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Université Pierre et Marie Curie - Paris 6

&
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Soutenance prévue le 7 décembre 2010 devant le jury composé de:
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Introduction

In the framework of the theory of Continuum Mechanics, exact solutions play
a fundamental role for several reasons. They allow to investigate in a direct way
the physics of various constitutive models (for example, in suggesting specific ex-
perimental tests); to understand in depth the qualitative characteristics of the
differential equations under investigation (for example, giving explicit appreciation
on the well-posedness of these equations); and they provide benchmark solutions
of complex problems.

The Mathematical method used to determine these solutions is usually called
the semi-inverse method. This is essentially a heuristic method that consists in
formulating a priori a special ansatz on the geometric and/or kinematical fields of
interest, and then introducing this ansatz into the field equations. Luck permitting,
these field equations reduce to a simple set of equations and then some special
boundary value problems may be solved.

Although the semi-inverse method has been used in a systematic way during the
whole history of Continuum Mechanics (for example the celebrated Saint Venant
solutions in linear elasticity have been found by this method), it is still not known
how to generate meaningful ansatzes to determine exact solutions for sure. In this
direction, the only step forward has been a partial confirmation of the conjecture by
Ericksen [36] on the connection between group analysis and semi-inverse methods
[96].

Another important aspect in the use of the semi-inverse method is associated
in fluid dynamics with the emergence of secondary flows and in solid mechanics
with latent deformations. It is clear that “Navier-Stokes fluid” and an “isotropic
incompressible hyperelastic material” are intellectual constructions. No real fluid is
exactly a Navier-Stokes fluid and no-real world elastomer can be characterized from
a specific elastic potential, such as for example the “neo-Hookean” or “Mooney-
Rivlin” models. The experimental data associated with the extension of a rubber
band can be approximated by several different models, but we still do not know of
a fully satisfying mathematical model. This observation is fundamental in order to
understand that the results obtained by a semi-inverse method could be dangerous
and misleading.

We know that a Navier-Stokes fluid can move by parallels flows in a cylindrical
tube of arbitrary section. We obtain that solution by considering that the kinematic
field is a function of the section variables only. In this way, the Navier-Stokes
equations are reduced to linear parabolic equations which we solve by considering
the usual no-slip boundary conditions. This picture is peculiar to Navier-Stokes
fluids. In fact, if the relation between the stress and the stretching is not linear, a
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ii Introduction

fluid can flow in a tube by parallel flows if and only if the tube possesses cylindrical
symmetry (see [40]). If the tube is not perfectly cylindrical, then what is going
on? Clearly any real fluid may flow in a tube, whether or not it is a Navier-Stokes
fluid. In the real world, what is different from what it is predicted by the Navier-
Stokes theory is the presence of secondary flows, i.e. flows in the section of the
cylinder. This means that a pure parallel flow in a tube is a strong idealization
of reality. A classic example illustrating such an approach in solid mechanics is
obtained by considering deformations of anti-plane shear type. Knowles [72] shows
that a non-trivial (non-homogeneous) equilibrium state of anti-plane shear is not
always (universally) admissible, not only for compressible solids (as expected from
Ericksen’s result [34]) but also for incompressible solids. Only for a special class
of incompressible materials (inclusive of the so-called “generalized neo-Hookean
materials”) is an anti-plane shear deformation controllable. Let us consider, for
example, the case of an elastic material filling the annular region between two
coaxial cylinders, with the following boundary-value problem: hold fixed the outer
cylinder and pull the inner cylinder by applying a tension in the axial direction.
It is known that the deformation field of pure axial shear is a solution to this
problem valid for every incompressible isotropic elastic solid. In the assumption
of non-coaxial cylinders, thereby losing the axial symmetry, we cannot expect the
material to deform as prescribed by a pure axial shear deformation. Knowles’s
result [72] tells us that now the boundary-value problem can be solved with a
general anti-plane deformation (not axially symmetric) only for a certain subclass
of incompressible isotropic elastic materials. Of course, this restriction does not
mean that, for a generic material, it is not possible to deform the annular material
as prescribed by our boundary conditions, but rather that, in general, these lead
to a deformation field that is more complex than an anti-plane shear.

Hence, we also expect secondary in-plane deformations. The true problem is
therefore to understand when these secondary fields can be or cannot be neglected;
it is not to determine the special theory for which secondary flows disappears in
our mathematical world. These issues are relevant to many stability issues.

The present Thesis originates from the desire to understand in greater detail
the analogy between secondary flows and latent deformations (i.e. deformations
that are awoken from particular boundary conditions) in solid mechanics. We
would also like to question those boundary conditions that allow a semi-inverse
simple solution for special materials, but pose very difficult problem for general
materials. In some sense we are criticizing all studies that characterize the special
strain energy functions for which particular classes of deformations turn out to be
possible (or using a standard terminology, turn out to be controllable).

We wish to point out that our criticism is not directed at the mathematical
results obtained by these studies. Those results can and do lead to useful exact
solutions if the correct subclass of materials is picked. However, with regard to
the whole class of materials that are identified in the literature, one has to exercise
a great deal of caution, because models that are obtained on the basis of purely
mathematical arguments may exhibit highly questionable physical behavior. For
example, some authors have determined which elastic compressible isotropic mate-
rials support simple isochoric torsion. In fact, it is not of any utility to understand
which materials possess this property, because these materials do not exist. It is
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far more important to understand which complex geometrical deformation accom-
panies the action of a moment twisting a cylinder. That is why universal solutions
are so precious (see [113]). These results may also have important repercussions in
biomechanics. In the study of the hemo-dynamics, the hypothesis that the arterial
wall deforms according to simple geometric fields does not account for several fun-
damental factors. A specific example of a missing factor is the effect of torsion on
microvenous anastomic patency and early thrombolytic phenomenon (see for ex-
ample [116]). Nonetheless, we do acknowledge the value of simple exact solutions
obtained by inverse or semi-inverse investigations for understanding directly the
nonlinear behavior of solids.

The plan of the Thesis is the following: in the first two chapters, we develop an
introduction to nonlinear elasticity, essential to the subsequent chapters. The third
chapter is entirely devoted to the inverse procedures of Continuum Mechanics and
we illustrate some of the most important results obtained by their use, including
the “universal solutions”. While the inverse procedures have been truly important
to obtain exact solutions, on the other hand some of them may misguide and miss
real and interesting real phenomena. Here we also begin to expose our criticism
of some uses of the semi-inverse method and we describe in detail the “anti-plane
shear problem”. The core of these considerations is presented in the fourth chap-
ter (see also [28]). Here we illustrate some possible dangers inherent to the use of
special solutions to determine classes of constitutive equations. We consider some
specific solutions obtained for isochoric deformations but for compressible nonlin-
ear elastic materials: “pure torsion” deformation, “pure axial shear” deformation
and the “propagation of transverse waves”. We use a perturbation tecnique to
predict some risks that they may lead to when they are considered. Mathemat-
ical arguments are therefore important when they determine general constitutive
arguments, not very special strain energies as the compressible potential that ad-
mits isochoric deformations. In the fifth chapter (see also [27]), we give an elegant
and analytic example of secondary (or latent) deformations in the framework of
nonlinear elasticity. We consider a complex deformation field for an isotropic in-
compressible nonlinear elastic cylinder and we show that this deformation field
provides an insight into the possible appearance of secondary deformation fields
for special classes of materials. We also find that these latent deformation fields
are woken up by normal stress differences. Then we present some more general
and universal results in the sixth chapter, where we use incremental solutions of
nonlinear elasticity and we provide an exact solution for buckling instability of a
nonlinear elastic cylinder and an explicit derivation for the first nonlinear correction
of Euler’s celebrated buckling formula (see also [26]).
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Abstract

Recently, the biomechanics of soft tissues has become an important topic of re-
search in several engineering, biomedical and mathematical fields. Soft tissues are
biological materials that can undergo important deformations (both within phys-
iological and pathological fields) and they clearly display a nonlinear mechanical
behaviour. In this case the analysis of the deformations by computational methods
(e.g. finite elements) can be complex. Indeed, it is not easy to know exactly the
“right” constitutive equations to describe the behaviour of the material, and often
the commercial software turns out to be unsuited for dealing with trust the solu-
tions for the corresponding balance equations. The geometrical nonlinearity of the
model under investigation makes it very difficult to grasp the true physics of the
problem and often the intuition of the engineer can do very little if it is not guided
by careful and exact mathematical analysis. To this end the possibility of obtain-
ing easy exact solutions for the field equations is an important and privileged tool,
helping us to gain a better understanding of several biomechanics phenomena.

The semi-inverse method is one of few known methods available to obtain exact
solutions in the mathematical theory of Continuum Mechanics. The semi-inverse
method has been used in a systematic way during the whole history of Continuum
Mechanics (for example to derive the celebrated Saint Venant solutions [5, 6]),
but unfortunately this use has always happened essentially in a heuristic way,
completely disconnected from a general method.

Essentially, the purpose of the semi-inverse method consists in formulating a
priori a special ansatz for the unknown fields in a certain theory and in reducing the
general balance equations to a simplified subset of equations. Here, by simplifying
action, one often means that the balance equations are reduced to an easier system
of differential equations (for example passing from a system of partial differential
equations to an ordinary differential system, see [90]).

The following Thesis, developed in six chapters, studies several points of view of
this method and other connected methodologies. The first chapters are essentially
introductory while the others collect the results of research obtained during my
PhD ([26, 27, 28]).

The First Chapter is devoted to the definitions, symbols and basic concepts of
the theory of nonlinear elasticity. In that chapter we define the kinematics of finite
deformation, introducing the concept of material body and of deformation. We
introduce the balance laws, the stress and the equations of motion. We also propose
constitutive concepts, such as those of frame indifference, material isotropy and
hyperelasticity. We analyse the restrictions imposed on the mathematical models,
such as the empirical inequalities of Truesdell and Noll, to ensure a reasonable
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2 Abstract

mechanical behaviour.
The Second Chapter exhibits some special constitutive laws for hyperelastic

materials. One of the problems encountered in Continuum Mechanics concerns
the choice of models for the strain energy function for a good description of the
mechanical behaviour of “real” materials. Here we describe some models (both for
compressible and incompressible materials) that are commonly used in the litera-
ture, including: the neo-Hookean model, the Mooney-Rivlin model, the generalized
neo-Hookean model, the Hadamard model, the Blatz-Ko model, and finally an ex-
pansion of the strain energy function with respect to the Green Lagrange strain
tensor, used to study small-but-finite deformations.

The Third Chapter introduces a small overview of the use of the semi-inverse
method in elasticity. We show some examples which may be considered the most
representative and/or meaningful and highlight their strengths and weaknesses. We
apply the inverse method by searching universal solutions both in the compress-
ible (where the only admissible deformations are homogeneous [34]) and in the
incompressible case (where in addition to homogeneous, five other inhomogeneous
“families” have been found in the literature [33, 119]).

The Ericksen result [34] shows that there are no other finite deformations be-
yond those homogeneous that are controllable for all compressible materials. The
impact of that result on the theory of nonlinear elasticity was quite important.
For many years there has been “the false impression that the only deformations
possible in an elastic body are the universal deformations” [25]. In the same time
as the publication of Ericksen’s result, there was considerable activity in trying to
find solutions for nonlinear elastic materials using the semi-inverse method. And
the search of the exact solutions for nonlinear isotropic elastic incompressible ma-
terials, thanks to the constraint of incompressibility, has been easier than for the
compressible ones. In other words it has been possible to find exact solutions which
are not universal.

In recent years, there has been a great interest in the possibility to determine
classes of exact solutions for compressible materials as well. One of the strategies
used is to take inspiration from the inhomogeneous solutions for nonlinear elastic
incompressible materials and to seek similar solutions in compressible materials.
The Fourth Chapter focusses on the results obtained for compressible materials
using this line of research. The object is to determine which compressible materials
can sustain isochoric deformations such as, for example, “pure torsion”, “axial
pure shear” and “azimuthal pure shear”. We believe that these lines of research
can be misleading. To illustrate our thesis we have considered small perturbations
on some classes of compressible materials capable to sustain a certain isochoric
deformation. As a result, although the perturbation is “small”, the corresponding
volume variation is not negligible. We emphasize that it does not turn out to
be of any utility to understand which materials can sustain a simple isochoric
torsion, because these materials do not exist, but it is far more important to
understand which complex geometrical deformation accompanies the action of a
moment twisting for a cylinder. Only in this way, can the results obtained with
the semi-inverse method be meaningful.

Among the examples of application of the semi-inverse method, we report the
search of solutions for the “anti-plane shear” and “radial” deformation. In the
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incompressible case we know that, for a general elastic solid, the balance equations
are consistent with the anti-plane shear assumption only in the cylindrical sym-
metry case. We can say nothing when the body geometry is more general, since in
that case the equilibrium equations for a generic elastic solid reduce to an overde-
termined system that is not always consistent. This means that for general bodies,
the anti-plane shear deformation must be coupled with secondary deformations. A
complex tensional state is automatically produced in the body.

The Fifth Chapter presents a short overview of the results already obtained
in literature on the latent deformations (see [39, 63, 83]). Then we give a new
analytical example for the above issue (see also [27]). We consider a complex
deformation field for an isotropic incompressible nonlinear elastic cylinder, namely
a combination of an axial shear, a torsion and an azimuthal shear. After fixing
some boundary conditions, one can show that for the neo-Hookean material, the
azimuthal shear is not essential regardless of whether the torsion is present or not.
When the material is idealized as a Mooney-Rivlin material, the azimuthal shear
cannot vanish when a non-zero amount of twist is considered. Applying the stress
field, obtained from the neo-Hookean case, in order to extrude a cork from a bottle
of wine, then we conjecture that is more advantageous to accompany the usual
vertical axial force by a twisting moment.

The Thesis ends with a Sixth Chapter giving a new application of the semi-
inverse method (see also [26]). The celebrated Euler buckling formula gives the
critical load for the axial force for the buckling of a slender cylindrical column. Its
derivation relies on the assumptions that linear elasticity applies to this problem,
and that the slenderness of the cylinder is an infinitesimal quantity. Considering
the next order for the slenderness term, we find a first nonlinear correction to the
Euler formula. To this end, we specialize the exact solution of non-linear elasticity
for the homogeneous compression of a thick cylinder with lubricated ends to the
theory of third-order elasticity. This example is especially important because it
supposes a general method, even if it is approximated, and it may be applied to
several contexts.

These results show again the true complexity of nonlinear elasticity where it is
difficult to choose the reasonable reductions. Moreover the results obtained have
an important applications in biomechanic, a topic that will be the subject of future
research.





Sunto

La Biomeccanica dei tessuti molli è recentemente diventata un importante ar-
gomento di ricerca in molti ambiti ingegneristici, bio-medici e anche matematici.
I tessuti molli sono materiali biologici che possono subire deformazioni importanti
(sia in ambito fisiologico che patologico) ed esibiscono un comportamento mecca-
nico chiaramente nonlineare. In questo frangente lo studio delle deformazioni con
metodi computazionali, come gli elementi finiti, può essere molto complesso. In-
fatti, risulta difficile conoscere con sicurezza le equazioni costitutive “giuste” per
descrivere il comportamento del materiale e il software commerciale risulta spesso
inadeguato per affrontare con sicurezza la risoluzione delle equazioni di bilancio
corrispondenti. La nonlinearità geometrica dei modelli in questione complica di
molto la realtà fisica del problema e spesso l’intuito dell’ingegnere può ben poco se
non viene accompagnato da dettagliate e rigorose analisi matematiche. In questo
frangente la possibilità di avere semplici soluzioni esatte delle equazioni di campo
è uno strumento importante e privilegiato per aiutare la nostra comprensione dei
vari fenomeni biomeccanici.

Il metodo semi-inverso è uno dei pochi strumenti a nostra disposizione per
ottenere soluzioni esatte nell’ambito della teoria matematica della meccanica dei
continui. Il metodo semi-inverso è stato utilizzato in modo sistematico già dai
fondatori della teoria dell’elasticità lineare (si pensi alle famose soluzioni di Saint
Venant [5, 6]), ma purtroppo questo uso è sempre avvenuto in modo euristico e
completamente sganciato da una metodologia generale.

Sostanzialmente lo scopo del metodo semi-inverso è quello di fissare a priori una
serie di assunzioni sui campi incogniti in una data teoria e di ridurre le equazioni
di bilancio generali a sottoinsiemi semplificati di equazioni. Qui per azione sem-
plificativa solitamente si intende che le equazioni di bilancio vengano ridotte ad
un sistema di equazioni differenziali più semplici (per esempio da un sistema di
equazioni alle derivate parziali si può passare ad un sistema differenziale ordinario,
vedi [90]).

La presente Tesi, nei sei capitoli in cui si sviluppa, studia diversi aspetti di
questo metodo ed altre metodologie ad esso, in un certo senso, correlate. I primi
capitoli sono di carattere introduttivo mentre i rimanenti riportano i risultati ot-
tenuti durante il mio dottorato ([26, 27, 28]).

Il Primo Capitolo è dedicato alle definizioni, ai simboli e ai concetti base della
teoria dell’elasticità nonlineare. In questo capitolo si definisce la cinematica delle
deformazioni finite, introducendo il concetto di corpo materiale deformabile e di
deformazione. Si passa poi alle leggi di bilancio, alla definizione di sforzo (stress)
e alla formulazione delle equazioni del moto. Vengono quindi affrontati i concetti
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6 Sunto

costitutivi come il concetto frame indifference, di isotropia materiale ed il concetto
di iperelasticità. Si analizzano le restrizioni imposte ai modelli matematici per assi-
curare un comportamento meccanico ragionevole come le diseguaglianze empiriche
di Truesdell e Noll.

Il Secondo Capitolo espone alcune specifiche leggi costitutive di materiali ipere-
lastici. Uno dei problemi maggiormente incontrati nelle applicazioni in meccanica
dei continui riguarda la scelta di modelli per la funzione energia potenziale per
poter descrivere al meglio un comportamento meccanico dei materiali “reali”. Qui
descriviamo alcuni modelli (sia per materiali comprimibili che incomprimibili) che
sono maggiormente utilizzati in letteratura, tra cui: il modello neo-Hookeano, il
modello di Mooney-Rivlin, il mdello neo-Hookeano generalizzato, il modello di
Hadamard, il modello di Blatz-Ko ed infine una funzione energia potenziale ot-
tenuta come espansione in termini del tensore di Lagrange, utile quest’ultima per
“piccole” ma finite deformazioni.

Il Terzo Capitolo presenta una piccola overview dell’uso del metodo semi-inverso
in elasticità. Si riportano solo alcuni esempi che possono essere considerati tra i
più rappresentativi e/o significativi, sottolineandone i punti di forza e di debolezza.
Applichiamo il metodo inverso nella ricerca di soluzioni universali sia nel caso
comprimibile (dove le sole deformazioni possibili sono quelle omogenee, [34]) sia nel
caso incomprimibile (dove oltre alle deformazioni omogenee nella versione isocorica
in letteratura sono state trovate altre “cinque famiglie” non omogenee [33, 119]).

Il risultato di Ericksen [34] dimostra che non ci sono altre deformazioni fi-
nite oltre quelle omogenee che sono controllabili per tutti i materiali comprimibili.
L’impatto di tale risultato sulla teoria dell’elasticità nonlineare è stato fondamen-
tale. Per molti anni c’è stata “la falsa impressione che le uniche deformazioni
possibili per un corpo elastico sono quelle universali” (vedi [25]). Nello stesso
tempo della pubblicazione del risultato di Ericksen, una considerevole attività di
ricerca cercava di trovare soluzioni usando il metodo semi-inverso. Per i materiali
elastici nonlineari isotropi ed incomprimibili il vincolo di incomprimibilità ha fa-
cilitato la ricerca delle soluzioni esatte rispetto ai materiali comprimibili. Ovvero
è stato possibile trovare soluzioni esatte che non sono universali.

Negli anni più recenti ci si è molto interessati della possibilità di determinare
classi di soluzioni esatte anche per i mezzi comprimibili. Una delle strategie adot-
tate per trovare soluzioni esatte anche in quest’ultimo caso consiste nel prendere
ispirazione dalle soluzioni non omogenee per materiali elastici nonlineari incom-
primibili e cercare simili soluzioni per materiali comprimibili. Nel Quarto Capitolo
ci si interessa proprio ai risultati ottenuti per materiali comprimibili in questo filone
di ricerca. Si tratta di determinare quali materaili comprimibili possono sostenere
deformazioni isocoriche quali ad esempio la “torsione pura”, lo “shear puro assiale”
e lo “shear rotazionale puro”. Questi filoni di ricerca a nostro avviso possono es-
sere molto fuorvianti. Per illustrare i nostri argomenti abbiamo considerato delle
piccole perturbazioni su alcune classi di materiali comprimibili capaci di sostenere
una particolare deformazione isocorica. Ne risulta che seppur la perturbazione può
considerarsi “piccola” la variazione di volume che ne corrisponde può non essere
trascurabile. Sottolineiamo quindi come non sia importante capire quali materiali
elastici ed isotropi comprimibili possono subire ad esempio una torsione semplice
ed isocorica, in quanto questi materiali in ogni caso sono inesistenti, ma piuttosto
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capire quale geometria accompagna l’azione di un momento torcente in un cilindro
che viene idealizzato come elastico ed isotropo. Solo in questo modo i risultati
ottenuti con il metodo semi-inverso possono essere capiti in modo profondo.

Tra gli esempi di applicazione del metodo semi-inverso riportiamo la ricerca di
soluzioni per la deformazione di “anti-plane shear” e per la deformazione “radiale”.
Nel caso incomprimibile sappiamo che le equazioni di bilancio per un qualunque
solido elastico sono compatibili con l’assunzione di antiplane shear solo nel caso
di simmetria cilindrica. Non sappiamo dire nulla quando la geometria del corpo
è più generale, in quanto in questo caso le equazioni di equilibrio si riducono ad
un sistema sovradeterminato che non sempre risulta compatibile. Questo significa
che in corpi generali la deformazione di anti-plane shear deve essere accoppiata
a deformazioni secondarie. Ovvero anche se le condizioni al contorno risultano
compatibili con una deformazione di antiplane shear, questa per essere ammissibile
non può essere pura. Automaticamente nel corpo si crea uno stato tensionale
complesso. Cercare modelli speciali per cui questo stato tensionale viene meno
non permette di capire veramente cosa succede nella realtà.

