced a dependence of the strain
energy function on both the first and second invariants. A slightly more general
model than neo-Hookean is therefore a simple, or two-term, Mooney-Rivlin model,
for which the strain energy function is assumed to be linear in the first and second
invariant of the Cauchy-Green strain tensor. This model is of purely phenomeno-
logical origin, and was originally derived by Mooney [84]. The strain energy may
be written as

W=231(G+7)uli—3)+1(5—7) nl—3), (2.3)

where 7 is a dimensionless constant in the range —1/2 < v < 1/2 and g > 0 is
the shear modulus for infinitesimal deformations. When v = 1/2, we recover the
neo-Hookean model (2.1). Mooney [84] showed that the form (2.3) is the most
general one which is valid for large deformations of an incompressible hyperelastic
material, isotropic in its undeformed state, for the relation between the shearing
force and amount of simple shear to be linear. Hence the constant p is also the
shear modulus for large shears.

By considering the expansion of the strain energy function in power series of
(I; — 3) and (I — 3) terms, it can be shown that for small deformations, the
quantities (I; — 3) and (Iy — 3) are, in general, small quantities of the same order,
so that (2.3) represents an approximation valid for sufficiently small ranges of
deformations, extending slightly the range of deformations described by the neo-
Hookean model. This is pointed out in the figures (2.1 - 2.4) where the classical
experimental data of Treloar [126] for simple tension and of Jones and Treloar [69]
for equibiaxial tension are plotted (their numerical values having been obtained
from the original experimental tables), and compared with the predictions of neo-
Hookean and Mooney-Rivlin models.

In the first case, simple tension, the principal stresses are

tl == t, t2 - t3 - 0, (24)
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and requiring for the principal stretches
A=A\, Ay =Xy = A2 (2.5)

we obtain from the relation (1.40)

t=2 ()\2 — %) (W1 + §W2> . (2.6)

In Figure (2.1) we report the classical data of Treloar, by plotting the Biot stress
f =t/ defined per unit reference cross-sectional area against the stretch A. In
Figure (2.2), we used the so-called Mooney plot (widely used in the experiment
literature to compare the different models) because it is sensitive to relative errors.
It represents the Biot stress f = ¢t/ divided by the universal geometrical factor
2 (A —1/)?), plotted against 1/A:

1
The Mooney-Rivlin model, fitting to data, improves the neo-Hookean model for
small and moderate stretches. In fact, in the case of simple extension, the curves
in (2.1) and (2.2) for the models under examination are obtained considering only
the early part of the data. For large extensions, the Mooney-Rivlin curve gives
a bad fitting. This fact may be emphasized by the Mooney plot (2.2), where the
Mooney-Rivlin curve is a straight line, and is seen to fit only a reduced range of
data.
For the equibiazial tension test we let

ti=to=t, t3=0, (2.8)

and require the principal stretches to be

AM=X=2A A3=A\72 (2.9)
so that we obtain by (1.40) the following relation for the principal stress,
1
t=2 (AQ — F) (W1 + NWa) . (2.10)

In Figure (2.3), we report the classical data of Jones and Treloar [69] by plotting
the Biot stress f = t/\ against the stretch A. In Figure (2.4) we represent the
Mooney plot for the Biot stress divided by 2 (A — 1/A%), plotted against A\*:

f

s 2
T 1) Wy + AW, (2.11)

The Mooney plot (2.4) reveals how the Mooney-Rivlin model extends slightly the
range of data approximation compared to the neo-Hookean model, but cannot fit
all of them.

The Mooney-Rivilin model has been studied extensively even though no rubber-
like material seems to be described by it to within errors of experiment. It is used as
the first illustration for every general result for isotropic incompressible materials
for which several analytical solutions have been found.
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Figure 2.1: Plot of the simple tension data (circles) of Treloar [126] against the
stretch A, compared with the predictions of the Mooney-Rivlin model (dashed
curve) and the neo-Hookean model (continuous curve). (In the figure, both models
were optimized to fit the first 16 points, i.e. data for which A € (1,6.15)).
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Figure 2.2: Plot of the simple tension data (circles) of Treloar [126] normalized
by 2(A — 1/X?) (X is the stretch), against 1/\, compared with the predictions of
the Mooney-Rivlin model (dashed curve) and the neo-Hookean model (continuous
curve). (In the figure, the Mooney-Rivlin model has been optimized to fit the nine
points for which 1/ € (0.33,0.99) and the neo-Hookean model has been optimized