Nel Quinto Capitolo dopo aver brevemente esposto i risultati già ottenuti in
letteratura sulle deformazioni latenti (vedi [39, 63, 83]), presentiamo un nuovo
esempio analitico e non approssimato della questione (vedi anche [27]). Consideri-
amo infatti un campo di deformazioni complesso per un cilindro elastico isotropo
nonlineare ed incomprimibile: una combinazione di uno shear assiale, di una tor-
sione e di uno shear rotazionale. Sotto la scelta di alcune condizioni al bordo, si
dimostra come nel caso neo-Hookeano lo shear rotazionale è inessenziale indipen-
dentemente se la torsione è presente. Se il materiale invece è idealizzato essere
un materiale di Mooney-Rivlin, lo shear rotazionale nel caso di torsione non nulla
è strettamente necessario. Applicando il campo di stress, trovato nel caso neo-
Hookeano, all’estrazione di un tappo di una bottiglia di vino, congetturiamo infine
che è richiesta più forza a “tirare” solamente che “tirare e torcere”.

La tesi termina con un Sesto Capitolo nel quale una nuova applicazione del
metodo semi-inverso è discussa (vedi anche [26]). La celebre formula di Eulero
sull’instabilità in “buckling” trova il valore critico della forza assiale per un cilin-
dro “snello” che diviene instabile. La sua derivazione poggia sull’assunzione di
elasticità lineare e che la “snellezza” del cilindro sia infinitesima. Considerando
un ordine in più per il paremetro che misura la “snellezza” del cilindro, troviamo
la prima correzione non lineare alla formula di Eulero. Per fare questo, special-
izziamo le soluzioni esatte dell’elasticità nonlineare per la compressione omogenea
di un cilindro “spesso” con estremi lubrificati all’interno della teoria dell’elasticità
del terzo ordine. Questo esempio è particolarmente interessante perchè prevede
l’utilizzo di una metodologia generale, anche se in un certo senso approssimata,
che può essere applicata in diversi contesti.

Questi risultati dimostrano ancora una volta come la teoria dell’elasticità sia un
argomento complesso dove è difficile scegliere le semplificazioni ragionevoli. I risul-
tati ottenuti hanno inoltre un loro significato applicativo in ambito biomeccanico
che sarà argomento delle nostre prossime ricerche.





Résumé

La biomécanique des tissus mous est récemment devenue un sujet de recherche
important dans nombreux domaines de l’ingénierie, y compris en bio-médicine et en
mathématique. Les tissus mous sont des matériaux biologiques qui peuvent subir
des déformations importantes (dans les régimes physiologiques et pathologiques)
et qui présentent clairement un comportement mécanique nonlinéaire. Dans ce
contexte, l’étude des déformations en s’appuyant sur des méthodes de calcul
numérique, comme les éléments finis, peut être s’avérer compliquée. En effet,
il est difficile de connâıtre avec certitude les équations constitutives “exactes” ca-
pables de décrire le comportement du matériau et les logiciels commerciaux sont
souvent insuffisants pour aborder avec certitude la résolution des équations non-
linéaires correspondantes. La nonlinéarité géométrique de ces modèles complique
grandement la réalité physique du problème et l’intuition de l’ingénieur est sou-
vent peu utile si elle n’est pas accompagnée par l’analyse mathématique détaillée
et rigoureuse. Dans ce contexte, la possibilité d’avoir des solutions exactes simples
pour les équations du champ est un outil important et privilégié pour nous aider
à comprendre plusieurs phénomènes biomécaniques.

La méthode semi-inverse est un des rares outils à notre disposition pour obtenir
des solutions exactes dans la théorie mathématique de la mécanique des milieux
continus. La méthode semi-inverse a déjà été utilisée de manière systématique par
les fondateurs de la théorie de l’élasticité linéaire (on pense aux célèbres solutions
de Saint Venant [5, 6]); malheureusement, cette utilisation a toujours été employée
d’une manière heuristique et complètement détachée d’une méthodologie générale.

Essentiellement, le but de la méthode semi-inverse est d’établir a priori un
certain nombre d’hypothèses concernant les champs inconnus dans une théorie
donnée et de réduire les équations génerales de l’équilibre à des sous-ensembles
simplifiés d’équations. Ici, simplifier signifie généralement que les équations de
l’équilibre sont réduites à un système d’équations différentielles plus faciles (par
exemple en partant d’un système d’équations différentielles aux dérivées partielles,
on peut obtenir un système d’équations différentielles ordinaires, voir [90]).

Cette thèse, qui se développe en six chapitres, étudie divers aspects de cette
méthode et aussi d’autres méthodes, dans un certain sens, connexes. Les pre-
miers chapitres sont introductifs et généraux, alors que les suivants présentent les
résultats nouveaux obtenus pendant mon doctorat ([26, 27, 28]).

Le Premier Chapitre est consacré aux définitions, symboles et concepts de
base de la thorie non-linéaire de l’élasticité. Ce chapitre définit la cinématique
des déformations finies par l’introduction des notions de corps déformable et de
déformation. Nous passons ensuite aux équations de bilan, à la définition des

9



10 Résumé

contraintes et à la formulation des équations du mouvement. Puis nous abor-
dons les concepts constitutifs comme la notion d’isotropie matérielle et le con-
cept d’ hyperélasticité. Nous analysons les restrictions imposées sur des modèles
mathématiques pour assurer un comportement mécanique raisonnable, comme les
inégalités de Truesdell et Noll.

Le Deuxième Chapitre expose certaines lois constitutives pour les matériaux
hyperélastiques. Un des principaux problèmes rencontrés dans les applications
en mécanique des milieux continus concerne le choix de modèles pour la fonction
d’énergie potentielle, permettant de mieux décrire un comportement mécanique
des materiaux “réels”. Nous décrivons ici certains modèles (pour materiaux com-
pressibles comme incompressibles) qui sont souvent utilisés dans la littérature, y
compris: le modèle néo-Hookéen, le modèle Mooney-Rivlin, le modèle néo-Hookéen
généralisé, le modèle d’Hadamard, le modèle de Blatz-ko, et finalement une fonction
d’energie potentielle obtenue comme expansion en termes d’invariants du tenseur
de Green-Lagrange, et utile pour des déformations finies mais modérées.

Le Troisième Chapitre présente un aperçu de l’utilisation de la méthode semi-
inverse en élasticité. Nous exposons des exemples qui pourraient être considérés
comme les plus représentatifs et/ou importants, et nous mettons en évidence leurs
forces et leurs faiblesses. Nous appliquons la méthode inverse dans la recherche
de solutions universelles dans le cas compressible (où les seules déformations pos-
sibles sont homogènees, [34]) comme dans le cas incompressible (où, en plus des
déformations homogènes, existent cinq autres “familles” de solutions universelles).

Le résultat de Ericksen [34] montre qu’il n’y a pas d’autres déformations finies
autres qu’ homogènes qui soient contrôlables pour tous les matériaux compressibles.
L’impact de ce résultat sur la théorie de l’élasticité non-linéaire a été fondamen-
tal. Pendant de nombreuses années, on a eu “la fausse impression que les seules
déformations possibles pour un corps élastique sont celles qui sont universelles”
(voir [25]). À la mème époque que celle de la publication des résultats de Ericksen,
une activité considérable de recherche était en cours pour essayer de trouver des
solutions en utilisant la méthode semi-inverse. La contrainte d’incompressibilité a
facilité la recherche de solutions exactes par rapport aux matériaux compressibles,
où il a été possible de trouver des solutions exactes qui ne soient pas universelles.

Ces dernières années, s’est développé un grand intérèt pour la possibilité de
trouver des classes de solutions exactes pour les solides compressibles. Une des
stratégies utilisées pour trouver des solutions exactes dans ce dernier cas est de
s’inspirer des solutions non-homogènes pour matériaux élastiques incompressibles
et de rechercher des solutions similaires pour les matériaux compressibles. Dans le
Chapitre Quatre nous nous intéressons précisément aux résultats obtenus pour les
matériaux compressibles dans cette ligne de recherche. Il s’agit de déterminer les
matériaux compressibles qui peuvent soutenir des déformations isochores comme la
“torsion pure”, le “cisaillement axial pur” et le “cisaillement de rotation pur”. Nous
pensons que ces lignes de recherche peuvent être très trompeuses. Pour illustrer
nos arguments, nous avons considéré des petites perturbations sur certaines classes
de matériaux compressibles capables de supporter une certain deformation isochore
particulière. Il s’ensuit que même si la perturbation peut être considérée comme
étant petite, le changement de volume ne peut cependant pas être négligeable.
Nous soulignons par conséquent qu’il n’est pas important de comprendre quels
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materiaux isotropes élastiques et compressibles peuvent subir par exemple une
torsion pure et isochore, parce que dans de tels matériaux n’existent pas, mais
plutôt de comprendre la géométrie qui accompagne l’action d’un couple dans un
cylindre qui est idéalisé comme élastique et isotrope. C’est uniquement de cette
façon que les résultats obtenus avec la méthode semi-inverse peuvent être compris
d’une manière approfondie.

Parmi les exemples d’application de la méthode semi-inverse nous rappor-
tons la recherche de solutions à la déformation de “cisaillement anti-plan” et à
la déformation “radiale”. Dans le cas incompressible nous savons que les équations
de bilan, pour n’importe quel solide élastique, sont compatibles avec l’hypothèse
de cisaillement anti-plan seulement dans le cas de symmétrie cylindrique. Nous
ne pouvons pas progresser lorsque la géométrie du corps est plus générale, parce
qu’alors, les équations d’équilibre sont réduites à un système surdéterminé qui
n’est pas toujours compatible. Cela signifie qu’en général, la déformation de ci-
saillement anti-plan doit être couplée avec une déformation secondaire. Donc même
si les conditions aux limites sont compatibles avec une deformation de cisaillement
anti-plan, celle-ci ne peut pas être pure pour être admissible. Automatiquement
dans le corps on a créé un état de contrainte complexe. Rechercher des modèles
spéciaux pour lesquels cet état de contraintes est absent, ne peut pas vraiment
nous aider comprendre ce qui se passe dans la réalité.

Dans le Cinquième Chapitre, après avoir brièvement présenté les résultats déjà
obtenus dans la littérature sur les déformations latentes (voir [39, 63, 83]), nous
présentons un nouvel exemple analytique de la question (voir aussi [27]). En fait
nous considérons un champ de déformation complexe pour un cylindre elastique
non-linéaire isotrope et incompressible: une combinaison d’une inflation, d’une
torsion, et d’un cisaillement hélicöıdal. Avec le choix de certaines conditions aux
limites, nous montrons que dans le cas néo-Hookéen le cisaillement de rotation est
inessentiel, peu importe si la torsion est présente. Si le matériau est idealisé comme
un modèle de Mooney-Rivlin, alors il faut avoir nécessairement le cisaillement de
rotation avec la torsion non nulle. Avec l’application à la mécanique de l’extraction
d’un bouchon d’une bouteille de vin, enfin, nous conjecturons qu’ il faut nécessite
plus de force pour “tirer” seulement que “tirer et tordre”.

La thèse se termine par un Sixième Chapitre dans lequel une nouvelle appli-
cation de la méthode semi-inverse est discutée (voir aussi [26]). La célèbre for-
mule d’Euler sur l’instabilité en “flambage” trouve la valeur critique de la force
axiale d’un cylindre “svelte” instable. Ce calcul est basé sur l’hypothèse d’une
élasticité linéaire, où la finesse du cylindre est infinitésimale. Considérant un ordre
supérieur pour la “minceur”, nous trouvons une première correction non-linéaire à
la formule d’Euler. Á cette fin, nous spécialisons les solutions exactes de l’élasticité
non-linéaire pour la compression homogène d’un cylindre “épais” avec extrémités
lubrifiées à la théorie de l’élasticité de troisième ordre. Cet exemple est parti-
culièrement intéressant car il implique l’utilisation d’une méthodologie générale,
bien que dans un certain sens approximative, qui peut être appliquée dans différents
contextes.

Ces résultats démontrent une fois de plus que la théorie de l’élasticité est un
sujet complexe, où est difficile choisir des simplifications raisonnable. Les résultats
obtenus ont aussi une leur importance dans la biomécanique, qui sera l’objet de
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notre prochaine recherche.



Chapter 1

Introduction to Elasticity

This introductory chapter presents some basic concepts of continuum mechan-
ics, symbols and notations for future reference.

1.1 Kinematics of finite deformations

We call B a material body, defined to be a three-dimensional differentiable
manifold, the elements of which are called particles (or material points) P . This
manifold is referred to a system of co-ordinates which establishes a one-to-one
correspondence between particles and a region B (called a configuration of B)
in three-dimensional Euclidean space by its position vector X(P ). As the body
deforms, its configuration changes with time. Let t ∈ I ⊂ R denote time, and
associate a unique Bt, the configuration at time t of B; then the one-parameter
family of all configurations {Bt : t ∈ I} is called a motion of B.

It is convenient to identify a reference configuration, Br say, which is an arbi-
trarily chosen fixed configuration at some prescribed time r. Then we label by X

any particle P of B in Br and by x the position vector of P in the configuration
Bt (called current configuration) at time t. Since Br and Bt are configurations of
B, there exists a bijection mapping χ : Br → Bt such that

x = χ(X) and X = χ−1(x). (1.1)

The mapping χ is called the deformation of the body from Br to Bt and since the
latter depends on t, we write

x = χt(X) and X = χ−1
t (x), (1.2)

instead of (1.1), or equivalently,

x = χ(X, t) and X = χ−1(x, t), (1.3)

for all t ∈ I. For each particle P (with label X), χt describes the motion of P with
t as parameter, and hence the motion of B. We assume that a sufficient number
of derivatives of χt (with respect to position and time) exists and that they are
continuous.

13
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The velocity v and the acceleration a of a particle P are defined as

v ≡ ẋ =
∂

∂t
χ(X, t) (1.4)

and

a ≡ v̇ ≡ ẍ =
∂2

∂t2
χ(X, t), (1.5)

respectively, where the superposed dot indicates differentiation with respect to t
at fixed X, i.e. the material time derivative.

We assume that the body is a contiguous collection of particles; we call this
body a continuum and we define the deformation gradient tensor F as a second-
order tensor,

F =
∂x

∂X
= Grad x ≡ Grad χ(X, t). (1.6)

Here and henceforth, we use the notation Grad, Div, Curl (respectively grad,
div, curl) to denote the gradient, divergence and curl operators in the reference
(respectively, current) configuration, i.e with respect to X (respectively, x).

We introduce the quantity
J = detF (1.7)

and assume that J 6= 0, in order to have F invertible, with inverse

F−1 = grad X. (1.8)

In general the deformation gradient F depends on X, i.e. varies from point to
point and such deformation is said to be inhomogeneous. If, on the other hand, F

is independent of X for the body in question then the deformation is said to be
homogeneous. If the deformation is such that there is no change in volume, then
the deformation is said to be isochoric, and

J ≡ 1. (1.9)
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A material for which (1.9) holds for all deformations is called an incompressible
material.

The polar decomposition theorem of linear algebra applied to the nonsingular
tensor F gives two unique multiplicative decompositions:

F = RU and F = V R, (1.10)

where R is the rotation tensor (and characterizes the local rigid body rotation of a
material element), U is the right stretch tensor, and V is the left stretch tensor of
the deformation (U and V describe the local deformation of the element). Using
this decomposition for F , we define two tensor measures of deformation called the
left and right Cauchy-Green strain tensors, respectively, by

B = FF T = V 2, C = F T F = U 2. (1.11)

The couples (U ,V ) and (B,C) are similar tensors, that is, they are such that

V = RURT , B = RCRT , (1.12)

and therefore U and V have the same principal values λ1, λ2, λ3, say, and B and
C have the same principal values λ2

1, λ
2
2, λ

2
3. Their respective principal directions

µ and ν are related by the rotation R,

ν = Rµ. (1.13)

The λ’s are the stretches of the three principal material lines; they are called
principal stretches.

1.2 Balance laws, stress and equations of motion

Let Ar, in the reference configuration, be a set of points occupied by a subset
A of a body B. We define a function m called a mass function in the following
way

m(Ar) =

∫

Ar

ρr dV, (1.14)

where ρr is the density of mass per unit volume V . In the current configuration,
the mass of At is calculated as

m(At) =

∫

At

ρ dv, (1.15)

where in this case ρ is the density of mass per unit volume v. The local mass
conservation law is expressed by

ρ = J−1ρr, (1.16)

or equivalentely in the form
ρ̇ + ρdivv = 0. (1.17)
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This last form of mass conservation equation is also known as the continuity equa-
tion.

The forces that act on any part At ⊂ Bt of a continuum B are of two kinds: a
distribution of contact forces, which we denote tn per unit area of the boundary
∂At of At, and a distribution of body forces, denoted b per unit volume of At.
Applying the Cauchy theorem, we know that there exists a second-order tensor
called the Cauchy stress tensor, which we denote T , such that

(i) for each unit vector n,
tn = Tn, (1.18)

where T is independent of n,

(ii)
T T = T , (1.19)

and

(iii) T satisfies the equation of motion,

divT + ρb = ρa. (1.20)

Often, the Cauchy stress tensor is inconvenient in solid mechanics because the
deformed configuration generally is not known a priori. Conversely, it is convenient
to use the material description. To this end, we introduce the engineering stress
tensor TR, also known as the first Piola-Kirchhoff stress tensor, in order to define
the contact force distribution tN ≡ TRN in the reference configuration

TR = JTF−T . (1.21)

It is then possible to rewrite the balance laws corresponding to (1.18), (1.19) and
(1.20), in the following form

tN = TRN , (1.22)

TRF T = FTR
T , (1.23)

DivTR + ρrbr = ρrẍ, (1.24)

where br denotes the body force per unit volume in the reference configuration.

1.3 Isotropy and hyperelasticity: constitutive

laws

We call nominal stress tensor the transpose of TR that we denote by

S = TR
T (1.25)

and we call hyperelastic a solid whose elastic potential energy is given by the strain
energy function W (F ) and such that

S =
∂W

∂F
(F ), (1.26)
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holds, relating the nominal stress and the deformation, or equivalently, such that

T = J−1∂W

∂F

T

F T , (1.27)

relating the Cauchy stress and the deformation. In component form (1.26) and
(1.27) read, respectively,

Sji =

(

∂W

∂Fij

)

, Tij = J−1 ∂W

∂Fiα

Fjα. (1.28)

A material having the property that at a point X of undistorted state, every
direction is an axis of material symmetry, is called isotropic at X. A hyperelastic
material which is isotropic at every material point in a global undistorted ma-
terial is called an isotropic hyperelastic material ; in this case, the strain energy
density function can be expressed uniquely as a symmetric function of the princi-
pal stretches or in terms of the principal invariants I1, I2, I3 of B (or equivalently,
the principal invariants of C, because in the isotropic case they coincide for every
deformation F ), or in terms of the principal invariants i1, i2, i3 of V . Thus,

W = Ŵ (λ1, λ2, λ3) = W̄ (I1, I2, I3) = W̃ (i1, i2, i3), (1.29)

say, where
I1 = trB, I2 = 1

2
[(trB)2 − trB2], I3 = det B. (1.30)

The principal invariants I1, I2, I3 of B are given in terms of the principal stretches
by

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2, (1.31)

I3 = λ2
1λ

2
2λ

2
3.

The principal invariants of V (and hence of U ), i1, i2, i3, are given by:

i1 = trV = λ1 + λ2 + λ3,

i2 = 1
2
[i21 − trV ] = λ2λ3 + λ3λ1 + λ1λ2, (1.32)

i3 = detV = λ1λ2λ3.

The principal invariants of B, given in (1.31), are connected with the principal
invariants of V given in (1.32) by the relations

I1 = i21 − 2i2, I2 = i22 − 2i1i3, I3 = i23. (1.33)

It is usual to require (for convenience) that the strain-energy function W should
vanish in the reference configuration, where F = I, I1 = I2 = 3, I3 = 1, λ1 = λ2 =
λ3 = 1. Thus,

W̄ (3, 3, 1) = 0, Ŵ (1, 1, 1) = 0. (1.34)

After some algebraic manipulations, follow two useful forms for the general
constitutive equation, which we write as

T = α0I + α1B + α2B
2, (1.35)
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or, using the Cayley-Hamilton theorem, as

T = β0I + β1B + β−1B
−1, (1.36)

where

αi = αi(I1, I2, I3), βj = βj(I1, I2, I3), (1.37)

i = 0, 1, 2; j = 0, 1,−1, are called the material or elastic response functions. In
terms of the strain energy function they are given by

β0(I1, I2, I3) = α0 − I2α2 =
2√
I3

[

I2
∂W

∂I2

+ I3
∂W

∂I3

]

,

β1(I1, I2, I3) = α1 + I1α2 =
2√
I3

∂W

∂I1

, (1.38)

β−1(I1, I2, I3) = I3α2 = −2
√

I3
∂W

∂I2

.

When the hyperelastic isotropic material is also incompressible, it is possible to
rewrite (1.35) and (1.36) as

T = −pI + α1B + α2B
2, (1.39)

and
T = −pI + β1B + β−1B

−1, (1.40)

respectively, where p is an undetermined scalar function of x and t (p is a La-
grange multiplier). The undetermined parameter p differs in (1.39) and (1.40) by
a 2I2(∂W/∂I2) term. Then the material response coefficients αi = αi(I1, I2) and
βj = βj(I1, I2) with i = 1, 2 and j = 1,−1 are defined respectively by

β1 = α1 + I1α2 = 2
∂W

∂I1

, β−1 = α2 = −2
∂W

∂I2

. (1.41)

We say that a body B is homogeneous if it is possible to choose a single reference
configuration Br of the whole body so that the response functions are the same for
all particle.

The formulae (1.35), (1.36), (1.39) and (1.40), may be replaced by any other set
of three independent symmetric invariants, for example by i1, i2, i3, the principal
invariants of V . When the strain energy function W depends by the principal
stretches, the principal Cauchy stress components (that we denote by Ti, i = 1, 2, 3)
are given by

Ti =
λi

J

∂W

∂λi

(1.42)

for compressible materials, and by

Ti = λi
∂W

∂λi

− p, (1.43)

for incompressible materials.
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1.4 Restrictions and empirical inequalities

The response functions βj are not completely arbitrary but must meet some
requirements. First of all, if we ask our compressible (incompressible) model to be
stress free in the reference configuration, then they must satisfy

β̄0 + β̄1 + β̄−1 = 0, (−p̄ + β̄1 + β̄−1 = 0), (1.44)

where β̄j = β(3, 3, 1) (and p̄ = p(3, 3, 1)) are the values of the material functions
(1.37) in the reference configuration. In general (to have hydrostatic stress T 0)
they must satisfy

T 0 = (β̄0 + β̄1 + β̄−1)I, (T 0 = (−p̄0 + β̄1 + β̄−1)I). (1.45)

The question of what other restrictions should be imposed in general on the
strain energy functions of hyperelasticity theory, in order to capture the actual
physical behavior of isotropic materials in finite deformation is of no less impor-
tance, and forms the substance of Truesdell’s problem. To model real material
behavior, we assume that the response functions βj are compatible with fairly
general empirical descriptions of mechanical response, derived from carefully con-
trolled large deformation tests of isotropic materials. To this end we assume that
the empirical inequalities imposed by Truesdell and Noll hold (see [127]). They
are, in the compressible case,

β0 ≤ 0, β1 > 0, β−1 ≤ 0, (1.46)

and in the incompressible case,

β1 > 0, β−1 ≤ 0. (1.47)

1.5 Linear elasticity and other specializations

In the special case of linear (linearized) elasticity, some constitutive restrictions
must be considered also in order to reflect the real behavior of the material, and
these restrictions lead to some important assumptions on the physical constants.
Hence, let u = x−X be the mechanical displacement. In the case of small strains,
the linear theory of elasticity is based on the following equations

T = C[ǫ], (1.48)

ǫ =
1

2

(

∇u + ∇uT
)

, (1.49)

DivT + br = ρü, (1.50)

where ǫ denotes the infinitesimal strain tensor and C the fourth-order tensor
of elastic stiffness. These three equations represent the stress-strain law, strain-
displacement relation, and the equation of motion, respectively. When the body is
homogeneus and isotropic, the constitutive equation (1.48) reduces to

T = 2µǫ + λ(trǫ)I, (1.51)
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where µ and λ are the so-called Lamé constants or, in the inverted form,

ǫ =
1

E
[(1 + ν)T − ν(trT )I] , (1.52)

where

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)
. (1.53)

The second Lamé constant µ determines the response of the body in shear, at
least within the linear theory, and for this reason is called the shear modulus. The
constant E is known as Young’s modulus, the constant ν as Poisson’s ratio, and
the quantity κ = (2/3)µ + λ as the modulus of compression or bulk modulus.

A linearly elastic solid should increase its length when pulled, should decrease
its volume when acted on by a pure pressure, and should respond to a positive
shearing strain by a positive shearing stress. These restrictions are equivalent to
either sets of inequalities

µ > 0, κ > 0; (1.54)

E > 0, −1 < ν ≤ 1/2. (1.55)

In the incompressible case, the constitutive equation (1.51) is replaced by

T = 2µǫ − pI, (1.56)

in which p is an arbitrary scalar function of x and t, independent of the strain ǫ.
In the limit of incompressibility (trǫ → 0)

κ → ∞, λ → ∞, µ =
E

3
, ν → 1

2
(1.57)

so that the strain-stress relation (1.52) becomes

ǫ =
1

2E
[3T − (trT )I] . (1.58)

The components of the strain tensor (1.49) must satisfy the compatibility con-
ditions of Saint Venant, which can be written in terms of the strain components
as

ǫij,hk + ǫhk,ij − ǫik,jh + ǫjh,ik = 0, (1.59)

where i, j, h, k = 1, 2, 3 and ǫij,hk = ∂2ǫij/(∂xh∂xk). Writing (1.59) in full, the 81
possible equations reduce to six essential equations, which are

2ǫ12,12 = ǫ11,22 + ǫ22,11, (1.60)

and a further two by cyclic exchanges of indices, and

ǫ11,23 = (ǫ12,3 + ǫ31,2 − ǫ23,1)1 , (1.61)

and a further two by cyclic exchanges of indices. Introducing the equations (1.52)
and (1.50) into the compatibility conditions (1.59) in the isotropic and homoge-
neous case, we obtain Michell’s equations

Tij,kk +
1

1 + ν
Tkk,ij = − ν

1 − ν
δi,jbk,k − (bi,j + bj,i), (1.62)
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or Beltrami’s simpler equations, in the case of no or constant body forces,

Tij,kk +
1

1 + ν
Tkk,ij = 0. (1.63)

Let us consider the shear modulus µ > 0 and the bulk modulus κ > 0 and go back
to the hyperelastic case. For consistency with the linearized isotropic elasticity
theory, the strain-energy function must satisfy

W̄1 + 2W̄2 + W̄3 = 0, (1.64)

W̄11 + 4W̄12 + 4W̄22 + 2W̄13 + 4W̄23 + W̄33 =
κ

4
+

µ

3
,

where W̄i = ∂W̄/∂Ii, W̄ij = ∂2W̄/(∂Ii∂Ij) (i, j = 1, 2, 3) and the derivatives are
evaluated for I1 = I2 = 3, and I3 = 1. We can observe that (1.64)1 is equivalent
to (1.44). The analogues of (1.64) for W̃ (i1, i2, i3) are

W̃1 + 2W̃2 + W̃3 = 0, (1.65)

W̃11 + 4W̃12 + 4W̃22 + 2W̃13 + 4W̃23 + W̃33 = κ +
4

3
µ,

where W̃i = ∂W̃/∂ii, W̃ij = ∂2W̃/(∂ii∂ij) (i, j = 1, 2, 3) and the derivatives are
evaluated for i1 = i2 = 3, and i3 = 1. If instead of (1.64) and (1.65), the form
Ŵ (λ1, λ2, λ3) of the strain energy function is considered, then it must satisfy

Ŵi(1, 1, 1) = 0 (1.66)

Ŵij(1, 1, 1) = κ − 2

3
µ (i 6= j), Ŵii = κ +

4

3
µ,

where, in the latter, no summation is implied by the repetition of the index i, the
notation Ŵi = ∂Ŵ/∂λi, Ŵij = ∂2Ŵ/∂(λi∂λj) (i, j = 1, 2, 3) is adopted, and the
derivatives are evaluated for λ1 = λ2 = λ3 = 1.

1.6 Incremental elastic deformations

Let us consider the deformation of a body B relative to a given reference configu-
ration x = χ(X) and then suppose that the deformation is changed to x′ = χ′(X).
The displacement of a material particle due to this change is ẋ say, defined by

ẋ = x′ − x = χ′(X) − χ(X) ≡ χ̇(X), (1.67)

and its gradient is
Gradχ̇ = Gradχ′ − Gradχ ≡ Ḟ . (1.68)

When ẋ is expressed as a function of x we call it the incremental mechanical
displacement, u = ẋ(x). For a compressible hyperelastic material (1.26), the
associated nominal stress difference is

Ṡ = S′ − S =
∂W

∂F
(F ′) − ∂W

∂F
(F ), (1.69)
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which has the linear approximation

Ṡ = AḞ , (1.70)

where A is the fourth-order tensor of elastic moduli, with components

Aαiβj = Aβjαi =
∂2W

∂Fiα∂Fjβ

. (1.71)

The component form of (1.70) is

Ṡαi = AαiβjḞjβ, (1.72)

which provides the convention for defining the product appearing in (1.70). The
corresponding form of (1.70) for incompressible materials is

Ṡ = AḞ − ṗF−1 + pF−1Ḟ F−1, (1.73)

where ṗ is the increment of p and A has the same form as in (1.71). Equation (1.73)
is coupled with the incremental form of the incompressibility constraint (1.9),

tr(Ḟ F−1) = 0. (1.74)

From the equilibrium equation (1.24) and its counterpart for χ′, we obtain by
subtraction the equations of static equilibrium in absence of body forces,

DivṠ
T

= 0, (1.75)

which does not involve approximation. In its linear approximation, Ṡ is replaced
by (1.70) or (1.73) with (1.74). When the displacement boundary conditions on
∂Br are prescribed, the incremental version is written as

ẋ = ξ̇ on ∂Br (1.76)

or in the case of tractions boundary conditions (1.22), as

Ṡ
T
N = τ̇ on ∂Br, (1.77)

where ξ̇ and τ̇ are the prescribed data for the incremental deformation χ̇. It is
often convenient to use the deformed configuration Bt as the reference configu-
ration instead of the initial configuration Br and one needs therefore to treat all
incremental quantities as functions of x instead of X. Making use of the following
definitions

u(x) = χ̇(χ−1(x)), Γ = Ḟ F−1, Σ = J−1F Ṡ, (1.78)

and of the fourth-order (Eulerian) tensor A0 of instantaneous elastic moduli, whose
components are given in terms of those of A by

A0piqi = J−1FpαFqβAαiβj, (1.79)
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it follows that Γ = gradu and the equilibrium equations (1.75) become

divΣT = 0, (1.80)

where for compressible materials

Σ = A0Γ, (1.81)

and for incompressible materials

Σ = A0Γ + pΓ − ṗI, (1.82)

where now J = 1 in (1.79). The incompressibility constraint (1.74) takes the form

trΓ ≡ divu = 0. (1.83)

When the strain energy function W is given as a symmetrical function of the
principal strains W = Ŵ (λ1, λ2, λ3), the non-zero components, in a coordinate
system aligned with the principal axes of strain, are given in general by [95]

JA0iijj = λiλjŴij,

JA0ijij = (λiŴi − λjŴj)λ
2
i /(λ

2
i − λ2

j), i 6= j, λi 6= λj,

JA0ijji = (λjŴi − λiŴj)λiλj/(λ
2
i − λ2

j), i 6= j, λi 6= λj, (1.84)

JA0ijij = (A0iiii −A0iijj + λiŴi)/2, i 6= j, λi = λj,

JA0ijji = A0jiij = A0ijij − λiŴi, i 6= j, λi = λj,

(no sums), where Ŵij ≡ ∂2Ŵ/(∂λi∂λj).

Notes

In this chapter we have only introduced some basic concepts, definitions, sym-
bols and basic relationships of continuum mechanics in the field of elasticity. Al-
though there is an extensive literature on the thermomechanics of elastomers, our
setting here is purely isothermal and no reference is made to thermodynamics.

For literature on this introductory part, we refer mainly to: Atkin and Fox [4],
Beatty [9], Gurtin [50], Holzapfel [57], Landau and Lifshitz [76], Leipholz [77], Og-
den [95], Spencer [121] and Truesdell and Noll [127]. These books are an excellent
survey of some selected topics in elasticity with an updated list of references.

In Truesdell and Noll [127] (see Section 43), a material is called elastic if it is
simple1 and if the stress at time t depends only on the local configuration at time t,
and not on the entire past history of the motion. This means that the constitutive
equation must be expressed as

T = G(F ), (1.85)

where T is the Cauchy stress tensor, F is the deformation gradient at the present
time, taken with respect to a fixed but arbitrary, local reference configuration and

1A material is simple if and only if its response to any deformation history is known as soon
as its response to all homogeneous irrotational histories is specified (see Section 29 in [127]).
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G is the response function of the elastic material. It is important to point out that
in recent years, Rajagopal [103, 104] asserted that this interpretation is much too
restrictive and he illustrated his thesis by introducing implicit constitutive theories
that can describe the non-dissipative response of solids. Hence, Rajagopal gives
the constitutive equation for the mathematical model of an elastic material in the
form

F(F ,T ) = 0, (1.86)

and in [104] gives some interesting conceptual and theoretical reasons to adopt
implicit constitutive equations. In [103], Rajagopal and Srinivasa show that the
class of solids that are incapable of dissipation is far richer than the class of bodies
that is usually understood as being elastic.

In the last section of this chapter, we introduced the linearized equations for
incremental deformations. They constitute the first-order terms associated with a
formal perturbation expansion in the incremental deformation. The higher-order
(nonlinear) terms are for example required for weakly nonlinear analysis of the
stability of finitely deformed configurations, see Chapter 10 in [43]. For a discussion
of the mathematical structure of the incremental equations, see [54]. Applications
of the linearized incremental equations for interface waves in pre-stressed solids
can be found in Chapter 3 of [30].



Chapter 2

Strain energy functions

The aims of constitutive theories are to develop mathematical models for rep-
resenting the real behavior of matter, to determine the material response and in
general, to distinguish one material from another. As described in the preceding
chapter, constitutive equations for hyperelastic materials postulate the existence
of a strain energy function W . There are several theoretical frameworks for the
analysis and derivation of constitutive equations, for example the Rivlin-Signorini
method where the governing idea is to expand the strain energy function in a power
series of the invariants, or the Valanis-Landel approach expressing the strain energy
directly in terms of the principal stretches [115].

In this chapter, we make no attempt at presenting these methods but instead,
we present some classical explicit forms of strain-energy functions used in the
literature for some isotropic hyperelastic materials. Many other models have been
proposed (for example, a collection of constitutive models for rubber can be found
in [32]).

2.1 Strain energy functions for incompressible

materials

2.1.1 Neo-Hookean model

The neo-Hookean model is one of the simplest strain energy functions. It in-
volves a single parameter and provides a mathematically simple and reliable con-
stitutive model for the non-linear deformation behavior of isotropic rubber-like
materials. Its strain energy function is

W =
µ

2
(I1 − 3), (2.1)

where µ > 0 is the shear modulus for infinitesimal deformations. The neo-Hookean
model comes out of the molecular theory, in which vulcanized rubber is regarded
as a three-dimensional network of long-chain molecules that are connected at a few
points. The elementary molecular theory of networks is based on the postulate that
the elastic free energy of a network is equal to the sum of the elastic free energies
of the individual chains. In order to derive (2.1), a Gaussian distribution for the

25
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probability of the end-to-end vector of the single chain is also assumed. While in
a phenomenological theory the constitutive parameters are dictated only by the
functional form considered, in a molecular theory the parameters are introduced
on the basis of the modeled phenomena and consequently, are related ex ante to
physical quantities. In this framework the constitutive parameter µ is determined
by micromechanics parameters, as

µ = nkT, (2.2)

where n is the chain density, k is the Boltzmann constant and T is the absolute
temperature. Although it poorly captures the basic features of rubber behaviour,
the neo-Hookean model is much used in finite elasticity theory because of its “good”
mathematical properties (for example a huge number of exact solutions to bound-
ary value problems may be found using this model).

2.1.2 Mooney-Rivlin model

To improve the fitting to data, Rivlin introduced a dependence of the strain
energy function on both the first and second invariants. A slightly more general
model than neo-Hookean is therefore a simple, or two-term, Mooney-Rivlin model,
for which the strain energy function is assumed to be linear in the first and second
invariant of the Cauchy-Green strain tensor. This model is of purely phenomeno-
logical origin, and was originally derived by Mooney [84]. The strain energy may
be written as

W = 1
2

(

1
2

+ γ
)

µ(I1 − 3) + 1
2

(

1
2
− γ

)

µ(I2 − 3), (2.3)

where γ is a dimensionless constant in the range −1/2 ≤ γ ≤ 1/2 and µ > 0 is
the shear modulus for infinitesimal deformations. When γ = 1/2, we recover the
neo-Hookean model (2.1). Mooney [84] showed that the form (2.3) is the most
general one which is valid for large deformations of an incompressible hyperelastic
material, isotropic in its undeformed state, for the relation between the shearing
force and amount of simple shear to be linear. Hence the constant µ is also the
shear modulus for large shears.

By considering the expansion of the strain energy function in power series of
(I1 − 3) and (I2 − 3) terms, it can be shown that for small deformations, the
quantities (I1 − 3) and (I2 − 3) are, in general, small quantities of the same order,
so that (2.3) represents an approximation valid for sufficiently small ranges of
deformations, extending slightly the range of deformations described by the neo-
Hookean model. This is pointed out in the figures (2.1 - 2.4) where the classical
experimental data of Treloar [126] for simple tension and of Jones and Treloar [69]
for equibiaxial tension are plotted (their numerical values having been obtained
from the original experimental tables), and compared with the predictions of neo-
Hookean and Mooney-Rivlin models.

In the first case, simple tension, the principal stresses are

t1 = t, t2 = t3 = 0, (2.4)
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and requiring for the principal stretches

λ1 = λ, λ2 = λ3 = λ−1/2, (2.5)

we obtain from the relation (1.40)

t = 2

(

λ2 − 1

λ

) (

W1 +
1

λ
W2

)

. (2.6)

In Figure (2.1) we report the classical data of Treloar, by plotting the Biot stress
f = t/λ defined per unit reference cross-sectional area against the stretch λ. In
Figure (2.2), we used the so-called Mooney plot (widely used in the experiment
literature to compare the different models) because it is sensitive to relative errors.
It represents the Biot stress f = t/λ divided by the universal geometrical factor
2 (λ − 1/λ2), plotted against 1/λ:

f

2 (λ − 1/λ2)
= W1 +

1

λ
W2. (2.7)

The Mooney-Rivlin model, fitting to data, improves the neo-Hookean model for
small and moderate stretches. In fact, in the case of simple extension, the curves
in (2.1) and (2.2) for the models under examination are obtained considering only
the early part of the data. For large extensions, the Mooney-Rivlin curve gives
a bad fitting. This fact may be emphasized by the Mooney plot (2.2), where the
Mooney-Rivlin curve is a straight line, and is seen to fit only a reduced range of
data.

For the equibiaxial tension test we let

t1 = t2 = t, t3 = 0, (2.8)

and require the principal stretches to be

λ1 = λ2 = λ, λ3 = λ−2, (2.9)

so that we obtain by (1.40) the following relation for the principal stress,

t = 2

(

λ2 − 1

λ4

)

(

W1 + λ2W2

)

. (2.10)

In Figure (2.3), we report the classical data of Jones and Treloar [69] by plotting
the Biot stress f = t/λ against the stretch λ. In Figure (2.4) we represent the
Mooney plot for the Biot stress divided by 2 (λ − 1/λ5), plotted against λ2:

f

2 (λ − 1/λ5)
= W1 + λ2W2. (2.11)

The Mooney plot (2.4) reveals how the Mooney-Rivlin model extends slightly the
range of data approximation compared to the neo-Hookean model, but cannot fit
all of them.

The Mooney-Rivilin model has been studied extensively even though no rubber-
like material seems to be described by it to within errors of experiment. It is used as
the first illustration for every general result for isotropic incompressible materials
for which several analytical solutions have been found.
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1 2 3 4 5 6 7 801 02 03 04 05 06 07 0

Figure 2.1: Plot of the simple tension data (circles) of Treloar [126] against the
stretch λ, compared with the predictions of the Mooney-Rivlin model (dashed
curve) and the neo-Hookean model (continuous curve). (In the figure, both models
were optimized to fit the first 16 points, i.e. data for which λ ∈ (1, 6.15)).
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Figure 2.2: Plot of the simple tension data (circles) of Treloar [126] normalized
by 2(λ − 1/λ2) (λ is the stretch), against 1/λ, compared with the predictions of
the Mooney-Rivlin model (dashed curve) and the neo-Hookean model (continuous
curve). (In the figure, the Mooney-Rivlin model has been optimized to fit the nine
points for which 1/λ ∈ (0.33, 0.99) and the neo-Hookean model has been optimized
to the five points for which 1/λ ∈ (0.28, 0.53)).
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Figure 2.3: Plot of the equibiaxial tension data (circles) of Jones and Treloar [69],
against the stretch λ, compared with the predictions of the Mooney-Rivlin model
(dashed curve) and the neo-Hookean model (continuous curve). (In the figure,
both models have been optimized to fit all seventeen points.)
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Figure 2.4: Plot of the equibiaxial tension data (circles) of Jones and Treloar
[69] normalized by 2(λ − 1/λ5) (λ is the stretch), against λ2, compared with the
predictions of the Mooney-Rivlin model (dashed curve) and the neo-Hookean model
(continuous curve). (In the figure, the Mooney-Rivlin model has been optimized
to fit the five data for which λ2 ∈ (11.76, 19.81) and the neo-Hookean model has
been optimized to fit the three points for which λ2 ∈ (2.8, 6.2)).



30 Chapter 2. Strain energy functions

2.1.3 Generalized neo-Hookean model

Despite the idea of Rivlin to introduce the dependence of W of the second
invariant I2, there are several models of strain energy functions depending on the
first invariant I1 only. In the molecular theory, I1 is connected to the mean squared
end-to-end distance of the chains, but in general the chains cannot assume a com-
pletly arbitrary form and length. To overcome this constraint, the second invariant
I2, which is connected instead with the surface extension of material, is needed.
Often the introduction of this invariant renders the calculations cumbersome, and
from there follows the wide use of strain energies functions depending in a nonlin-
ear manner on the first invariant only. A function of this form is called generalized
neo-Hookean model,

W = W (I1). (2.12)

To account for the finite extensibility of the polymeric chains composing the
elastomer network (since Gaussian statistics give rise to a probability density func-
tion without compact support), some models of the form (2.12) introduce a dis-
tribution function for the end-to-end distance of the polymeric chain which is not
Gaussian. These models are usually called non-Gaussian models. From the phe-
nomenological point of view these models can be divided into two classes: models
with limiting chain extensibility, and power-law models. An example of the first
class is due to Gent [45], who proposed the following strain energy density

W = − µ

2b
ln [1 − b( I1 − 3 )] , (2.13)

where b > 0 is a limiting parameter value constant for I1, accounting for limiting
polymeric chain extensibility and µ > 0 is the shear modulus for infinitesimal
deformations. An example of the second class, widely used in biomechanics, was
proposed by Fung [44] as follows

W =
µ

2b
exp [b (I1 − 3) − 1], (2.14)

where the dimensionless constant b > 0 is a stiffining parameter, and µ > 0 is the
shear modulus for infinitesimal deformations. Both classes behave as neo-Hookean
solids in the small b/small-deformation limit, since they both obey

W (I1, b) =
µ

2
(I1 − 3) +

µb

4
(I1 − 3)2 + O

(

b2 (I1 − 3)3) (2.15)

as b (I1 − 3) → 0. Another power-law constitutive model was proposed by Knowles
[73]. It can be written as

W =































µ

2αβ
[(1 + β (I1 − 3))α − 1] , if α 6= 0 and β 6= 0,

µ

2β
log (1 + β (I1 − 3)) , if α = 0 and β 6= 0,

µ

2
(I1 − 3) , if β = 0, (∀α),

(2.16)
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where α and β are constants; when α = 1 the neo-Hookean model (2.1) is re-
covered. Knowles introduced this model to describe both strain-stiffening and
strain-softening effects in elastomeric materials and biological soft tissues. For a
careful study of the analytical properties of the Knowles potential, see [15].