to the five points for which 1/ € (0.28,0.53)).
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Figure 2.3: Plot of the equibiaxial tension data (circles) of Jones and Treloar [69],
against the stretch A\, compared with the predictions of the Mooney-Rivlin model
(dashed curve) and the neo-Hookean model (continuous curve). (In the figure,
both models have been optimized to fit all seventeen points.)
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Figure 2.4: Plot of the equibiaxial tension data (circles) of Jones and Treloar
[69] normalized by 2(A — 1/X%) (X is the stretch), against A%, compared with the
predictions of the Mooney-Rivlin model (dashed curve) and the neo-Hookean model
(continuous curve). (In the figure, the Mooney-Rivlin model has been optimized
to fit the five data for which A\? € (11.76,19.81) and the neo-Hookean model has
been optimized to fit the three points for which A\* € (2.8,6.2)).
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2.1.3 Generalized neo-Hookean model

Despite the idea of Rivlin to introduce the dependence of W of the second
invariant I, there are several models of strain energy functions depending on the
first invariant I; only. In the molecular theory, Iy is connected to the mean squared
end-to-end distance of the chains, but in general the chains cannot assume a com-
pletly arbitrary form and length. To overcome this constraint, the second invariant
15, which is connected instead with the surface extension of material, is needed.
Often the introduction of this invariant renders the calculations cumbersome, and
from there follows the wide use of strain energies functions depending in a nonlin-
ear manner on the first invariant only. A function of this form is called generalized
neo-Hookean model,

W =W(I). (2.12)

To account for the finite extensibility of the polymeric chains composing the
elastomer network (since Gaussian statistics give rise to a probability density func-
tion without compact support), some models of the form (2.12) introduce a dis-
tribution function for the end-to-end distance of the polymeric chain which is not
Gaussian. These models are usually called non-Gaussian models. From the phe-
nomenological point of view these models can be divided into two classes: models
with limiting chain extensibility, and power-law models. An example of the first
class is due to Gent [45], who proposed the following strain energy density

IV:—é?nU—Mh—3ﬂ, (2.13)
where b > 0 is a limiting parameter value constant for I;, accounting for limiting
polymeric chain extensibility and g > 0 is the shear modulus for infinitesimal
deformations. An example of the second class, widely used in biomechanics, was
proposed by Fung [44] as follows

szé%mpin—B)—H, (2.14)

where the dimensionless constant b > 0 is a stiffining parameter, and p > 0 is the
shear modulus for infinitesimal deformations. Both classes behave as neo-Hookean
solids in the small b/small-deformation limit, since they both obey

vw@m:gm—$+%urﬂfuﬂﬁm—@ﬁ (2.15)

as b(Il; —3) — 0. Another power-law constitutive model was proposed by Knowles
[73]. It can be written as

(55 [(1+8(=3)" ~1], ifa#0and 5£0,
W= é%mg1+@ur—$% if & =0 and 3 # 0, (2.16)
\gur—a, if 3=0, (Va),
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where a and [ are constants; when o = 1 the neo-Hookean model (2.1) is re-
covered. Knowles introduced this model to describe both strain-stiffening and
strain-softening effects in elastomeric materials and biological soft tissues. For a
careful study of the analytical properties of the Knowles potential, see [15].

Even though some classical experimental data suggest that constitutive equa-
tions of the form (2.12) may have limited applicability, they nevertheless often lead
to closed-form analytical solution for many interesting problems. Such solutions
are useful for a better understanding of the mechanical properties of the matter
and also as benchmarks for more complex numerical computations.

2.1.4 Other models

Rivlin and Saunders [112] showed that both neo-Hookean and Money-Rivlin
models are not adequate to describe accurately the experimental properties of
rubber. Their conclusion was that W /01, is independent of both I; and I, and
that OW/0I, is independent of I; and decreases with increasing I. They thus
deduced the strain energy function in the form

W =C(I —3)+ f(Iy — 3), (2.17)

where C' is a constant and f is a function whose slope diminishes continuously
with increasing I». In the more recent work of Obata [92], it is found that neither
OW /oI, nor OW /01, can be regarded as constant, and that each should depend on
both I} and I5.