Even though some classical experimental data suggest that constitutive equa-
tions of the form (2.12) may have limited applicability, they nevertheless often lead
to closed-form analytical solution for many interesting problems. Such solutions
are useful for a better understanding of the mechanical properties of the matter
and also as benchmarks for more complex numerical computations.

2.1.4 Other models

Rivlin and Saunders [112] showed that both neo-Hookean and Money-Rivlin
models are not adequate to describe accurately the experimental properties of
rubber. Their conclusion was that ∂W/∂I1 is independent of both I1 and I2, and
that ∂W/∂I2 is independent of I1 and decreases with increasing I2. They thus
deduced the strain energy function in the form

W = C(I1 − 3) + f(I2 − 3), (2.17)

where C is a constant and f is a function whose slope diminishes continuously
with increasing I2. In the more recent work of Obata [92], it is found that neither
∂W/∂I1 nor ∂W/∂I2 can be regarded as constant, and that each should depend on
both I1 and I2.

Valanis and Landel [128] proposed that the strain energy function W may be
expressible as the sum of three functions of the principal stretches,

W = w(λ1) + w(λ2) + w(λ3), (2.18)

in which the function w(λ) is, by symmetry, the same for each of the extension
ratios. Equivalent to (2.18) is the expansion due to Ogden [93],

W =
∞

∑

m=1

µm(λαm

1 + λαm

2 + λαm

3 − 3)/αm (2.19)

in terms of powers of the principal stretches, where each µm and αm are material
constants, not necessarily integers [93]. Jones and Treloar [69] and Ogden [115]
show how the biaxial strain experiments are consistent with the Valanis-Landel
model (2.18) and the Ogden expansion (2.19).

2.2 Strain energy functions for compressible ma-

terials

In the compressible case, as well as (1.34), a further assumption is required for
W : it should approach infinity as I3 tends to infinity or zero+. In other words,
an infinite amount of energy is required in order to expand the body to infinite
volume or to compress it to a point with vanishing volume, so that

lim
I3→+∞

W = +∞, lim
I3→0+

W = +∞. (2.20)
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2.2.1 Hadamard model

Hadamard [51] introduced a class of elastic materials characterised by the prop-
erty that infinitesimal longitudinal waves may propagate in every direction, when
they are maintained in an arbitrary state of finite static homogeneous deformation.
This constitutive model, called Hadamard model by John [68], describes also the
only compressible isotropic homogeneous elastic material for which three linearly-
polarized finite amplitude plane waves, one longitudinal and two transverse, may
propagate in every direction when it is homogeneously deformed [24, 68]. The
strain energy function is defined by

W = c1(I1 − 3) + c2(I2 − 3) + H(I3), (2.21)

where c1, c2 are material constants such that c1 > 0, c2 ≥ 0, or c1 ≥ 0, c2 > 0 and
H(I3) is an arbitrary function to be specified on the basis of constitutive arguments.
The connection with the Lamé constants of the linear theory is made through the
relations

c1 = µ + H ′(1), c2 = −µ

2
− H ′(1), 4H ′′(1) = λ + 2µ. (2.22)

An example for the function H(I3), accounting for the effects of compressibility, is
given by Levinson and Burgess1 [79]. They propose the following explicit form for
the material function H(I3),

H(I3) = (λ + µ) (I3 − 1) − (λ + 2µ) (
√

I3 − 1). (2.23)

2.2.2 Blatz-Ko model

The Blatz-Ko model is one of much used models describing the behavior of
rubber in the compressible case. Replacing the principal invariants Ik by another
set of independent invariants of B, Jk defined by

J1 ≡ I1 = trB, J2 ≡ I2/I3 = trB−1, J3 ≡ I
1/2
3 = det F , (2.24)

the strain energy function may be written as W (J1, J2, J3). Introducing (2.24) into
(1.38), we find that

β0 =
∂W

∂J3

, β1 =
2

J3

∂W

∂J1

, β−1 = − 2

J3

∂W

∂J2

. (2.25)

Let us now consider a special class of materials whose response functions in
(2.25) depend on J3 alone. This is possible if and only if

β0 = W3(J3), β1 =
α

J3

, β−1 = − β

J3

, (2.26)

where W3 ≡ ∂W/∂J3 and α and β are constants. It can be shown that

β1(1) − β−1(1) = α + β = µ, (2.27)

1We observe that Levinson and Burgess give an explicit form of H(I3) that does not verify
(2.20)2.
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and introducing another constant f such that

α = µf, β = µ(1 − f), (2.28)

the equation for the Cauchy stress for this special class of material is derived from
(1.40) in the form

T = W3(J3) +
µf

J3

B − µ(1 − f)

J3

B−1. (2.29)

Considering a simple tensile loading

T1 = t, T2 = 0, T3 = 0, (2.30)

with principal stretches (λ, λ2, λ3), Blatz and Ko [18] assumed (since in their ex-
periment with f = 0 they found J3 = λ1/2) the following general constitutive
assumption of volume control

J3 = λn. (2.31)

It follows from Batra’s theorem [7] that

λ2 = λ3, (2.32)

and from (2.31), that
λ2(λ) = λ(n−1)/2. (2.33)

From (1.49) the infinitesimal strains are of the form ǫk = λk − 1. Following [12] we
define the Poisson function ν(λ) as

ν(λ) = −ǫ3

ǫ1

=
1 − λ2(λ)

λ − 1
, (2.34)

from which the infinitesimal Poisson ratio is deduced in the limit

ν = lim
λ→1

ν(λ) = −(n − 1)

2
. (2.35)

Therefore a Blatz-Ko material must verify

λ2(λ) = λ−ν , (2.36)

and consequently
λ = J

1/(1−2ν)
3 . (2.37)

Blatz and Ko integrated the expression W3 by making use of condition (2.37) and
the condition W (3, 3, 1) = 0 in the natural state. They thus obtained the following
general expression for the strain energy

W (J1, J2, J3) =
µf

2
[(J1 − 3) − 2

q
(Jq

3 − 1)]

+
µ(1 − f)

2
[(J2 − 3) − 2

q
(J−q

3 − 1)], (2.38)
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where

q =
n − 1

n
=

−2ν

1 − 2ν
. (2.39)

Two special models of this expression (2.38), f = 0 and f = 1, are often
used in applications. The former characterizes the class of foamed, polyurethane
elastomers and the latter describes the class of solid, polyurethane rubbers studied
in the Blatz-Ko experiments. We note that in the limit I3 → 1 it is possible to
obtain the Mooney-Rivlin strain energy density for incompressible materials from
(2.38). Thus (2.38) may be viewed as a generalization of the Mooney-Rivlin model
to compressible materials. In the literature, a special compressible material of the
first case (f = 0) is often used at q = −1, for which the strain energy, rewritten in
terms of invariants Ik, is given by

W (I1, I2, I3) =
µ

2

(

I2

I3

+ 2I
1/2
3 − 5

)

. (2.40)

2.3 Weakly non-linear elasticity

To study small-but-finite elastic effects, the weakly non-linear elasticity theory
[76], considers an expansion for the strain energy function in the following form

W =
1

2!
CijklEijEkl +

1

3!
CijklmnEijEklEmn + . . . , (2.41)

where Cijk... are constant moduli and E = ET is the Lagrange, or Green, strain
tensor, defined as E = (C − I) /2. In the isotropic case, the strain energy (2.41)
has the following expansion to the second order (second-order elasticity) as

W =
λ

2
(trE)2 + µ tr(E2), (2.42)

where λ and µ are the Lamé constants. At the third order (third-order elasticity),
the expansion is (see [101] for example)

W =
λ

2
(trE)2 + µ tr(E2) +

A
3

tr(E3) + B (trE) tr(E2) +
C
3

(trE)3 , (2.43)

where A, B, and C are the Landau third-order elastic constants.
For incompressible solids the second-order expansion involves only one material

constant: µ, and the third-order expansion involves only two material constants:
µ and A. They are written respectively as

W = µ tr(E2), (2.44)

and

W = µ tr(E2) +
A
3

tr(E3). (2.45)

Rivlin and Saunders [112] showed that the Mooney-Rivlin strain-energy function
(2.3) of exact non-linear incompressible elasticity coincides, at the same order of
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approximation, with the general weakly nonlinear third-order elasticity expansion
(2.45). Introducing the following constants

C1 =
1

2

(

1

2
+ γ

)

µ, C2 =
1

2

(

1

2
− γ

)

µ, (2.46)

in (2.3), the connections between the material constants are

µ = 2(C1 + C2), A = −8(C1 + 2C2). (2.47)

Notes

This presentation of theoretical framework for the constitutive equations in-
cludes many but not all models proposed in literature. One of the main problems
encountered in the applications of mechanics of continua is the complete and ac-
curate determination of the constitutive relations necessary for the mathematical
description of the behavior of real materials. Indeed people working with rubber
know very well that the mechanical behavior of this material is very complex and
outside of the forecast possibilities of nonlinear elasticity (see Saccomandi [115]).

One of the omissions, in this chapter is the so-called Rivlin-Signorini method.
First Murnaghan [85] and then Rivlin [110] and Signorini [118] approximated the
material response functions by polynomials in the appropriate invariants. In this
way, a particular material is then characterized by the constant coefficients of the
polynomial rather than by functions. Applications of the Rivlin-Signorini method
can be found in [81, 120]. Although from a theoretical point of view, any complete
set of invariants is equivalent to another, it has been observed by several authors
that the approach used by Rivlin considering the principal invariants it is not
very practical in fitting experimental data, because of the possible propagation
of experimental errors (see for example [128]). Therefore it may be interesting
to consider the possibility of expressing the strain energy directly in terms of the
principal stretches and to overcome some difficulties related to the symmetry. That
is why Valanis and Landel [128] postulated that the strain energy function be a
sum of functions each depending on a single stretch (see (2.18)).





Chapter 3

Inverse methods

A general boundary value problem of elastostatics for a body B consists in
finding a motion x = χ(X) that satisfies a(X, t) = 0 for all particles X of Br and
for all times t. Recalling equation (1.24), this means that the motion must satisfy
the equilibrium equation

DivTR + ρrbr = 0, (3.1)

everywhere in Br, and the boundary conditions of surface tractions (1.22) and
place,

tN = TRN , prescribed on ∂B1
r , (3.2)

X = X̄, prescribed on ∂B2
r , (3.3)

respectively, where ∂B1
r and ∂B2

r are disjoint parts of ∂Br such that ∂Br = ∂B1
r ∪

∂B2
r .
The boundary value problem is expressed in terms of material description be-

cause, as we have just emphasized in the first chapter, the geometry of the de-
formed body generally is unknown a priori (otherwise equations (1.18) - (1.20)
may be used). From a theoretical point of view, a given rubberlike material can be
characterized by an appropriate constitutive equation that will enable us to pre-
dict its response to specified loading and displacement boundary conditions. We
assume, as a first approximation, that a certain rubber material may be modeled
as either a compressible or an incompressible, homogeneous isotropic hyperelastic
material such that (1.36) or (1.40) applies. These represention formulae are useful
to understand how the given material may be distinguished from another one on
grounds of the response functions βi only. But very little can be said a priori
about these response functions unless some helpful experiment is made. Then,
because measurements can be done only on the boundary of the test specimen, it
would better to know a priori the kind of deformation that we want to reproduce
experimentally in order to know what quantities can be effectively measured. To
this end, Beatty [9] says

It is clear, in particular, that the experimenter must know a priori the
class of deformations that actually may be produced in every compress-
ible or incompressible, homogeneous and isotropic, hyperelastic mate-
rial by the application of surface loading alone. Also, the surface loads

37
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needed to effect them must be known in order to select the kinds of
loading devices that may be used.

Theoretical results which fit this program are so-called universal results. A defor-
mation, or a motion, which satisfies the balance equations with zero body force and
which, in equilibrium, is supported by suitable surface tractions alone, is called a
controllable solution. A controllable solution which is the same for all materials in
a given class is a universal solution (when the solution is controllable for a specific
subclass of material, it is called a relative universal solution). Besides universal
solutions, other kind of universal results exist, which involve not only the strain
but also the stress. For a given deformation or motion, a local universal relation
is an equation relating the stress components and the position vector which holds
at any point of the body and which is the same for any material in a given class.

From the mathematical point of view, the analytical solution for the (3.1) - (3.3)
problem may be very hard to attain, even in the simplest boundary value prob-
lem, because the set of equations forms a non-trivial system of nonlinear, partial
differential equations generating often nonunique solutions. To solve the result-
ing boundary-value problems, inverse techniques can be used to provide simple
solutions and to suggest experimental programs for the determination of response
functions. Two powerful methods for inverse investigations are the so-called inverse
method and the semi-inverse method. They have been used in elasticity theory as
well as in all fields of the mechanics of continua. For example, it is quoted in the
book [77] that

In the inverse method, a known solution of the displacement is assumed
with the aid of which strain and stress states are determined. Finally,
using the boundary conditions, the body itself and its load and reactions
are determined.

In the semi-inverse method, part of unknowns is given, and the missing
quantities are determined in such a way that the differential equations
and boundary conditions are being satisfied.

Similarly, Carlson [19] states

In the inverse method, we start with a given deformation (i.e., guess
an F ), calculate the corresponding stress from the constitutive equa-
tion, and check to see if the stress satisfies equilibrium (generally for
zero body force). If equilibrium is not satisfied, then the deformation
is discarderd. However, if equilibrium is met, then we attempt to in-
terpret the deformation and stress in a physically meaningful setting.
I. e., we consider various shapes for the (deformed) body, calculate the
corresponding surface tractions, anh hope to get something of physical
interest.

The semi-inverse method is just the same, except that in the deforma-
tion one includes some arbitrary parameters of functions that can be
adjusted so that equilibrium is met or the boundary data comes out to
be more interesting.



Chapter 3. Inverse methods 39

Here is what Neményi [90] says about such methods in a general framework of
continuum mechanics:

We shall call inverse an investigation of a partial differential equation
of physics if in it the boundary conditions (or certain other supplemen-
tary conditions) are not prescribed at the outset. Instead, the solution
is defined by the differential equation, and certain additional analyti-
cal, geometrical, kinematical, or physical properties of the field. In the
semi-inverse method some of the boundary conditions are prescribed at
the outset, whereas others are left open and obtained indirectly through
certain simplifying assumption concerning the properties of the fields.

The true power of the inverse methods is that they can reduce in most cases a
system of differential equations in three independent variables to a system having
only two, or even one, independent variable(s) which may, or may not, admit an
exact solution in closed form. If this reduced system can be solved in closed form,
then it is possible to obtain some exact solutions to boundary value problems,
that hopefully are meaningful within the framework of the theory that is being
employed1. Of course, even if it cannot be solved exactly, the semi-inverse method
leads to a simpler set of equations that can be resolved numerically. When the use of
inverse methods does not lead to new solutions, it may nonetheless yield a negative
result in certain cases; that is, the nonexistence of certain types of solutions may
be established. Inverse and semi-inverse procedures have been implemented in all
fields of the mechanics of continua, and the number of results obtained is very large
indeed (see [90] to have an idea of their applications).

3.1 Inverse Method

In order to find exact solutions to the problem (3.1) - (3.3) by the inverse
method, the starting point is to assume a suitable form for the deformation, then
find the stress fields associated to this deformation by making use of the constitutive
equations, and finally verify whether the equilibrium equations are satisfied. In
the positive case, one may deduce the surface tractions necessary to maintain the
deformation, some of which are of considerable importance experimentally. Let us
consider some examples, starting with some homogeneous deformations, with zero
body forces.

3.1.1 Homogeneous deformations

The most general homogeneous deformation is described by the following form

x = FX + c, (3.4)

where X and x are the the Cartesian coordinates in the reference and in the current
configurations, respectively, F is a constant tensor and c is a constant vector.

1This is not always the case, as it is well known in the framework of the Navier-Stokes theory
where the exact solutions found by the semi-inverse method are often not compatible with the
canonical no-slip boundary conditions.
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From (1.35) we deduce that the Cauchy stress T is also constant throughout a
compressible material. It follows that the equilibrium equations are satisfied only
when the body force b is zero and these deformations therefore may be produced
by surface tractions alone2. For incompressible materials we deduce from (1.39)
that if the hydrostatic pressure p is constant, then the above results also apply.

Let us consider pure homogeneous deformations, described by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (3.5)

where (X1, X2, X3) and (x1, x2, x3) are the the Cartesian coordinates in the ref-
erence and in the current configurations, respectively, and λ1, λ2, λ3, are positive
constants. The physical components of B and of his inverse B−1 are given by





λ2
1 0 0

0 λ2
2 0

0 0 λ2
3



 ,





λ−2
1 0 0
0 λ−2

2 0
0 0 λ−2

3



 , (3.6)

respectively, and the first three principal invariants are given by

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (3.7)

I3 = λ2
1λ

2
2λ

2
3.

By formula (1.36) the stress components for a compressible material are

T11 = β0 + β1λ
2
1 + β−1λ

−2
1 , T22 = β0 + β1λ

2
2 + β−1λ

−2
2 , (3.8)

T33 = β0 + β1λ
2
3 + β−1λ

−2
3 , Tij = 0 (i 6= j).

In the incompressible case the deformation (3.5) must satisfy the constraint I3 = 1,
that is

λ1λ2λ3 = 1, (3.9)

so that, in contrast to the compressible case, only two of the constants λ1, λ2, λ3

are independent. By formula (1.40), and because we are considering zero body
force, the equilibrium equations are satisfied only if p = p0 with p0 constant. The
stress components for an incompressible material are

T11 = −p0 + 2W1λ
2
1 − 2W2λ

−2
1 , T22 = −p0 + 2W1λ

2
2 − 2W2λ

−2
2 , (3.10)

T33 = −p0 + 2W1λ
2
3 − 2W2λ

−2
3 , Tij = 0 (i 6= j).

In both cases only normal stresses are present on surfaces parallel to the coordinate
planes. The incompressible case (3.10) differs from (3.8) by an arbitrary constant
p0. The appearance of this term is one of the reasons why constrained materials
are easier to deal with mathematically than unconstrained ones.

2This result is important physically since it is relatively easy to apply forces to a boundary,
see Beatty [9].
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Dilatation

In the special case where λ1 = λ2 = λ3 = λ (with λ > 0 because J > 0), the
deformation (3.5) is called uniform dilatation. The stress components (3.8) then
become

Tij = (β0 + β1λ
2 + β−1λ

−2)δij, (3.11)

where δ is the Kronecker symbol. The term −(β0 + β1λ
2 + β−1λ

−2) corresponds
therefore to a hydrostatic pressure that we denote by P (λ2). When P > 0 the
body is subjected to a hydrostatic pressure, while for P < 0 it is subjected to a
hydrostatic tension. By (1.18) we obtain the stress vector t in the form

tn = −P (λ2)n, (3.12)

where n is a unit vector normal to the surface. Hence, to maintain this deformation,
the stress vector must be normal to the surface at each point of the boundary.
In general one would expect that the volume of a compressible material held in
equilibrium under the action of a uniform pressure should be less than its volume
before deformation, that under the action of a uniform tension, the volume should
be greater than its initial volume, and that when no traction is applied on the
boundary, the volume remains unchanged. Since the variation of volume is J = λ3,
an equivalent statement is that

λ < 1 when P > 0,

λ > 1 when P < 0, (3.13)

λ = 1 when P = 0.

Furthermore, P should be a monotonic decreasing function of λ in order to increase
the volume when the applied pressure is increased and viceversa, so that

dP

dλ
< 0. (3.14)

In linear elasticity this constraint is equivalent to require that the bulk modulus κ
is positive (see (1.54)2). In view of the definition of P , the relation (3.14) places
some restrictions on the response functions βi. In the incompressible case, the
constraint (3.9) requires that λ = 1 so that there is no deformation.

Simple extension

When λ1 = λ and λ2 = λ3 = λ̄, the deformation (3.5) is called uniform ex-
tension (when λ > 1) or contraction (when λ < 1) in the X1−direction, together
with equal extension or contraction in the lateral X2− and X3−directions. For
compressible materials we deduce from (3.8) that the stress components are

T11 = β0 + β1λ
2 + β−1λ

−2, T22 = T33 = β0 + β1λ̄
2 + β−1λ̄

−2, (3.15)

Tij = 0 (i 6= j).
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The simplest stress system arises when (if possible), T22 = T33 = 0 in order to have
traction free lateral sides. This gives

β0 + β1λ̄
2 + β−1λ̄

−2 = 0. (3.16)

Equation (3.16) depends on λ2 and λ̄2 and for a given λ, it is not obvious that it
should have a single positive root λ̄2. If (3.16) has no root then uniform extension
cannot be effected by applying a tension T11 alone, i.e. others surface tractions
are necessary. If (3.16) has more than one root, then there are more than one
tensile sress which produce a given extension with the remaining faces traction-
free. When it is possible to apply a tension in the X1-direction with the other
stresses being zero, the extension is called simple, and we expect the specimen to
increase in length in this direction, whereas when we apply a pressure the length
should decrease. Also, if no tension is applied on the boundary, then the length
should remain unchanged. Finally when T11 is increased, the extension should
increase and vice-versa. Hence T11 should verify

dT11

dλ
> 0. (3.17)

This inequality places a further restriction on the response functions βi. For in-
compressible materials, the constraint (3.9) implies λ̄ = 1/

√
λ. Here the stress

components (3.10) become

T11 = −p0 + 2W1λ
2 − 2W2λ

−2, Tij = 0 (i 6= j), (3.18)

T22 = T33 = −p0 + 2W1λ
−1 − 2W2λ.

The principal difference with the compressible case is that the boundary conditions
T22 = T33 = 0 appropriate to the block subject to a tension T11 can always be
satisfied on setting

p0 = 2W1λ
−1 − 2W2λ. (3.19)

The uniaxial tension necessary to maintain this deformation (see also (2.6)) is

T11 = 2(λ2 − λ−1)W1 + 2(λ − λ−2)W2. (3.20)

Simple shear

Let us consider the homogeneous deformation of simple shear,

x1 = X1 + kX2, x2 = X2, x3 = X3, (3.21)

where k is a constant parameter representing the amount of shear. We consider the
shearing by applied surface tractions alone of a block with faces initially parallel
to the coordinates planes. This deformation is quite difficult to produce experi-
mentally because of the complex surface tractions needed to maintain it (as we see
below). However, it is probably the simplest example illustrating that large defor-
mations are different from infinitesimal deformations described by linear elasticity,
not only in magnitude but also in the novel effects they produce.
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It easy to determine the physical components of the left Cauchy-Green defor-
mation tensor B and of its inverse B−1 as





1 + k2 k 0
k 1 0
0 0 1



 ,





1 −k 0
−k 1 + k2 0
0 0 1



 , (3.22)

respectively, so that the first three principal invariants of B are I1 = I2 = 3 +
k2, I3 = 1. The stress components for this deformation for compressible materials
(see (1.36)) are given by

T11 = β0 + β1(1 + k2) + β−1, T12 = k(β1 − β−1),

T22 = β0 + β1 + β−1(1 + k2), T13 = 0, (3.23)

T33 = β0 + β1 + β−1, T23 = 0.

Thus we see that both normal and shear stresses are present on surfaces paral-
lel to the coordinate planes and that, as in the previous deformation, the stress
components are constants.

To consider the relation between the shear stress and the amount of shear, we
define

µ(k2) = β1(3 + k2, 3 + k2, 1) − β−1(3 + k2, 3 + k2, 1), (3.24)

so that

T12 = µ(k2)k. (3.25)

The quantity µ(k2) is called the generalized shear modulus. Its value µ ≡ µ(0) in
the natural state is the initial shear modulus. Physically we would expect the shear
stress acting on a surface with normal in the 2−direction to be in the direction in
which the surface has been displaced, so that we expect

µ(k2) > 0. (3.26)

By (3.24) we can see how the empirical inequalities (1.46) are sufficient to establish
(3.26). Because the shear stress T12 is an odd function of the amount of shear,
the shear stress is therefore in the direction of the amount of shear (since the
normal stresses are even functions of the amount of shear, they do not depend
on its direction). In linear elasticity (making use of (1.51)), simple shear can be
maintained by applying only shear stresses on the faces of specimen. A similar
situation does not arise with a finite deformation, unless a degenerate material is
considered for which a simple shear can be produced in the absence of all stress.
In fact, imposing T11 = T22 = T33 = 0 gives the conditions

β0 + β1(1 + k2) + β−1 = 0,

β0 + β1 + β−1(1 + k2) = 0, (3.27)

β0 + β1 + β−1 = 0,

from which it follows that β0 = β1 = β−1 = 0 and in this case, T12 is also zero. We
therefore conclude that, for all materials exhibiting physically reasonable response,
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the simple shear (3.21) cannot be produced by applying only shear stresses on
surfaces parallel to the cordinate planes: normal stresses are also necessary3.

From (3.23) we obtain

β1k
2 = T11 − T33, β−1k

2 = T22 − T33, (3.28)

β0k
2 = (2 + k2)T33 − (T11 + T22).

This is an example of how the inverse method can be applied to find universal
solutions and of how it is possible to use this kind of solutions to design an exper-
imental test to determine the βi’s. However, we note that an experiment based on
simple shear only is too restrictive to determine completely the response functions.
In fact this deformation allows exploration of what happens only along the line
I3 = 1, I1 = I2 in the space of invariants, made of I1 > 0, I2 > 0 and I3 > 0.

From (3.23) it is also possible to derive the relations

T13 = T23 = 0, kT12 = T11 − T22. (3.29)

These relations provide links between the stress components and the amount of
shear k which do not depend on the particular elastic isotropic material. They
are universal relations. They are important because for example if one finds ex-
perimentally that (3.29)2 is not satisfied then one may conclude that the material
under investigation is not an isotropic elastic material. Also, except in the case
of a degenerate material, T11 cannot be equal to4 T22. By (3.29)2 we deduce also
that the knowledge of the behavior of the shear stress in simple shear gives no
information about the normal stresses. This intuition is present in linear elasticity,
where simple shear alone cannot determine the normal stresses while by (3.29)2

the normal stresses characterize the simple shear.

The unit normal n and the unit tangent τ on the inclined faces have the
components

n = (1,−k, 0) /
√

(1 + k2), τ = (k, 1, 0) /
√

(1 + k2), (3.30)

so that we may calculate the normal stress N and the shear stress T which have
to be applied to the inclined faces of the deformed specimen in order to maintain
the simple shear deformation. By use of (1.18), they are

N = tn · n, T = tn · τ . (3.31)

and we therefore obtain the following relationships

(1 + k2)N = T11 + k2T22 − 2kT12, (3.32)

(1 + k2)T = k(T11 − T22) + (1 − k2)T12.

3When normal stresses are not applied, the material tends to contract or expand. This result
was apparently conjectured by Kelvin and is often called the Kelvin effect [123].

4In 1909 Poynting noticed a similar phenomenon and performed a series of torsion experiments
to illustrate the lengthening of a metal wire when no normal force was applied. The existence of
unequal normal stresses is often referred to as the Poynting effect [102].
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Using the universal relation (3.29)2 we deduce

T12 = (1 + k2)T,

kT12 = (1 + k2)(T22 − N), (3.33)

N = T22 − kT.

We deduce some interesting consequences from these relationships. First, we can
see that |T | < |T12| and |N | < |T22|. Hence if T22 is negative, so is N , i.e. if the
normal traction on the shearing planes is a pressure, then so is the normal traction
on the inclined faces. Since N is different from T22 (otherwise this would again
imply that µ(k2) = 0), the Poynting effect still holds when referred to the current
faces of the sheared block. Finally by (3.33)2 it follows that there may be special
elastic materials such that N = 0 for all shears k.

Many of the results for compressible materials are still valid for incompressible
bodies. In this case, by (1.40) the stress components are given as

T11 = −p0 + 2(1 + k2)W1 − 2W2,

T22 = −p0 + 2W1 − 2(1 + k2)W2, (3.34)

T33 = −p0 + 2W1 − 2W2,

T12 = kµ(k2), T13 = T23 = 0,

where p0 is a constant to be determined by the prescribed boundary conditions,
and µ(k2) = 2(W1 +W2) is obtained from (3.24) by replacing β1 with 2W1 and β−1

with −2W2. As in the compressible case, the remarks concerning the behaviour
of normal stress and shear stresses when the direction of shear is reversed are still
valid, as are the results (3.29), (3.32) and (3.33) from which we deduce that T11

and T22 cannot be equal, and that the Poynting effect is still present. In constrast
with the compressible case, it is possible to make any one of the normal stresses
vanish by an appropriate choice of p0. For example we may choose p0 such that
T33 = 0 and in this case we see that T11 > 0 and T22 < 0 if and only if the empirical
inequalities hold. In this particular case (T33 = 0) we obtain

p0 = 2(W1 − W2), (3.35)

and

T11 = 2k2W1, T22 = −2k2W2, (3.36)

T12 = kµ(k2), T33 = T13 = T23 = 0, (3.37)

showing that the normal stress on the shearing planes is always a pressure since
T22 < 0, from which we deduce (as in the compressible case) that T < 0. If these
pressures are not applied in addition to the shear forces, then we would expect
the material to stretch in the 1− and 2−directions and hence to contract in the
3−direction (because of the incompressibility constraint). In other words, one form
of the Poynting effect is observed.

Rivlin was one of the first authors to use inverse procedures to construct some
examples of exact solutions of physical interest to both analysts and experimenters.
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His work is very interesting also because it marked the birth in 1948 of the modern
theory of finite elasticity (see Rivlin [111] for the collected works). Later, Ericksen
[33, 34] introduced a different and more general approach to the investigation of
inverse solutions, and such results provide the kinds of tools requested by experi-
menters.

3.1.2 Universal solutions

We know from the previous section that homogeneous deformations, which play
a fundamental role in the theory of finite elastic deformations, can be maintained
in all homogeneous bodies under the action of surface forces alone, because the
stress corresponding to (3.4) is a constant tensor, and the balance equations are
then trivially satisfied in absence of body forces. They therefore represent a set
of universal solutions for all homogeneous materials. Ericksen [34] proved in 1955
that they are the only controllable deformations possible in every compressible, ho-
mogeneous and isotropic hyperelastic material. This result is known as Ericksen’s
theorem.

For incompressible materials, the definite answer is still lacking in the search for
all universal solutions. So far, five families of universal solutions have been found
in addition to homogeneous deformations. All solutions are such that appropriate
physical components of stress are constants on each member of a family of parallel
planes, coaxial cylinders, or concentric spheres. Let us start by looking at how
some restrictions on the physical components of the stress can help to simplify the
problem, in general by reducing a partial differential system to an ordinary one
with less unknowns. To this end we consider the case of cylindrical coordinate
(r, θ, z) only. A similar discussion can be conducted for Cartesian and spherical
coordinates.

The equilibrium equations, in the absence of body force (1.20), read

∂Trr

∂r
+

1

r

∂Trθ

∂θ
+

∂Trz

∂z
+

Trr − Tθθ

r
= 0,

∂Trθ

∂r
+

1

r

∂Tθθ

∂θ
+

∂Tθz

∂z
+

2

r
Trθ = 0, (3.38)

∂Trz

∂r
+

1

r

∂Tθz

∂θ
+

∂Tzz

∂z
+

1

r
Trz = 0.

If we assume that T + pI depends on r only (such assumption is often made
when the problem has cylindrical symmetry), the partial differential system (3.38)
simplifies as

∂Trr

∂r
+

Trr − Tθθ

r
= 0,

1

r2

∂ (r2Trθ)

∂r
− 1

r

∂p

∂θ
= 0, (3.39)

1

r

∂ (rTrz)

∂r
− ∂p

∂z
= 0.
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By the further assumptions that

Trθ = 0, Trz = 0, (3.40)

it follows from (3.39) that p depends only on r and consequently that the Trr com-
ponent depends on r only. Under these strong assumptions, the partial differential
system (3.38) is reduced to an ordinary differential system that is easier to solve.
The Trr and Tθθ components are given by

Trr = −
∫

Trr − Tθθ

r
dr, Tθθ =

d (rTrr)

dr
. (3.41)

Let us consider the first family of universal solutions (in the literature, these
solutions are classified in “families”). It is given by the following deformation

Family 1:

r =
√

2AX, θ = BY, z =
Z

AB
− BCY, (3.42)

which describes bending, stretching and shearing of a rectangular block. Here
(X,Y, Z) and (r, θ, z) are the cartesian and cylindrical coordinates in the refer-
ence and in the current configuration, respectively, and A,B,C are constants with
AB 6= 0. If C = 0 the deformation describes pure bending and carries the par-
allepipedic block bounded by the planes X = X1, X = X2, Y = ±Y0, Z = ±Z0

into the circular annular wedge bounded by the cylinders r = r1 =
√

2AX1,
r = r2 =

√
2AX2, and the planes θ = ±θ0 = ±BY0, z = ±z0 = ±Z0/(AB).

When B is prescribed, then the arbitrary axial stretch 1/(AB) is allowed, and the
radial stretch is so adjusted as to render the deformation isochoric5. The physical
components of B and of its inverse B−1 are given by











A2

r2
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, (3.43)

and
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0 0

0
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0
A2B2C
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, (3.44)

respectively. The first two principal strain invariants are

I1 =
A2

r2
+ B2r2 + B2C2 +

1

A2B2
, (3.45)

I2 =
r2

A2
+

1

r2

(

1

B2
+ A2B2C2

)

+ A2B2,

5In the general case, the deformation may be effected in two steps, the first of which is the
bending and axial stretch, while the second is a homogeneous strain which carries the body into
the solid bounded by the cylindrical surfaces r = r1 and r = r2, the planes θ = ±θ0, and the
helicoidal surfaces z + Cθ = ±z0.
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respectively, and I3 = 1 in agreement with incompressibility. From (1.40) we see
that the physical components of T + pI are functions of r only and that (3.40) is
satisfied. By (3.41)1

Trr = −
∫ [

2
∂W

∂I1

(

A2

r3
− B2r

)

− 2
∂W

∂I2

(

r

A2
− 1

r3

(

1

B2
+ A2B2C2

))]

dr

=

∫ (

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr, (3.46)

from which we obtain the other components of the stress.

Tθθ = Trr + 2

[

B2r2 − A2

r2

]

∂W

∂I1

− 2

[

1

r2

(

1

B2
+ A2B2C2

)

− r2

A2

]

∂W

∂I2

,

Tzz = Trr + 2

[

B2C2 +
1

A2B2
− A2

r2

]

∂W

∂I1

− 2

[

A2B2 − r2

A2

]

∂W

∂I2

, (3.47)

Tθz = −2B2Cr
∂W

∂I1

− 2
A2B2C

r

∂W

∂I2

.

To obtain the unknown p we make use of (1.40),

p = −Trr + 2W1(B)11 − 2W2(B
−1)11, (3.48)

and therefore by (3.43), (3.44) and (3.46),

p = −
∫ (

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr + 2

(

A2

r2
W1 −

r2

A2
W2

)

. (3.49)

It is possible to choose the constants in (3.46) in order to have the cylinder r = r1

free of traction. To have the cylinder r = r2 also free of traction, it is then necessary
that

∫ r2

r1

(

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr = 0, (3.50)

and when this is verified, a particular relation among the constants A,B,C applies.
Independently of whether or not (3.50) can be satisfied, the helicoidal faces z+Cθ =
±z0 (with unit normal n = (0, C/r, 1)/

√

1 + C2/r2) cannot be free of traction in
order to maintain the deformation. The normal and tangential tractions N and T ,
respectively, are

N =
1

1 + C2/r2

[

Tzz + 2
C

r
Tθz +

C2

r2
Tθθ

]

, (3.51)

T =
1

1 + C2/r2

[(

1 − C2

r2

)

Tθz +
C

r
(Tθθ − Tzz)

]

,

respectively. Only when pure bending is considered (i.e. C = 0) we can deduce
from (3.47) and (3.51) that T = 0 and N = Tzz. In general, both normal and
tangential tractions must be applied. The presence of these tractions gives rise to
the Poynting effect for bending, similar to the Poynting effect discussed for the
simple shear deformation. We thus underline how the Poynting effet is in general
inevitable in nonlinear elasticity.

A similar discussion can be made for the other four families, which are described
by the following deformations.
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Family 2: Straightening, stretching and shearing of a sector of a hollow
cylinder,

x =
1

2
AB2R2, y =

Θ

AB
, z =

Z

B
+

CΘ

AB
. (3.52)

Family 3: Inflation, bending, torsion, extension and shearing of an annular
wedge,

r =
√

AR2 + B, θ = CΘ + DZ, z = EΘ + FZ, (3.53)

with A(CF − DE) = 1.

Family 4: Inflation or eversion of a sector of a spherical shell,

r =
(

±R3 + A
)1/3

, θ = ±Θ, ϕ = Φ. (3.54)

Family 5: Inflation, bending, extension, and azimuthal shearing, of an an-
nular wedge,

r =
√

AR, θ = D ln(BR) + CΘ, z = FZ, (3.55)

with ACF = 1.

Here A,B,C,D,E, F are constants. It seems that the class of static deforma-
tions that are possible in all homogeneous, isotropic, incompressible elastic bodies
subject to surface tractions only is likely to be exhausted by these cases. Some
progress toward determining other deformations may be made if we replace the
purely inverse method by a semi-inverse one, considering a family of deformations
involving one or more arbitrary functions which may be determined so as to render
the deformation possible for a particular material.

3.2 Semi-inverse method

In elasticity the first application of the semi-inverse method is due to Saint-
Venant [5, 6] in 1855. He was the first to study the problem of linear elastostatics
for a right long cylinder free from volume forces and loaded only at the bases by
unspecified tractions. This problem was later on called the problem of Saint-Venant
(Saint-Venantsche Problem) by Clebsch [23]. The starting point of the application
of the semi-inverse method in order to solve the problem is that some components
of the stress vanish. In particular, it is assumed that the normal tension on every
section parallel to X3, the axis of the cylinder, be zero:

T11 = T12 = T22 = 0. (3.56)

When this assumption is made, it is possible to find a closed-form solution of the
problem by the use of the linear equilibrium equations (1.50), of the linear con-
stitutive equations (1.48), of the compatibility Beltrami conditions (1.63), and of
the prescribed boundary conditions. The displacement field for the points of the
cylinder turns out to depend linearly on four constants; these represent kinematic
parameters to be specified at one base of the cylinder. Each of them characterizes a



50 Chapter 3. Inverse methods

simple mode of deformation of the cylinder: extension, bending, torsion, and flex-
ure, and it may be shown that the four kinematic parameters are linear functions
of the resultant actions on the bases.

The semi-inverse assumption on the field of stress is of fundamental importance
to find the approximate analytical solution. Although this assumption is suggested
by the geometrical and boundary surface tractions, it is justified afterwards by the
existence of the solution found. The Kirchhoff principle shows then the uniquess
of the solution.

Kirchhoff, 1859 If either the surface displacement or the surface
tractions are given, the solution of the problem of equilibrium of an
elastic body is unique in the sense that the state of stress (and strain)
is determinate without ambiguity, provided that the magnitude of the
stress (and strain) is so small that the strain energy function exists and
remains positive definite.

Several applications of the semi-inverse method can be found in the literature
on nonlinear elasticity. Of course it is not possible to list all such results because
a survey aiming at completeness would require a whole book. Here we present
some representative examples in order to underline some aspects of the semi-inverse
method, and other useful examples for our discussion are given in the next chapters.
First, we recall something just discussed on simple extension, but here we modify
the problem a little bit. Then we discuss a problem of anti-plane shear (see [59,
61, 63, 113] for more details). Finally, some others remarks are discussed for the
radial deformation problem.

3.2.1 Simple uniaxial extension

Let us consider the uniaxial extension of a rod by prescribing some boundary
conditions at the outset: we ask that our model gives traction-free lateral surfaces.
In this case, coming back to (3.5), we set λ1 = λ to denote the uniaxial stretch,
while λ2 and λ3 denote the lateral stretches.

In the compressible case, making use of the (3.8) relations and the fact that
the stress components are constants, we have to set

β0 + β1λ
2
2 + β−1λ

−2
2 = 0, (3.57)

β0 + β1λ
2
3 + β−1λ

−2
3 = 0.

Forming the difference, we obtain

(λ2
2 − λ2

3)

(

β1 −
1

λ2
2λ

2
3

β−1

)

= 0. (3.58)

Applying the empirical inequalities (1.46) to (3.58), we obtain a necessary condi-
tion: λ2 = λ3 to be satisfied. The same condition is also discussed in the previous
chapter by using Batra’s Theorem [7]. But now we see how the arbitrary parame-
ters λ2 and λ3 are adjusted a posteriori to meet the boundary conditions. In this
case, by equations (3.57), we may solve uniquely as

λ3 = λ2 = λ2(λ), (3.59)
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and obtain a simple extension under a tensile stress

T11(λ) = (λ2 − λ2
2)

(

β1 −
1

λ2λ2
2

β−1

)

. (3.60)

In the incompressible case, equation (3.60) is remplaced by (3.20). The Poisson
function ν(λ) given by the expression (2.34) for an incompressible material reads
here as

ν(λ) =
1√

λ(
√

λ + 1)
. (3.61)

In the natural state of an incompressible material, the Poisson ratio has the value
ν = ν(1) = 1/2, otherwise (3.61) is a monotone decreasing function of the amount
of uniaxial stretch. In a simple tension experiment, we see that (3.61) can be
used to evaluate whether the material is incompressible6. Indeed equation (3.61) is
universal for any isotropic uniform elastic material which is incompressible. In the
case of compressibility, equation (2.34) is not universal since λ2(λ) depends on the
special material we are considering. For example, for a general Blatz-Ko material
(2.38), we know from (2.36) that

λ2(λ) = λ(n−1)/2, (3.62)

where n is parameter characterizing a particular Blatz-Ko model. By formula
(2.34) it is clear that the Poisson function,

ν(λ) =
1 − λ(n−1)/2

λ − 1
, (3.63)

depends now on the Blatz-Ko model used.

3.2.2 Anti-plane shear deformation

Let us consider the following deformation written in Cartesian coordinates

x1 = X1, x2 = X2, x3 = X3 + w(X1, X2), (3.64)

representing an anti-plane shear deformation, where X denote the reference co-
ordinates and x the current coordinates of the body. The displacement is there-
fore described by a single smooth scalar function (the out-of-plane displacement)
w ≡ w(X1, X2). By the semi-inverse procedure, in the search of static solutions
with zero body force, we must verify if the balance equations divT = 0 are satisfied
for some specified w and/or for some specific class of materials.

Let us consider the incompressible case. Before analysing the general case (3.64)
we suppose that our body has axial symmetry (cylindrical body) and we assume
that the anti-plane shear problem may be solved by considering an axisymmetric
deformation of the form

w(X1, X2) = w(X2
1 + X2

2 ). (3.65)

6Beatty and Stalnaker [12] show that although the Poisson function of every incompressible
material has the universal constant, natural limit value 1/2, the converse is generally false.



52 Chapter 3. Inverse methods

In cylindrical coordinates, the deformation (3.64) can be rewritten as

r = R, θ = Θ, z = Z + w(R), (3.66)

where w(R) is the axial displacement. Such a deformation is also called telescopic
shear. The physical components of B and its inverse B−1 are given by





1 0 w′

0 1 0
w′ 0 1 + w′2



 ,





1 + w′2 0 −w′

0 1 0
−w′ 0 1



 , (3.67)

respectively, where the prime denotes differentation respect to R, and the first
three principal strain invariants are

I1 = I2 = 3 + w′(R)2, (3.68)

and I3 = 1 in agreement with the incompressibility constraint. By formula (1.40)
we obtain the physical components of the Cauchy stress tensor as

Trr = −p + 2W1 − 2(1 + w′2)W2, Trθ = 0,

Tθθ = −p + 2W1 − 2W2, Trz = 2(W1 + W2)w
′, (3.69)

Tzz = −p + 2(1 + w′2)W1 − 2W2, Tθz = 0.