Valanis and Landel [128] proposed that the strain energy function W may be
expressible as the sum of three functions of the principal stretches,

W =w\) +wh) +w(As), (2.18)

in which the function w(\) is, by symmetry, the same for each of the extension
ratios. Equivalent to (2.18) is the expansion due to Ogden [93],

W = Z P (AT™ + A5™ + A§™ — 3) /i, (2.19)

m=1
in terms of powers of the principal stretches, where each pu,, and «,, are material
constants, not necessarily integers [93]. Jones and Treloar [69] and Ogden [115]

show how the biaxial strain experiments are consistent with the Valanis-Landel
model (2.18) and the Ogden expansion (2.19).

2.2 Strain energy functions for compressible ma-
terials

In the compressible case, as well as (1.34), a further assumption is required for
W: it should approach infinity as I3 tends to infinity or zerot. In other words,
an infinite amount of energy is required in order to expand the body to infinite
volume or to compress it to a point with vanishing volume, so that

lim W =+o00, lim W = +o0. (2.20)

Is—+o00 I3—0+t
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2.2.1 Hadamard model

Hadamard [51] introduced a class of elastic materials characterised by the prop-
erty that infinitesimal longitudinal waves may propagate in every direction, when
they are maintained in an arbitrary state of finite static homogeneous deformation.
This constitutive model, called Hadamard model by John [68], describes also the
only compressible isotropic homogeneous elastic material for which three linearly-
polarized finite amplitude plane waves, one longitudinal and two transverse, may
propagate in every direction when it is homogeneously deformed [24, 68]. The
strain energy function is defined by

W =c(I; —3) + ca(ls — 3) + H(I3), (2.21)

where ¢q, ¢y are material constants such that ¢; > 0, ¢ > 0, 0r ¢ > 0, ¢3 > 0 and
H(I3) is an arbitrary function to be specified on the basis of constitutive arguments.
The connection with the Lamé constants of the linear theory is made through the
relations

o=p+HQ), = —g —H'(1), 4H"(1)=\+2u. (2.22)
An example for the function H(I3), accounting for the effects of compressibility, is
given by Levinson and Burgess' [79]. They propose the following explicit form for

the material function H(I3),

H(I3) = A+ p) (I = 1) = (A +2p) (V15 = 1). (2.23)

2.2.2 Blatz-Ko model

The Blatz-Ko model is one of much used models describing the behavior of
rubber in the compressible case. Replacing the principal invariants I, by another
set of independent invariants of B, J, defined by

Jh=L=tB, J=5L/Ij=tB", J=I/"=detF, (2.24)

the strain energy function may be written as W (.Jy, Jo, J3). Introducing (2.24) into
(1.38), we find that

ow 2 0W 2 0W

b= — f1 = _73(3_JQ

_ oW ow 2.9
Fo 0.Js Js OJ, (2.25)

Let us now consider a special class of materials whose response functions in
(2.25) depend on J; alone. This is possible if and only if

o g

— - — == 2.2
/60 W3(J3)7 ﬁl (]37 6 1 J37 ( 6)
where W3 = 0W/0J3 and « and 3 are constants. It can be shown that
Bi(1) = Ba(1) =a+ 8 =pu, (2.27)

'We observe that Levinson and Burgess give an explicit form of H(I3) that does not verify
(2.20)5.
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and introducing another constant f such that

a=nf, B=pl-f) (2.28)

the equation for the Cauchy stress for this special class of material is derived from
(1.40) in the form

MB—M(l_f)Bfl.