Finally, the equilibrium equations reduce to equations (3.39) but now Trθ only is
zero, showing that p = p(r, z). On using the expressions of Trr and Tθθ in (3.39)1

we obtain

p(r, z) = 2W1 − 2W2(1 + w′2) −
∫

2

r
W2w

′2 dr + g(z), (3.70)

where g is an arbitrary function of z. By virtue of (3.70) and the expression of Trz,
we can rewrite (3.39)3 as

d

dr
(rTrz) = λr, (3.71)

where λ = dg(z)/dz. This equation is a second-order nonlinear ordinary differential
equation for w(R), with an immediate first integral in the form of a first-order
differential equation for w(R), namely

2(W1 + W2)w
′ =

λR

2
+

C1

R
, (3.72)

where C1 is a constant of integration. The problem may be completely solved once
the strain energy function W is specified.

The important issue to emphasize here is that the system of partial differential
equations divT = 0 is a compatible system that may have an analytical solution
when W is given. The telescopic shear is a special anti-plane shear problem and
even though a solution to this problem may be found, in general we are not able to
get any information on the general anti-plane problem (3.64). In fact, reconsidering
(3.64), we show that the previous favourable situation is not verified now. This
means that in the search for solutions of the balance equations by a semi-inverse
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method we are not always lucky; in some cases, the semi-inverse method may be
used in a negative sense, by showing the nonexistence of solutions. For example,
as in the general antiplane shear (3.64), it may happen that the balance equations
reduce to an overdetermined set of differential equations which are not compatible,
showing therefore that a pure antiplane shear is not always possible.

The physical components of B and of its inverse B−1 for the general anti-plane
shear deformation (3.64), are given by





1 0 w1

0 1 w2

w1 w2 1 + k2



 ,





1 + w2
1 w1w2 −w1

w1w2 1 + w2
2 −w2

−w1 −w2 1



 , (3.73)

respectively, and the first three principal invariants are I1 = I2 = 3 + k2, I3 = 1,
where k = |∇w| and wi (i = 1, 2) are the derivatives of w with respect to Xi, (i =
1, 2). Following (1.40), the Cauchy stress components are given by

T11 = −p + 2
(

W1 − (1 + w2
1)W2

)

, T12 = −2w1w2W2,

T22 = −p + 2
(

W1 − (1 + w2
2)W2

)

, T13 = 2(W1 + W2)w1, (3.74)

T33 = −p + 2W1(1 + k2) − 2W2, T23 = 2(W1 + W2)w2.

It is easy to check that now the balance equations form a system of three differential
equations in the two unknowns p(X1, X2, X3) and w(X1, X2), i.e.

p,1 − 2[W1 − (1 + w2
1)W2],1 + 2[w1w2W2],2 = 0,

p,2 − 2[W1 − (1 + w2
2)W2],2 + 2[w1w2W2],1 = 0, (3.75)

p,3 − 2[(W1 + W2)w1],1 − 2[(W1 + W2)w2],2 = 0,

where the subscripts 1 and 2 stand for differentiation with respect to X1 and X2,
respectively, and where

Wi =
∂W

∂Ii

∣

∣

∣

∣

I1=I2=3+k2,I3=1

. (3.76)

Since w1 and w2 are independent of X3, so are I1 and I2. From (3.75)3, we deduce
that p,3 has the same property. Thus p is linear in X3:

p(X1, X2, X3) = cX3 + p̄(X1, X2), (3.77)

where c is a constant (called here the axial pressure gradient) and p̄ = p̄(X1, X2)
is an undetermined function. A further reduction of the first two equilibrium
equations (3.75)1 and (3.75)2 may be obtained by eliminating p,12 by appropriate
cross-differentation. In the end, we obtain an overdetermined differential system
in which the unknown w must satisfy simultaneously the following two nonlinear
ordinary differential equations,

[(

w2
1 − w2

2

)

W2

]

,12
= [w1w2W2],11 − [w1w2W2],22, (3.78)

[(W1 + W2)w1],1 + [(W1 + W2)w2],2 −
c

2
= 0.

It is possible to show that the overdetermined differential system (3.78) is compat-
ible only for particular choices of the strain energy function and only for special



54 Chapter 3. Inverse methods

classes of materials. Knowles [72] gives necessary and sufficient condition in terms
of the strain energy function for a homogeneous, isotropic, incompressible material
to admit nontrivial states of anti-plane shear. For example, in the case of the
following rectilinear shear deformation

x1 = X1, x2 = X2, x3 = X3 + w(X1), (3.79)

the system (3.78) reduces to a single second-order differential equation for w(X1):

[(W1 + W2)w1],1 −
c

2
= 0, (3.80)

where the subscript 1 stands for differentation with respect the argument X1. In
this case a formal solution of the balance equations is possible. This situation is
similar to the situation discussed earlier for a telescopic shear deformation. Another
example where positive results may occur is that of the generalized neo-Hookean
materials (2.12). Here the overdetermined system (3.78) reduces to a single quasi-
linear second-order partial differential equation

[(W1)w1],1 + [(W1)w2],2 −
c

2
= 0, (3.81)

and then a formal solution of the balance equations is also possible.
From a mathematical point of view, the fact that a pure antiplane shear defor-

mation cannot be sustained in an elastic material means that the overdetermined
differential system (3.78), corresponding to the strain energy function we are using
to model real materials, do not have common solutions. Therefore Mathematics
says that the geometry and load condition of the problem does not allow a pure
antiplane shear deformation. On the other hand, it may be possible to have a
pure antiplane shear deformation coupled to secondary deformations (see [63]).
For example, by coupling an in-plane deformation to the antiplane one, as

x1 = X1 + u(X1, X2),

x2 = X2 + v(X1, X2), (3.82)

x3 = X3 + w(X1, X2),

where u, v are the in-plane smooth displacement functions. For every incompress-
ible elastic material, the balance equations divT = 0 now reduce to a determined
system of partial differential equations. This does not mean that, for a generic
material, it is not possible to deform the body as prescribed by our geometry and
load condition, but it emphasizes that by semi-inverse methods it is not easy to un-
derstand when the equations lead to a deformation field that is more complex than
an anti-plane shear. For generalized neo-Hookean materials, we have the following
expressions for the Cauchy stress components

T11 = −p + 2W1[(1 + u1)
2 + u2

2],

T22 = −p + 2W1[v
2
1 + (1 + v2)

2],

T33 = −p + 2W1[w
2
1 + w2

2 + 1], (3.83)
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T12 = 2W1[(1 + u1)v1 + u2(1 + v2)],

T13 = 2W1[(1 + u1)w1 + u2w2],

T23 = 2W1[v1w1 + (1 + v2)w2].

It is clear that the stress components T13 and T23 involve a coupling of in-plane
and out-of-plane deformations7. The boundary condition of traction may therefore
couple the in-plane displacements with the out-of-plane displacement. It is only for
special cases (for example of pure displacement boundary conditions) that in-plane
and out-of-plane displacements may be decoupled.

3.2.3 Radial deformation

The following example shows how the semi-inverse method may be used to
search for exact and analytical solutions which are not universal but relative uni-
versal (see Horgan [60]). Let us consider spherical polar coordinates for the radial
deformation written as

r = r(R), θ = Θ, φ = Φ, (3.84)

where (R, Θ, Φ) are the polar coordinates in the reference configuration and (r, θ, φ)
are the polar coordinates in the current configuration, respectively, and dr/dR > 0.
The polar components of the deformation gradient tensor associated with (3.84)
are given by

F = diag(dr/dR, r/R, r/R) (3.85)

and the principal stretches are thus λ1 = dr/dR, λ2 = λ3 = r/R. Now, the
equilibrium equations in the absence of body forces divT = 0 can be shown to
reduce to the single equation

d

dR

(

R2Ŵ1

)

− 2RŴ2 = 0, (3.86)

which is a second-order nonlinear ordinary differential equation for r(R). Six classes
of compressible materials have received much attention in the literature; they are
all examples of relative universal solutions for the solutions r(R).

Class I. W = f(i1) + b1(i2 − 3) + c1(i3 − 1), f ′′(i1) 6= 0, (3.87)

where f is an arbitrary function of i1, b1 and c1 are arbitrary constants and i1, i2, i3
are the principal invariants of V . This class represents the harmonic materials
introduced by John [67]. In this case, on using the hypothesis f ′′(i1) 6= 0, one finds
that

r(R) = AR +
B

R2
, (3.88)

where A and B are constants of integration. Abeyaratne and Horgan [1] and Ogden
[95] employed the deformation (3.88) to obtain closed-form solutions for pressurized

7It is possible to show that the pressure depends on the out-of-plane deformation and therefore
that the normal stresses in (3.83) contain all the deformation fields.
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hollow spheres composed of harmonic materials. Aboudi and Arnold [2] applied
(3.88) to micromechanical modeling of multiphase composites.

Class II. W = a2(i1 − 3) + g(i2) + c2(i3 − 1), g′′(i2) 6= 0, (3.89)

where g is an arbitrary function of i2 and a2 and c2 are arbitrary constants. Here,
one finds that

r2(R) = AR2 +
B

R
, (3.90)

where A and B are constants of integration. Murphy [88] used the controllable
deformation (3.90) to treat the problems of inflation and eversion of hollow spheres
of class II materials. Aboudi and Arnold [2] utilized (3.90) in their recent study of
micromechanics of multiphase composites.

Class III. W = a3(i1 − 3) + b3(i2 − 3) + h(i3), h′′(i3) 6= 0, (3.91)

where h is an arbitrary function of i3 and a3 and b3 are arbitrary constants. This
class of materials are called generalized Varga materials [58]. Here, one finds that

r3(R) = AR3 + B, (3.92)

where A and B are constants of integration. Horgan [58] used the controllable
deformation (3.92) to illustrate the phenomenon of cavitation for compressible ma-
terials in a particularly tractable setting. Aboudi and Arnold [2] utilized (3.92) in
their micromechanics analysis of composites undergoing finite deformation. Mur-
phy [87] introduced the next three material classes.

Class IV. W = a4i1i2 + b4i1 + c4i2 + d4i3 + e4, a4 6= 0, (3.93)

where a4, b4, c4, d4, e4 are arbitrary constants. Here, one finds that

r3(R) =
(A + BR3)2

R3
, (3.94)

where A and B are constants of integration.

Class V. W = a5i2i3 + b5i1 + c5i2 + d5i3 + e5, a5 6= 0, (3.95)

where a5, b5, c5, d5, e5 are arbitrary constants. Here, one finds that

r5(R) =
(A + BR3)2

R
, (3.96)

where A and B are constants of integration.

Class VI. W = a6i1i3 + b6i1 + c6i2 + d6i3 + e6, a6 6= 0, (3.97)

where a6, b6, c6, d6, e6 are arbitrary constants. Here, one finds that

r2(R) = AR2 +
B

R
, (3.98)
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where A and B are constants of integration. This deformation field is identical to
that given for Class II (see (3.89)).

This type of investigation was proposed by Currie and Hayes [25] where the
search for exact solutions starts from a different point of view. They search for
special solutions by choosing a deformation whose geometry is completely known
a priori; in doing so they are solving Ericksen’s problems in miniature: they are
searching all the corresponding relative universal solutions8.

Other typical applications of semi-inverse investigations are concerned for ex-
ample in finding, for a given deformation (fixed a priori), the general form of the
strain energy for which such deformation is a controllable solution. This is a sort
of inverse problem: find the elastic materials (i.e. the functional form of the strain
energy function) for which a given deformation field is controllable (i.e. for which
the deformation is a solution to the equilibrium equations in the absence of body
force).

Both problems are very difficult to solve and generally only partial results are
available. The influential papers by Knowles [75] and Currie and Hayes [25] have
stimulated the developement of a large amount of research on closed-form solu-
tions in nonlinear elasticity. Beatty, Boulanger, Carroll, Chadwick, Hill, Horgan,
Murphy, Ogden, Polignone, Rajagopal, Saccomandi, Wineman, and many others
have determined a long list of exact solutions for special classes of constitutive
equations. We refer to the recent books edited by Fu and Ogden [43] and by Hayes
and Saccomandi [55] for an overview of this activity.

Although several authors have used such inverse procedures, and many solu-
tions have been derived by using such methods, it is not easy to find a definition
describing the true power of these methods. Further, no general mathematical
theory can be applied, at least at first, sight, because they are a sort of heuristics
methods. Only Lie group theory can provide a general, algorithmic, and efficient
method for obtaining exaxt solutions of partial differential equations by a reduction
method. It shares many similarities with the semi-inverse method. For this reason
many authors have tried to find a relationship between Lie’s classical method of
reduction and the semi-inverse method, but the standard Lie method of symmetry
reduction is not always applicable; it has to be generalized to recover all the solu-
tions obtainable via ad hoc reduction methods. Olver and Rosenau [96] introduced
the concept of weak symmetry, based on the analytic properties of the overdeter-
mined system, and made it clear that a group theory nature is indeed possible for
every solution of a given partial differential equation9. But it is still not known
how to obtain the relevant groups.

8The expression “in miniature” is taken from a paper by Knowles [75] where the author tries
to find non-homogeneous universal solutions in the family of anti-plane shear deformations.

9In [114] Saccomandi, considering the Navier-Stokes equations, shows how it is necessary to
resort to the idea of weak symmetries to recover all the solutions found by the semi-inverse
method.
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Notes

A list of some suitable of inverse methods, useful to solve boundary value prob-
lems in elasticity, are given in this chapter. We have also underlined the important
contributions of these methods to continuum mechanics in understanding the non-
linear behaviour of materials (or fluids in the case of fluid dynamics), overcoming
the difficulty in solving boundary value problem by direct methods. By inverse
procedure, in addition to those homogeneous, five families of universal solutions
are been found (they are listed in Section 3.1.2) where we have not widely discussed
families 2-5 to save space but we refer to Section 57 of [127] for more details. The
first investigation about universal solutions dates back to 1954, when Ericksen [33]
was able to find several families of universal inhomogeneous deformations. However
the proof of Ericksen was not complete in two points:

1. when two principal stretches of the deformation are equal and at least one of
the principal invariants is not constant;

2. when all the principal invariants of the deformation are constants.

The first point has been completely resolved by Marris and Shiau [80] who showed
that if two principal stretches are equal then the universal deformations are homo-
geneous or enclosed in Family 2. As regards the second point the final answer is
still lacking but further developments on this problem are contained in the work
on universal solutions for the elastic dielectric by Singh and Pipkin [119]. As a
by-product of this research a new family of deformation with constant invariants
has been discovered (Family 5).

Although the search for solutions of boundary value problems by use of in-
verse methods has been important and fundamental, on the other hand we are
nonetheless of the opinion that some solutions have been the source of possible
confusion in the field, and that some investigations are even incorrect in their use
of the semi-inverse method (see [28]). In the next chapter we develop our point of
view further, by analysing in detail some inhomogeneous solutions for compressible
materials subjected to isochoric deformations.



Chapter 4

Isochoric deformations of
compressible materials

Rubbers and elastomers are highly deformable solids, which have the remark-
able property of preserving their volume through any deformation. This permanent
isochoricity, incorporated mathematically into the equations of continuum mechan-
ics through the concept of internal constraint of incompressibility (see (1.39) or
(1.40)), has led to the discovery of several exact solutions in isotropic finite elastic-
ity, most notably to the controllable or universal solutions of Rivlin and co-workers
(e.g. Rivlin [106]).

Subsequently, Ericksen [33] examined the problem of finding all such solutions.
He found that there are no controllable finite deformations in isotropic compressible
elasticity, except for homogeneous deformations [34]. The impact of that result on
the theory of nonlinear elasticity was quite important, and for many years there
has been “the false impression that the only deformations possible in an elastic
body are the universal deformations” (see [25]). However, around the same time
as the publication of Ericksen’s result, there was considerable activity in trying
to find solutions for nonlinear elastic materials using the semi-inverse method. A
summary of these earlier results may be found in the monograph by Green and
Adkins [49].

Even though for homogeneous isotropic incompressible nonlinearly elastic
solids, the simplified kinematics arising from the constraint of no volume change
has facilitated the analytic solution of a wide variety of boundary-value problems,
the situation is quite different for compressible materials. Firstly, the absence of
the isochoric constraint leads to more complicated kinematics. Secondly, since the
only controllable deformations are the homogeneous deformations, the discussion
of inhomogeneous deformations has to be confined to a particular strain energy
function or class of strain energy functions. Nevertheless, some progress has been
made in recent years in the development of analytic forms for the deformation and
in the solution of boundary value problems. One strategy to find some exact solu-
tions for compressible elastic materials consists in taking inspiration from isochoric
solutions for incompressible materials, and to seek similar solutions in compress-
ible elastic materials. However, it is obvious that the isochoric deformations of an
incompressible elastic body have differents loads than the isochoric deformations
of a compressible elastic body, because they will in general produce changes in
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volume when applied in compressible materials. A review of isochoric problems
can be found in [60].

4.1 Pure torsion

In the incompressible isotropic theory of nonlinear elasticity, the problem of
finite torsion was first considered by Rivlin [106, 107, 108], while relevant ex-
perimental issues were discussed in [105, 112]. Rivlin showed that finite tor-
sion is a universal deformation (see Family 3 of universal solution in (3.53) when
A = C = F = 1, B = E = 0). By virtue of the constraint of zero volume change,
the deformation is that of pure torsion so that there is no extension in the ra-
dial direction and the cross-section of the cylinder remains circular. We know, by
Ericksen result [34], that finite torsion is not sustainable, however, in all compress-
ible isotropic elastic materials. In fact the deformation here is more complicated
and in general, there will be some radial extension, see Polignone and Horgan [97]
and Kirkinis and Ogden [70]. Those two articles present the torsional problem for
the strain energy written either in terms of the principal invariants I1, I2, I3, or
in terms of the principal stretches λ1, λ2, λ3 of the left Cauchy stress tensor B,
or in terms of the principal invariants i1, i2, i3 of V . Polignone and Horgan [97]
obtain a necessary condition for a pure torsion to be possible without imposing the
zero traction on the lateral surface. Kirkinis and Ogden [70] find new necessary
and sufficient conditions on the strain energy function for pure torsion with zero
traction on the lateral surface of the cylinder.

The torsion problem in the compressible case is discussed in other important
works as well. For example it is discussed from both theoretical and experimental
viewpoints in [48] or in [49], where a formula is derived for the couple required
to maintain the deformation in respect of an arbitrary (isotropic) strain energy
function. Slight compressibility effects are investigated in [38], using the general
theory of small deformations superimposed on a large deformation for the Blatz-Ko
material model and for the Levinson-Burgess material in [78]. Currie and Hayes
[25] determined constitutive relations for which pure torsion is sustainable and
proposed a general class of materials, which includes the Hadamard material. The
Blatz-Ko material for foam polyurethane elastomers has been studied recently in
respect of pure torsion by various authors (see, for example, [8, 9, 20]). Loss of
ellipticity for this material model during a pure torsional deformation was examined
by Horgan and Polignone [99].

4.1.1 Formulation of the torsion problem

Let us consider the torsional deformation of an elastic solid circular cylinder of
radius A due to applied twisting moments at its ends,

r = r(R), θ = Θ + τZ, z = Z, (4.1)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and
in the current configurations, respectively, dr/dR > 0, and the constant τ > 0 is
the twist per unit undeformed length. Let us consider the strain energy function
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in terms of the first three principal invariants of B, W = W̄ (I1, I2, I3). The
deformation gradient tensor F for (4.1) is given by





r′ 0 0
0 r/R τr
0 0 1



 , (4.2)

and the physical components of B and its inverse B−1 are given by




r′2 0 0
0 r2/R2 + τ 2r2 τr
0 τr 1



 ,





r′−2 0 0
0 R2/r2 −τR2/r
0 −τR2/r 1 + τ 2R2



 , (4.3)

respectively. The first three principal strain invariants are

I1 = 1 + r′2 +
r2

R2
+ τ 2r2,

I2 =
r2

R2
+ r′2 +

r′2r2

R2
+ τ 2r′2r2, (4.4)

I3 =
r′2r2

R2
.

Substituting (4.3) into (1.36), we obtain the physical components of the Cauchy
stress

Trr = β0 + β1r
′2 + β−1r

′−2,

Tθθ = β0 + β1

(

r2

R2
+ τ 2r2

)

+ β−1
R2

r2
,

Tzz = β0 + β1 + β−1(1 + τ 2R2), (4.5)

Tθz = β1(τr) − τR2

r
β−1,

Trθ = 0, Trz = 0.

In the present case, the equilibrium equations, in absence of body forces, divT = 0,
reduce to the single equation

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0. (4.6)

Since r = r(R), it is possible to consider the stress as a function of the reference
co-ordinate R, i.e., T = T (R) instead of T = T (r). In this case the chain rule
gives

∂Trr

∂R
+

r′

r
(Trr − Tθθ) = 0. (4.7)

By (4.5)1,2, (1.38) and (4.4) we obtain a single ordinary nonlinear equation for
r(R),

d

dR

[

Rr′

r
(W̄1 + W̄2) +

rr′

R
(W̄3 + W̄2) + τ 2Rr′rW̄2

]

+

(

Rr′2

r2
− 1

R

)

(W̄1 + W̄2) − τ 2RW̄1 = 0, (4.8)
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where the W̄i (i = 1, 2, 3) are evaluated at (4.4). For a solid circular cylinder of
initial radius A subjected to end torques only, the boundary conditions of traction-
free lateral surface are satisfied when

Trr(A) = 0, (4.9)

since Trθ = Trz ≡ 0 by (4.5)5. In addition, to ensure that F is bounded, we impose
the following regularity condition

r(R) = O(R) as R → 0. (4.10)

Thus the two-point boundary value problem consists in solving (4.8) for r(R) on
0 < R < A subject to the conditions (4.9) and (4.10).

The same problem has been written by Kirkinis and Ogden [70] in terms of
the principal stretches in Eulerian principal axes1 but in a more general form than
here. These authors consider the case of torsional deformation superimposed on a
uniform extension,

r = r(R), θ = Θ + λzτZ, z = λzZ, (4.11)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively, dr/dR > 0, the constant τ > 0 is the twist
per unit undeformed length, and λz is the uniform axial stretch. Here we consider
the strain energy function in terms of the principal stretches, W = Ŵ (λ1, λ2, λ3).
The deformation gradient tensor F for (4.11) has components,





r′ 0 0
0 r/R λzτr
0 0 λz



 , (4.12)

and the physical components of B and its inverse B−1 are given by





r′2 0 0
0 r2/R2 + λ2

zτ
2r2 λ2

zτr
0 λ2

zτr λ2
z



 , (4.13)





r′−2 0 0
0 R2/r2 −τR2/r
0 −τR2/r 1/λ2

z + τ 2R2



 , (4.14)

respectively. Let µi, i = 1, 2, 3, be the unit Eulerian principal axes associated with
this deformation. We see that er is the Eulerian principal axis associated with the
principal stretch µ1 and hence

λ1 = r′. (4.15)

We may express the remaining two principal directions in terms of the cylinder
polar axes eθ, ez. Thus, we write

µ2 = cos φeθ + sin φez, µ3 = − sin φeθ + cos φez, (4.16)

1Ogden [95], Section 5.2.5, writes the same problem using the Lagrangian principal axes.
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where φ defines the orientation of the axes µ2, µ3 relative to eθ, ez. By defining
the following rotation matrix

R =





1 0 0
0 cos φ − sin φ
0 sin φ cos φ



 , (4.17)

considering the left stretch tensor V in (1.10)2, and by comparing V 2 and B as
in (1.11)1, we obtain the connections

λ2
2 cos2 φ + λ2

3 sin2 φ =
r2

R2
+ λ2

zτ
2r2,

λ2
2 sin2 φ + λ2

3 cos2 φ = λ2
z, (4.18)

(λ2
2 − λ2

3) sin φ cos φ = λ2
zτr,

from which we deduce that

λ2
2 + λ2

3 =
r2

R2
+ λ2

zτ
2r2 + λ2

z,

(λ2
2 − λ2

z)(λ
2
z − λ2

3) = λ4
zτ

2r2, (4.19)

λ2λ3 =
λzr

R
.

Further, we obtain the explicit expression for φ as

cos 2φ =
λ2

2 + λ2
3 − 2λ2

z

λ2
2 − λ2

3

. (4.20)

Since the Cauchy stress tensor T is coaxial in the isotropic case with the left
Cauchy-Green strain tensor B, we may express it in terms of its principal stresses
T1, T2, T3 through

Trr = T1, Tθz = (T2 − T3) cos φ sin φ, (4.21)

Tθθ = T2 cos2 φ + T3 sin2 φ, Tzz = T2 sin2 φ + T3 cos2 φ.

By (4.20) and (4.21) we obtain the following connection

λ2
zτr(Tθθ − Tzz) =

(

r2

R2
+ λ2

zτ
2r2 − λ2

z

)

Tθz. (4.22)

The principal stresses are given by (1.42) and we use (4.21) to obtain from equation
(4.7)

d

dR
(RŴ1) =

λz

λ2λ3

λ2(λ
2
2 − λ2

z)Ŵ2 − λ3(λ
2
3 − λ2

z)Ŵ3

λ2
2 − λ2

3

, (4.23)

where Ŵi = ∂Ŵ/∂λi, (i, = 1, 2, 3) are evaluated at the values given by (4.15) and
(4.19). In this case the boundary condition to be satisfied is

Trr(A) = T1(A) = 0. (4.24)
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4.1.2 Pure torsion: necessary and sufficient condition

On setting r = R in equation (4.8), Polignone and Horgan [97] obtain a neces-
sary condition on W̄ for pure torsion to be possible. From (4.4), for pure torsional
deformation (r = R), we obtain

I1 = I2 = 3 + τ 2R2, I3 = 1, (4.25)

and so the deformation is isochoric, and by (4.8), we obtain

d

dR

[

W̄1 + W̄3 + (2 + τ 2R2)W̄2

]

− τ 2RW̄1 = 0. (4.26)

On employing the chain rule, (4.26) may be written as

2(3 + τ 2R2)W̄21 + 2(2 + τ 2R2)W̄22 + 2(W̄31 + W̄32 + W̄11) + 2W̄2 − W̄1 = 0, (4.27)

where W̄ij = ∂2W̄/(∂Ii∂Ij) (i, j = 1, 2, 3) are evaluated at the values (4.25). The
condition (4.27) is therefore a necessary condition on W̄ for pure torsion to be
possible (an equivalent condition was obtained by Currie and Hayes [25]).

Kirkinis and Ogden [70], on setting r = λ
−1/2
z R in order to have isochoric

deformation for the torsion superimposed on uniform extension, obtain from (4.15)
and (4.19)(1,3)

λ1 = λ−1/2
z , λ2λ3 = λ1/2

z , λ2
2 + λ2

3 = λ2
z + λ−1

z + λzτ
2R2. (4.28)

In terms of the stretches, the equations (4.21) are given by

Trr = λ−1/2
z Ŵ1, Tθz =

√

(λ2
2 − λ2

z)(λ
2
z − λ2

3)
λ2Ŵ2 − λ3Ŵ3

λ2
2 − λ2

3

,

Tθθ =
(λ2

2 − λ2
z)λ2Ŵ2 − (λ2

3 − λ2
z)λ3Ŵ3

λ2
2 − λ2

3

, (4.29)

Tzz =
(λ2

z − λ2
3)λ2Ŵ2 + (λ2

2 − λ2
z)λ3Ŵ3

λ2
2 − λ2

3

.

On use of (4.28), the equilibrium equation (4.23) specializes to

(λ2
2 + λ2

3 − λ2
z − λ−1

z )
λ2Ŵ12 − λ3Ŵ13

λ2
2 − λ2

3

+ Ŵ1 =

λ1/2
z

(λ2
2 − λ2

z)λ2Ŵ2 − (λ2
3 − λ2

z)λ3Ŵ3

λ2
2 − λ2

3

, (4.30)

in which the derivatives of Ŵ are evaluated for (4.28). Equation (4.30) provides a
necessary condition for the strain energy to admit the deformation considered and
generalizes (4.27) for λz = 1 to the case λz 6= 1. When λz = 1, equation (4.28)
reduces to

γ(λŴ12 − λ−1Ŵ13) + (λ + λ−1)Ŵ1 = λ2Ŵ2 + λ−2Ŵ3, (4.31)
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where γ is defined by
γ = λ − λ−1 = τR, (4.32)

setting λ2 = λ, λ3 = λ−1. Equations (4.27) and (4.31) are clearly equivalent, but
they do not guarantee that the zero-traction boundary condition on the lateral
surface of the cylinder is satisfied and therefore, in general, appropriate radial
tractions need to be supplied in order to maintain the deformation. By (4.29)1, and
since λz is constant, Trr depends on the deformation only through the combination
τR. On setting Trr(R) = T (τR), on the lateral surface, we then have Trr(A) =
T (τA). Thus, the lateral traction vanish if

Trr(A) = T (τA) = 0, (4.33)

for all τ ≥ 0. From that condition follows

d

dτ
Trr(A) = T ′(τA)A = 0, (4.34)

for all τ > 0, and therefore, for any fixed τ > 0,

d

dR
Trr(R) = T ′(τR)τ = 0, (4.35)

for all 0 < R < A. Thus, Trr(R) is constant, and since it vanishes for R = A,
Trr ≡ 0 and from (4.6), it follows that Tθθ ≡ 0 also. From (4.29)(1,2) we deduce
that

Ŵ1 ≡ 0, λ2(λ
2
2 − λ2

z)Ŵ2 − λ3(λ
2
3 − λ2

z)Ŵ3 = 0, (4.36)

where the derivatives of Ŵ are evaluated for the stretches given by (4.28). The
conditions (4.36) are necessary and sufficient for the strain energy function to admit
the combined isochoric torsion and uniform extension with zero tractions on the
lateral surface of the cylinder. To derive (4.36)2, we used the inequality λ2 6= λ3

(otherwise by (4.28) the trivial situation τ = 0, λz = 1, λ2 = λ3 = 1 is verified).
When λz = 1, the conditions (4.36) reduce to

Ŵ1 ≡ 0, λ2Ŵ2 + λ−2Ŵ3 = 0, (4.37)

evaluated for λ2 = λ, λ3 = λ−1, λ − λ−1 = τR. Conditions (4.31) are obviously
implied by (4.37).

If the strain energy W is written in terms of the principal invariants i1, i2, i3
(see (1.32)), then the Cauchy stress components for pure torsional deformation
become

Trr = W̃1 + (i − 1)W̃2 + W̃3, Tθz =
γ

i − 1

(

W̃1 + W̃2

)

,

Tθθ =
1

i − 1

(

W̃1(γ
2 + 2) + (i − 2)(i + 1)W̃2 + (i − 1)W̃3

)

, (4.38)

Tzz =
1

i − 1

(

2W̃1 + (i + 1)W̃2 + (i − 1)W̃3

)

,

where W̃j (j = 1, 2, 3) are the derivatives of W̃ with respect to i1, i2, i3, respectively,
and evaluated for

i = i1 = i2 = λ + λ−1 + 1, γ = λ − λ−1, i3 = 1. (4.39)



66 Chapter 4. Isochoric deformations of compressible materials

Here, the equilibrium equation (4.27) and (4.31) become

(W̃11 + iW̃12 + (i − 1)W̃22 + W̃31 + W̃32)(i + 1) + i(W̃2 − W̃1) = 0. (4.40)

When Trr = Tθθ = 0 we obtain, after some rearrangement, the necessary and
sufficient conditions as

iW̃1 + W̃2 = 0, (i2 − i − 1)W̃1 − W̃3 = 0, (4.41)

where, here, W̃ depends on i1, i2, i3 and the derivatives are evaluated for (4.39).
In the case of pure torsion, the resultant axial force N on any cross-section of

the cylinder and the resultant moment M are related by

N = −τM, (4.42)

independently of which strain energy function is used. Thus, (4.42) establishes
another example of a universal relation2. To show the relation (4.42), we consider
the definitions

N = 2π

∫ A

0

TzzR dR, M = 2π

∫ A

0

TθzR
2 dR, (4.43)

where the integrals (which are independent of Z) are taken over any cross-section
of the cylinder. The relationship (4.22) at λz = 1, Tθθ = 0, r = R reduces to

Tzz = −τRTθz, (4.44)

and from (4.43), the relation (4.42), therefore, holds.

4.1.3 Some examples

It has been shown by Beatty [8] and by Carroll and Horgan [21] that pure
torsion is possible for the following Blatz-Ko material (2.40)

W̄ (I1, I2, I3) =
µ

2

(

I2

I3

+ 2I
1/2
3 − 5

)

. (4.45)

In fact, here the stress response equation takes the simple form

T = µ
(

I − I
−1/2
3 B−1

)

, (4.46)

and the equation (4.8) reduces to

3Rr3r′′ − r3r′ + R3r′4 = 0, (4.47)

where the prime refers to the ordinary derivative with respect to R. The equation
(4.47) is a second-order nonlinear ordinary differential equation where the param-
eter τ does not appear. The components of the stress Trr and Tθθ do not contain

2It may be compared to the universal relation (3.29)2, because pure torsion is an example of
locally simple shear of magnitude γ = τR in the (eθ,ez) plane.
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τ and it is clear that r = R is a solution of (4.47) that verify (4.10). In this case,
from (4.46), it is easy to see that

Trr = 0, Trθ = 0,

Tθθ = 0, Trz = 0, (4.48)

Tzz = −µτ 2R2, Tθz = µτR,

and so the boundary free traction condition (4.9) is satisfied. For the general Blatz-
Ko material (2.38), the necessary condition (4.26) holds if and only if f = 0. In
this case, the traction free boundary condition is also satisfied.

Consider the Hadamard material (2.21): to ensure the normalization conditions
(1.34) and (1.64), the arbitrary function H in (2.21) must satisfy

H(1) = 0, H ′(1) + c1 + 2c2 = 0. (4.49)

One can see that the necessary condition (4.27) is satisfied if and only if

2c2 = c1. (4.50)

The stress components for the Hadamard material are given, by (1.36), as

Trr = 2c2τ
2R2, Trθ = 0,

Tθθ = 2(c1 + c2)τ
2R2, Tθz = 2(c1 + c2)τR,

Tzz = 0, Trz = 0. (4.51)

Thus, Hadamard materials cannot sustain pure torsion (2c2 = c1) with traction
free lateral surface, except in the degenerate case where c2 = 0.

The authors in [70] and in [97] try to find a more general form of strain energy
to sustain pure torsion3 with the difference that Polignone and Horgan [97] do not
impose free boundary condition. They try to obtain materials where pure torsion
may be possible. For example they start by requiring that

W̄21 + W̄22 = 0, (4.52)

where the derivatives are evaluated in (4.25). Condition (4.52) is a good device
to eliminate the explicit dependence of the parameter τ in the equation (4.27).
In fact the explicit term τ 2R2 vanishes identically when (4.52) is assumed. Since
functions of the form P (I1 − I2, I3) clearly satisfy (4.52), Polignone and Horgan
consider the following general form of strain energy function,

W =
µ

2

[

P (I1 − I2, I3) + Q(I1, I3) + R(I2)S(I3)

+ H1(I3)(I1 − 3) + H2(I3)(I2 − 3) + H3(I3)
]

, (4.53)

where µ > 0 is the infinitesimal shear modulus and P,Q,R, S,Hi (i = 1, 2, 3) are
sufficiently smooth functions. The strain energy function (4.53) satisfies (4.52) if
and only if R(I2) is a linear function. Thus, we assume that

R(I2) = k1I2 + k2, (4.54)

3This is an important task from the mathematical point of view, but afterward one must
establish whether the material described by the model obtained describes reality or if it remains
only an idealization.
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where k1 and k2 are arbitrary constants. On redefining S(I3) and H(I3) to include
these constants, we rewrite (4.53) as

W =
µ

2

[

P (I1 − I2, I3) + Q(I1, I3) + I2S(I3)

+ H1(I3)(I1 − 3) + H2(I3)(I2 − 3) + H3(I3)
]

, (4.55)

in order to satisfy (4.52). The normalization conditions (1.34) and (1.64) require
that

P (0, 1) + Q(3, 1) + 3S(1) + H3(1) = 0 (4.56)

and

− P1(0, 1) + P2(0, 1) +
∂Q

∂I1

(3, 1) +
∂Q

∂I3

(3, 1)

+ 3S ′(1) + 2S(1) + H1(1) + 2H2(1) + H ′

3(1) = 0, (4.57)

where the subscripts 1 and 2 on P indicate the derivatives with respect to the first
and second arguments, respectively. From (4.27) and (4.52), we ask that

2(W̄21 + W̄31 + W̄32 + W̄11) + 2W̄2 − W̄1 = 0. (4.58)

On substitution from (4.55) into (4.58), one finds that

− 3P1(0, 1) +

(

2
∂2Q

∂I2
1

+ 2
∂2Q

∂I1∂I3

− ∂Q

∂I1

)

I1=3+τ2R2, I3=1

+ 2 (S ′(1) + S(1)) + 2H ′

1(1) − H1(1) + 2H ′

2(1) + 2H2(1) = 0. (4.59)

Rather than describe the most general class of functions P,Q, S,Hi (i = 1, 2, 3)
for which (4.58) holds, Polignone and Horgan [97] indicate some possibilities. One
possibility is to search for Q such that

2
∂2Q

∂I2
1

+ 2
∂2Q

∂I1∂I3

− ∂Q

∂I1

= 0, (4.60)

holds. One solution of (4.60) is given in the following form

Q(I1, I3) = αeβ(I3−1)e(1/2−β)(I1−3), (4.61)

to within an arbitrary additive function of I3, that we may include in H3(I3). The
parameters α and β(6= 1/2) are constants. To find a possible form for S(I3), one
might seek S such that

S ′(1) + S(1) = 0, (4.62)

so that (4.59) is further simplified. Thus, it is possible to set

S = ke−(I3−1), (4.63)

where k is a constant. By the previous choices for Q and S, the condition (4.59)
reduces to

− 3P1(0, 1) + 2H ′

1(1) − H1(1) + 2H ′

2(1) + 2H2(1) = 0, (4.64)
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and the normalization condition (4.56) and (4.57) read as

P (0, 1) + α + 3k + H3(1) = 0, (4.65)

− P1(0, 1) + P2(0, 1) +
α

2
− k + H1(1) + 2H2(1) + H ′

3(1) = 0.

Thus, a material described by a strain energy function W̄ of the form (4.55), with Q
and S chosen as in (4.61) and (4.63), respectively, can sustain pure torsional defor-
mations provided (4.64) holds. This is one possible way to generate a benchmark
of possible strain energy functions. On every setting for the unknown function
P,Q, S,H one could check afterwards if the strain energy function found satisfies
the boundary condition as well.

An other investigation concerns the energy functions of the form

W̃ (i1, i2, i3) = f(i1)h1(i3) + g(i2)h2(i3) + h3(i3), (4.66)

which is one generalization of the material described by classes I, II and III in (3.87),
(3.89) and (3.91). Polignone and Horgan [97] show that the first two classes cannot
sustain pure torsion (in general). Instead the third class verifies the condition (4.40)
if and only if a3 = b3 but a uniformly distributed tensile loading would be required
on the lateral surface of the cylinder.

4.2 Pure axial shear

The pure axial shear (also called telescopic shear) problem is a particular form
of axisymmetric anti-plane shear. It has been introduced in Section (3.2.2) for the
case of incompressible isotropic nonlinear elastic cylinder. Here, we are investigat-
ing when this isochoric deformation can be sustained for compressible homogeneous
isotropic materials. In general, for an arbitrary compressible material, the cylin-
der will undergo both a radial r(R) deformation, and an axial deformation w(R).
For an arbitrary incompressible, isotropic and homogeneous, hyperelastic material,
Rivlin [107] has shown that the telescopic shear problem leads to a nonlinear or-
dinary differential equation for the radial displacement w(R), whose solution may
be obtained only upon specification of the strain energy function. Necessary and
sufficient conditions on the form of the strain energy function for the compressible
and incompressible cases, for which nontrivial states of anti-plane shear may be
admissible, have been derived by Knowles [72, 74], but the mathematical structure
used to derive the conditions for compressible material excludes the axisymmetric
case. Here, our main references are Jiang and Beatty [64] and Polignone and Hor-
gan [98], but some examples for telescopic shear in the compressible case are also
described by Agarwal [3] and by Mioducowski and Haddow [82]. In [98], necessary
conditions on the strain energy function W for pure axial shear to be possible are
established by seeking solutions of the governing equations for which r = R. Two
conditions on W are obtained in the form of a second-order and first-order non-
linear ordinary differential equation for axial displacement w(R), whose solutions
must be compatible. In [64], a single necessary and sufficient condition is obtained
in order that the material may support pure axial shear, instead.
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4.2.1 Formulation of the axial shear problem

Let us consider the axisymmetric finite axial shear deformation of an isotropic
compressible nonlinearly elastic hollow circular cylinder with inner surface R = A
and outer surface R = B,

r = r(R), θ = Θ, z = Z + w(R), (4.67)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively, and dr/dR > 0. We set the inner surface
R = A to be bonded to a rigid cylinder so that

r(A) = A, w(A) = 0. (4.68)

The deformation (4.67) may be achieved either by prescribing r(R) and w(R) on
the outer surface R = B, or by applying a uniformly distributed axial shear traction
to the outer surface of the cylinder and assuming that the radial traction is zero
there,

Trr(B) = 0, Trz(B) = T0, (4.69)

where T0 is a given constant. Let us assume that the cylinder is sufficiently long so
that end effects are negligible and that the strain energy function is given in terms
of the first three principal invariants of B:

W = W̄ (I1, I2, I3). (4.70)

Corresponding to the deformation field (4.67), we have

F =





r′ 0 0
0 r/R 0
w′ 0 1



 , B =





r′2 0 r′w′

0 r2/R2 0
r′w′ 0 1 + w′2



 , (4.71)

B−1 =





(w′2 + 1)/r′2 0 −w′/r′

0 R2/r2 0
−w′/r′ 0 1



 , (4.72)

where r′ = dr/dR and w′ ≡ dw/dR. The first three principal invariants are given
by

I1 = 1 +
r2

R2
+ r′2 + w′2,

I2 = r′2 +
r2

R2

(

1 + r′2 + w′2
)

, (4.73)

I3 = r′2
r2

R2
.
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Substitution from (4.71)2 and (4.72) into (1.36) yields the physical components of
the Cauchy stress T as

Trr = β0 + β1r
′2 + β−1

w′2 + 1

r′2
,

Tθθ = β0 + β1
r2

R2
+ β−1

R2

r2
,

Tzz = β0 + β1(w
′2 + 1) + β−1, (4.74)

Trz = β1r
′w′ − β−1

w′

r′
,

Trθ = 0, Tθz = 0.