T = Ws5(J 2.29
5(J3) + 7 7 (2:29)

Considering a simple tensile loading
T, =t, T, =0, T3 =0, (2.30)

with principal stretches (A, A, A3), Blatz and Ko [18] assumed (since in their ex-
periment with f = 0 they found J3 = A/2) the following general constitutive
assumption of volume control

Jy = A", (2.31)
It follows from Batra’s theorem [7] that

Ao = As, (2.32)

and from (2.31), that
Aa(N) = A=D/2, (2.33)

From (1.49) the infinitesimal strains are of the form ¢, = A\, — 1. Following [12] we
define the Poisson function v(\) as

v(\) = —E—i’ - %_2?) (2.34)
from which the infinitesimal Poisson ratio is deduced in the limit
v =lim () = - (n 5 Y. (2.35)
Therefore a Blatz-Ko material must verify
Ao(A) = A7, (2.36)
and consequently
A=J3/ ) (2.37)

Blatz and Ko integrated the expression W3 by making use of condition (2.37) and
the condition W (3,3,1) = 0 in the natural state. They thus obtained the following
general expression for the strain energy

wf

W (Ji, Ja, J3) = 7[“1 —3) - 2

;75 1)
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where
n—1 —2v

n 1—=2

Two special models of this expression (2.38), f = 0 and f = 1, are often
used in applications. The former characterizes the class of foamed, polyurethane
elastomers and the latter describes the class of solid, polyurethane rubbers studied
in the Blatz-Ko experiments. We note that in the limit I3 — 1 it is possible to
obtain the Mooney-Rivlin strain energy density for incompressible materials from
(2.38). Thus (2.38) may be viewed as a generalization of the Mooney-Rivlin model
to compressible materials. In the literature, a special compressible material of the
first case (f = 0) is often used at ¢ = —1, for which the strain energy, rewritten in
terms of invariants I, is given by

q= (2.39)

I
W (I, I, I;) = g (1_2 o0 - 5) . (2.40)
3

2.3 Weakly non-linear elasticity

To study small-but-finite elastic effects, the weakly non-linear elasticity theory
[76], considers an expansion for the strain energy function in the following form

1 1
W = icijklEijEkl + icijklmnEijEklEmn +..0 (2.41)
where Cjjp,... are constant moduli and E = E7 is the Lagrange, or Green, strain
tensor, defined as E = (C — I) /2. In the isotropic case, the strain energy (2.41)
has the following expansion to the second order (second-order elasticity) as

W= % (trE)* + pu tr(E), (2.42)

where A and p are the Lamé constants. At the third order (third-order elasticity),
the expansion is (see [101] for example)

W= % (trE)* + p tr(E?) + ?tr(ES) + B(trE) tr(E?) + g (trE)*,  (2.43)

where A, B, and C are the Landau third-order elastic constants.

For incompressible solids the second-order expansion involves only one material
constant: pu, and the third-order expansion involves only two material constants:
pu and A. They are written respectively as

W = u tr(E?), (2.44)

and 1
W = u tr(E?) + gtr(ES). (2.45)

Rivlin and Saunders [112] showed that the Mooney-Rivlin strain-energy function
(2.3) of exact non-linear incompressible elasticity coincides, at the same order of
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approximation, with the general weakly nonlinear third-order elasticity expansion
(2.45). Introducing the following constants

1/1 1/1
01—5(54‘7)% 02—5(5—7)/% (2.46)

in (2.3), the connections between the material constants are

Notes

This presentation of theoretical framework for the constitutive equations in-
cludes many but not all models proposed in literature. One of the main problems
encountered in the applications of mechanics of continua is the complete and ac-
curate determination of the constitutive relations necessary for the mathematical
description of the behavior of real materials. Indeed people working with rubber
know very well that the mechanical behavior of this material is very complex and
outside of the forecast possibilities of nonlinear elasticity (see Saccomandi [115]).

One of the omissions, in this chapter is the so-called Rivlin-Signorini method.
First Murnaghan [85] and then Rivlin [110] and Signorini [118] approximated the
material response functions by polynomials in the appropriate invariants. In this
way, a particular material is then characterized by the constant coefficients of the
polynomial rather than by functions. Applications of the Rivlin-Signorini method
can be found in [81, 120]. Although from a theoretical point of view, any complete
set of invariants is equivalent to another, it has been observed by several authors
that the approach used by Rivlin considering the principal invariants it is not
very practical in fitting experimental data, because of the possible propagation
of experimental errors (see for example [128]). Therefore it may be interesting
to consider the possibility of expressing the strain energy directly in terms of the
principal stretches and to overcome some difficulties related to the symmetry. That
is why Valanis and Landel [128] postulated that the strain energy function be a
sum of functions each depending on a single stretch (see (2.18)).