Because r = r(R), it is convenient to consider that T = T (R). The equilibrium
equations in the absence of body force, divT = 0, for this deformation, reduce to
the following two equations:

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0,

∂Trz

∂r
+

Trz

r
= 0. (4.75)

We observe that equation (4.75)2 can also be written in the form

d

dr
(rTrz) = 0, (4.76)

so that on integrating and using (4.74)4, (4.73)3 and (1.38), we arrive at the fol-
lowing first-order nonlinear ordinary differential equation

w′

(

RW1 +
r2

R
W2

)

= K, (4.77)

where K is a constant and W1, W2 are the derivatives of W with respect to I1

and I2, respectively, evaluated at the values (4.73). The constant K appearing in
(4.77) can now be expressed in terms of T0. In fact, by (4.74)4, (4.77) and (4.69),
we find that

K =
r(B)T0

2
. (4.78)

Equation (4.75)1, after using a chain rule to differentiate with respect to R, may
be written as the following second-order nonlinear ordinary differential equation

d

dR

(

Rr′

r
W1 +

(

Rr′

r
+

rr′

R

)

W2 +
rr′

R
W3

)

+ W1

(

Rr′2

r2
− 1

R

)

+ W2

(

Rr′2

r2
− 1

R
− w′2

R

)

= 0, (4.79)

where again the derivatives Wi (i = 1, 2, 3) are evaluated at the values (4.73).
Equations (4.77) and (4.79) are a coupled pair of nonlinear ordinary differential
equations for the unknowns functions r(R) and w(R).
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4.2.2 Pure axial shear: necessary and sufficient conditions

Polignone and Horgan [98] obtain necessary conditions on the strain energy
function for pure axial shear to be possible by setting r = R in the equations
(4.77) and (4.79). When r = R, first we know by (4.73) that

I1 = I2 = 3 + w′2, I3 = 1, (4.80)

and so the deformation is isochoric. From (4.79), we obtain

d

dR
(W1 + 2W2 + W3) −

w′2

R
W2 = 0. (4.81)

Employing the chain rule, and setting w′ 6= 0 to have a nontrivial solution, this
last equation can be written as

2(W11 + 2W22 + 3W12 + W13 + W23)w
′′ − W2

w′

R
= 0. (4.82)

From (4.77), we obtain the necessary condition

(W1 + W2)w
′ =

BT0

2R
. (4.83)

In (4.82) and in (4.83) the derivatives are evaluated in (4.80). By differentiating
both sides of (4.83) with respect to R and using the chain rule, we obtain

(W1 + W2)w
′′ = −BT0

2R2
− 2(W11 + 2W12 + W22)w

′2w′′, (4.84)

where the derivatives are evaluated at values (4.80). When r = R, the correspond-
ing stress components in (4.74) become

Trr = β0 + β1 + β−1(w
′2 + 1),

Tθθ = β0 + β1 + β−1,

Tzz = β0 + β1(w
′2 + 1) + β−1, (4.85)

Trz = (β1 − β−1)w
′,

Trθ = 0, Tθz = 0,

where the βi (i = −1, 0, 1) are evaluated at values (4.80). Setting r = R, the
boundary condition (4.68)1 is satisfied and so from (4.68)2 and (4.69)1, the re-
maining boundary conditions are

w(A) = 0, (W1 + 2W2 + W3) |I1=I2=3+w′2, I3=1, R=B = 0, (4.86)

respectively.
In [64], the problem is introduced in the reference configuration. From (1.21),

the physical components of the first Piola-Kirchhoff stress tensor are given by

(TR)RR = (TR)ZZ = 2(W1 + 2W2 + W3), (TR)RZ = −2w′(W2 + W3),

(TR)ΘΘ = 2(W1 + (2 + w′2)W2 + W3), (TR)ZR = 2w′(W2 + W2),

(TR)RΘ = (TR)ΘR = (TR)ZΘ = (TR)ΘZ = 0, (4.87)
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where Wi ≡ ∂W/∂Ii, (i = 1, 2, 3) are evaluated at (4.80). The equilibrium equa-
tions, in the absence of body forces, reduce to the following radial and axial equi-
librium equations

R
d

dR
(W1 + 2W2 + W3) = w′2W2, (4.88)

d

dR
(R(TR)ZR) = 0.

Similarly to the definition in (3.24), after setting w′ = k, we define the shear stress
response function as

τ(k) ≡ (TR)ZR = kµ(k2) (4.89)

and the shear response function as

µ(k2) ≡ 2(W1 + W2). (4.90)

We may therefore rewrite (4.88) as

R
d

dR
(W1 + 2W2 + W3) = k2W2, (4.91)

d

dR
(Rτ(k)) = 0.

As in (3.26), by the empirical inequality (1.46), we know that

µ(k2) > 0, ∀k. (4.92)

We observe that the shear strain k(R) vanishes identically if either the shear strain
itself or its derivative dk/dR vanishes at a single location in [A,B]. In fact by
(4.91)2 and (4.89), we obtain that

Rkµ(k2) = h, (4.93)

where h is an integration constant. If [A,B] contains the origin, the statement is
trivial, because (4.92) holds. Thus, if there exist a point 0 6= R0 ∈ [A,B] such that
k(R0) = 0, by (4.92), it is necessary to have h = 0 and therefore k ≡ 0. If there
exist a point 0 6= R1 ∈ [A,B] such that dk(R1)/dR = 0, by differentiation of (4.93)
with respect to R, we have

R
dk(R)

dR

d

dk
[τ(k(R))] = −τ(k(R)), (4.94)

which with the aid of (4.93), may be written as

dk(R)

dR

d

dk
[τ(k(R))] = − h

R2
, (4.95)

and since dk(R1)/dR = 0 we therefore obtain the constant h = 0, deducing as in
the previous case that k ≡ 0.

The necessary and sufficient condition for a compressible, isotropic and homo-
geneous, hyperelastic material to be capable of sustaining nontrivial, pure axial
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shear deformation whose strain energy function W satisfies (4.92) is the following
condition

(W1 + W2)
[

W11 + I1W12 + (I1 − 1)W22 + W13 + W23 + 1
2
W2

]

=

(I1 − 3)
[

W1(W12 + W22) − W2(W11 + W21)
]

, (4.96)

for I1 = I2 ≥ 3, I3 = 1. By using (4.80), and recalling that the strain energy
function W depends on the shear strain k only through the invariants I1 and I2,
it follows that (4.96) admits the following representation

(W1 + W2)
d

dk
(W1 + 2W2 + W3) = −kW2

d

dk
[k(W1 + W2)] . (4.97)

Recalling the definition of the shear stress response function in (4.89) and since we
may suppose that k and its derivative with respect to R never vanishes (otherwise
by previous consderations the only solution w(R) would be a constant), we may
rewrite (4.97) as

τ(k)
d

dk
(W1 + 2W2 + W3) = −k2W2

dτ(k)

dk
. (4.98)

To prove sufficiency, we need to show that every solution of the equation (4.91)2

also satisfies the radial equilibrium equation (4.91)1 when the condition (4.92) and
(4.98) are identically satisfied. Since the equilibrium equation (4.91)2 may be
written in the form (4.94), after substitution from (4.94) into (4.98), we obtain the
equilibrium equation (4.91)1 and sufficiency is hence shown.

To prove the necessary condition, we consider a solution w̄ of both equations
(4.91)1 and (4.91)2. Since the strain energy function depends on k trough the
invariants I1 and I2, we may rewrite Equation (4.91)1 as

R
d

dk
(W1 + 2W2 + W3)

dk

dR
= k2W2. (4.99)

Because equation (4.91)2 is equivalent to (4.94), we use (4.94) in (4.99) and we
obtain

τ(k)
d

dk
(W1 + 2W2 + W3) = −k2W2

dτ(k)

dk
. (4.100)

Thus (4.98) is obtained and the necessary condition is therefore proved. In order
to attain this result, a division by µ was necessary, but we recall that this is always
possible because (4.92) holds.

4.2.3 Some examples

Let us consider the Hadamard material (2.21). It follows from (4.90) that the
shear response function for the Hadamard material (2.21), is

µ(k2) = 2(c1 + c2) > 0, (4.101)
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a constant, and that the shear stress response function (4.89) is

τ(k) = 2k(c1 + c2), (4.102)

a linear dependence of k. Here, in accordance with (4.96), it follows immediately
that non-trivial, controllable, axial pure shear deformations are possible in every
Hadamard material (2.21) for which

1

2
(W1 + W2)W2 = (c1 + c2)c2 = 0. (4.103)

Since (c1 + c2) > 0,
c2 = 0 (4.104)

is a necessary and sufficient condition for the pure axial shear to be controllable
in an Hadamard material. When c2 = 0 and c1 > 0, from (4.91)2 or (4.83) the
out-of-plane displacement w(R) is given by

w(R) =
BT0

2c1

ln

(

R

A

)

, (4.105)

and from (4.85)3,4, the nonzero stress components are

Tzz =
B2T 2

0

2c1R2
, Trz =

BT0

R
. (4.106)

It is readily seen that (4.96) fails for a Blatz-Ko material (2.40), which is capable
of sustaining pure torsion (see Section 4.1.3).

In searching for a more general class of material for which the pure axial shear
is possible, Polignone and Horgan [98] require that the strain energy W satisfy the
following condition

W11 + 2W12 + W22 = 0, (4.107)

where the derivatives are evaluated in (4.80). By (4.84), and since we are assuming
that W1 + W2 > 0, we obtain

w′′ = − BT0

2R2(W1 + W2)
. (4.108)

On employing (4.107), (4.108), (4.83) in (4.82), we find that

2(W22 + W12 + W13 + W23) + W2 = 0. (4.109)

Thus, Polinone and Horgan [98] start by considering the following form of the
strain energy

W =
µ

2
[P (I1 − I2, I3)(I1 − 3) + Q(I1 − I2, I3)(I2 − 3) + R(I1 − I2, I3)] (4.110)

where µ > 0 is the infinitesimal shear modulus, and P,Q,R are sufficiently smooth
functions. This form of strain energy function certainly verifies the conditions
(4.107). The normalization conditions (1.34) and (1.64)1 are satisfied by (4.110) if

R(0, 1) = 0, (4.111)
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and
P (0, 1) + 2Q(0, 1) − R1(0, 1) + R2(0, 1) = 0, (4.112)

where the subscripts 1, 2 indicate the derivatives with respect to the first and
second arguments, respectively. The task now is to find conditions on the functions
P,Q,R such that condition (4.109) is satisfied. Hence, on substitution from (4.110)
in (4.109), one finds that

2 [P2(0, 1) + Q2(0, 1) − (P1(0, 1) + Q1(0, 1))]

+ Q(0, 1) − R1(0, 1) − [P1(0, 1) + Q1(0, 1)] w′2 = 0. (4.113)

Since we are searching for w′ as a varying function (otherwise (4.82) and (4.83) are
not compatible), the condition (4.113) implies that

P1(0, 1) + Q1(0, 1) = 0 (4.114)

and
2P2(0, 1) + 2Q2(0, 1) + Q(0, 1) − R1(0, 1) = 0. (4.115)

In order that µ > 0, i.e. W1 + W2 > 0, it is necessary that

P (0, 1) + Q(0, 1) > 0. (4.116)

Thus a cylindrical tube composed of a material described by a strain energy func-
tion W of the form (4.110), with P,Q chosen so that (4.114) is satisfied, can sustain
pure axial shear provided (4.115) and (4.116) hold. From (4.83) and the boundary
condition (4.68)2, we obtain the solution

w(R) =
BT0

µ (P (0, 1) + Q(0, 1))
ln

(

R

A

)

(4.117)

for any W of the form (4.110). To satisfy the boundary condition (4.69)1, by (4.86),
(4.112) and (4.114), one finds that

P2(0, 1) + Q2(0, 1) = 0. (4.118)

Combining (4.118) and (4.115), we obtain

Q(0, 1) − R1(0, 1) = 0. (4.119)

Thus, in summary, provided that (4.114), (4.116), (4.118), and (4.119) hold, any
compressible material described by (4.110) allows pure axial shear of the tube
arising from a uniform shear traction applied to its outer surface, with the radial
traction vanishing there. By application also of (4.112), from (4.85), we find that
the only nonzero stresses are then

Tzz =
B2T 2

0

µ (P (0, 1) + Q(0, 1)) R2
, (4.120)

Trz =
BT0

R
.
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In the same way as for the pure torsion deformation, here, it is possible to give
some explicit example of (4.110) when P,Q,R are chosen. Polignone and Horgan
[98] give some examples. One of these is the following strain energy,

W =
µ

2
γ
[

eα(I1−I2)eβ(I3−1)(I1 − 3) + e−α(I1−I2)e−β(I3−1)(I2 − 3)

+ e(I1−I2)e−2(I3−1) − 1
]

,

with α 6= 0, β 6= 0, γ > 0 arbitrary constants.

4.3 Some other meaningful isochoric deforma-

tions

A third isochoric deformation for compressible materials that has been inves-
tigated in a similar fashion is that of azimuthal shear (or circular shear) of a
cylindrical tube,

r = R, θ = Θ + g(R), z = Z, (4.121)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and
in the current configurations, respectively, and the inner surface of the tube is
bonded to a rigid cylinder. The deformation may be achieved either by applying a
uniformly distributed azimuthal shear traction on the outer surface together with
zero radial traction or by subjecting the outer surface to a prescribed angular
displacement, with zero radial displacement. For compressible materials, we know
by Ericksen’s result [34] that azimuthal shear is not a universal solution and that
in general, it is accompained by a radial deformation. These axisymmetric fields
are governed by a coupled pair of nonlinear ordinary differential equations, one of
which is second-order and the other first-order. Azimuthal shear, therefore, cannot
be sustained by all compressible materials, unless certain auxiliary conditions on
the strain energy function are satisfied. That problem has been examined by Beatty
and Jiang [10], Haughton [52], Jiang and Ogden [66] and Polignone and Horgan
[100].

The generalized azimuthal shear is an isochoric deformation of the form

r = R, θ = Θ + g(R,Z), z = Z, (4.122)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively. This deformation (or its Z−independent
specialization) may also appear under the names of circular or rotational shear.
For compressible materials, that problem has been investigated by Kirkinis and
Tsai [71].

The isochoric deformation consisting of the composition of the shearing defor-
mation (4.67) (with r(R) = R) and (4.121) is called helical shear and it is described
by

r = R, θ = Θ + g(R), z = Z + w(R), (4.123)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively. This last problem has been examined by
Beatty and Jiang [11].
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4.4 Nearly isochoric deformations for compress-

ible materials

In the previous sections we have seen an example of how a strategy of applying
the semi-inverse method, while dealing with complex models, generalizes forms of
solutions already known within the framework of a simpler theory. Motivated by
the results obtained in the incompressible case, we have tried to understand what
happens in the compressible case. By doing so, many important exact solutions
for special classes of compressible elastic materials have been obtained. In [28],
we emphasized that great care has to be exercised in using semi-inverse method
in continuum mechanics to delineate classes of constitutive equations that admit
a particular class of deformations and motions. Sometimes, the admissibility of
a given deformation field is considered to delineate special classes of constitutive
laws. We pointed out that the classes of constitutive equations thus identified from
the standpoint that it may admit a type of deformation may lead to models that
exhibit physically unacceptable mechanical behavior.

To illustrate the dangers inherent to merely turning the mathematical crank to
determine classes of constitutive equations where a certain class of deformations
are possible, we now consider the torsion of a cylindrical shaft (§4.4.1), the axisym-
metric anti-plane shear of a cylindrical tube (§4.4.2), and then the propagation of
transverse waves (§4.4.3) in a compressible nonlinear elastic material. We show
that great care has to be exercised in appealing to the semi-inverse method. The
first and third examples are extracted from our recent work [28]. In the first and
second examples, we consider some static deformations with the help of which we
can lay bare the confusion that has been created in seeking semi-inverse solutions.
By considering torsional deformation and axial axisymmetric shear of a cylindrical
shaft and tube, respectively, we discuss step by step the criticism concerning the
mistakes that have been made as well as the possible errors that can be committed.
Then in the third example, we consider the propagation of transverse bulk waves
(primary motion), which, according to general nonlinear elasticity theory, must al-
ways be coupled to a longitudinal wave (secondary motion). Instead of considering
what happens within the context of the linearized theory, a second-order theory
and then the general nonlinear setting, we consider a top-to-bottom approach. We
derive the general equations and, assuming that the amplitude of the displacements
is of order ǫ, we show that at the first order we recover the results of the linearized
theory and that at a higher order of approximation, we may have some insight
into the coupling between the various modes of deformation. Here, the interesting
point is the occurence of the phenomena of resonance between the primary and
secondary fields.

Let us recall that it has been possible to determine the most general class of
compressible materials for which pure torsion is a controllable deformation in the
case of a circular solid cylinder. This means that for the constitutive equations
that allow the deformation in question, the balance equations are satisfied for the
pure torsion deformation. The next step is to ensure that the lateral surface of
the circular cylinder is traction-free. Now, because simple torsion is an isochoric
deformation, we have to ensure that the lateral boundary has to be traction-free
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while the volume remains constant. There is no reason to expect that this situation
is automatically complied with in a compressible material. It is more natural to
expect that when the lateral boundary of the cylinder is traction-free, the volume
change has to be non-zero. In some sense, the behavior of a class of compressible
materials such that pure torsion is controllable is extraordinary. We now investigate
quantitatively the meaning of this sort of unusual possibility.

To make this claim quantitative, let us observe that any idealized material
characterized by special mathematical properties cannot be clearly identified in the
real world. That is, all mathematical models have to be viewed as approximations
and one has to evaluate how well such models represent reality. We have to make
some determination of what we will find acceptable in terms of an approximate
answer. Such a determination cannot be totally subjective and one has to have
some sort of agreement amongst those developing and using such models. Whether
the criticism concerning the inapplicability of certain models is appropriate or
otherwise needs to be judged by the modeller.

For example, let us suppose that we wish to consider the mathematical as-
sumption that W = W (I2, I3) only with regard to a specific body. This is exactly
the constitutive assumption made by Blatz and Ko [8] in their celebrated model
for foamed polyurethane elastomeric foams. It is imperative, when we make such
an assumption, to check whether the experimental data backs the validity of the
mathematical relationship

∂W/∂I1 = 0. (4.124)

Because, the first derivatives of the strain energy function are the mechanical quan-
tities directly related to the stress, the relation (4.124) is indeed the correct way
to check the constitutive assumption W = W (I2, I3), for example in a biaxial ex-
periment. It is clear that in the real world, our measurement in itself introduces
an uncertainty with regard to the measured quantity, and that the accuracy of
measurement is such that any measurement of the mechanical quantity ∂W/∂I1 to
check the (4.124) will deliver a real number ǫ different from zero. It is not merely
the prerogative of the modeller to say when ǫ is sufficiently small enough to be con-
sidered zero but, and as always, any theoretical assumption is an approximation
and making such an approximation is an art. Roughly speaking, in a nonlinear the-
ory, just because a certain quantity is small it does not follow that everything else
connected with this quantity is or remains small. For this reason, we must be very
careful in considering constitutive assumptions generated by purely mathematical
arguments such as the ones arising from the semi-inverse method4.

On the other hand, it is clear that approximations must be consistent and for
the specific problem under consideration the following problem arises. If a given
problem depends on various parameters αi, i = 1, ..., n and depends on a small
parameter ǫ such that for ǫ = 0 the secondary deformation may be ignored, then
the small ǫ-approximation is consistent if for ǫ << 1 the secondary field is neglible
for any admissible value of the parameters αi.

4We point out that this procedure is exactly the reverse of the constitutive assumption that
comes out from a rigorous mathematical definition of some physical intuition. Notable examples
of this last situation are the concept of frame indifference and material symmetry. In this case we
start by the evidence provided by our observations in the real world and we then try to translate
this into mathematics; in the former case we force mathematics to fit into the real world.
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4.4.1 Nearly pure torsion of compressible cylinder

Let us consider a compressible cylinder of radius A subjected to the torsional
deformation (4.1). We refer to the pure torsion of the cylindrical shaft as the
“primary deformation”, while by “secondary deformation” we mean the radial
displacement r(R). This means

max
R∈[0,A]

∣

∣

∣

∣

r(R)

R
− 1

∣

∣

∣

∣

≈ O(ǫ), (4.125)

or
√

I3 ≈ 1 for all R ∈ [0, A] and for any other parameters (αi for previous refer-
ence).

Now let us consider the classical Blatz-Ko material (2.40), with the strain energy
function

W =
µ

2

[(

I2

I3

− 3

)

+ 2(
√

I3 − 1)

]

, (4.126)

where µ is a constant, the initial shear modulus. This model is of the form
W = W (I2, I3) and it is well known (see Section 4.1.3) that for the class of mate-
rials described by the strain energy function given by (4.126), the isochoric simple
torsion deformation is controllable.

Let us consider a more general strain energy function than (4.126), i.e.

W = k(I1 − 3) +
µ

2

[(

I2

I3

− 3

)

+ 2(1 − 2k/µ)(
√

I3 − 1)

]

, (4.127)

where k and µ are constants. The strain energy function (4.127) differs from (4.126)
by a term linear in I1 and a null-Lagrangian term

√
I3 (see Haughton [53]) such

that the usual restrictions imposed by the normalization conditions are satisfied.
Clearly as k → 0 we recover (4.126) from (4.127).

The derivatives of the strain energy function (4.127) with respect to the invari-
ants are

W1 = k, W2 =
µ

2I3

, W3 =
µ

2

(

1 − 2k/µ√
I3

− I2

I2
3

)

. (4.128)

Now it is possible to evaluate via a suitable experiment the magnitude of the
parameter k and to decide if the assumption W1 = 0 is reasonable on the basis
of fitting the experimental data. If k = 0, then the model (4.127) reduces to
(4.126). Our point is that this model is so special that it is not possible to ensure
that the predictions of the mechanical response are not in contradiction with the
assumption k = 0.

To make this point more quantitative, the next step is to introduce the di-
mensionless independent variable ζ = R/A ∈ [0, 1], the dimensionless dependent
variable

F (ζ) = r/A (4.129)

and the quantities

τ̂ = Aτ, k̂ = k/µ. (4.130)
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The introduction of (4.128), evaluated for the specific deformation under consid-
eration, in (4.8), leads to the equation

k̂

(

ζF ′′

F
+

F ′

F
− τ̂ 2ζ − 1

ζ

)

+
3

2

ζF ′′

FF ′4
+

ζ3

2F 4
− 1

2FF ′3
= 0. (4.131)

(Here F ′ = dF/dζ). Moreover, from (4.5)1, the dimensionless radial stress compo-
nent associated with the deformation, for the model (4.127) is given by

T̂ζζ(ζ) = 1 − 2k̂ + 2k̂
F ′2

√
I3

− F ′−2

√
I3

. (4.132)

Therefore, for a solid circular cylinder initially of radius A subjected to end
torques only, the boundary value problem of interest here is given by equation
(4.131), subject to the conditions T̂ζζ(1) = 0 (i.e. Trr(A) = 0) and F (ζ) → 0 as
ζ → 0. We point out that the isochoric solution F (ζ) = ζ is controllable for the
model (4.127) if and only if k = 0 and in this case, T̂ζζ(1) = 0.

It seems unlikely that one can obtain an explicit exact solution for equation
(4.131), and even a numerical solution for the boundary value problem under in-
vestigation is not easy to obtain because the boundary condition on ζ = 1 is
nonlinear and of mixed type. For this reason, we consider an approximate O(k̂)
solution. A straighforward computation gives

F (ζ) ≈ ζ + k̂
τ̂ 2ζ

24

(

2ζ2 − 5
)

, (4.133)

and the O(k̂) volume approximation is

J ≈ 1 + V(τ̂ 2, ζ)k̂, (4.134)

where

V(τ̂ 2, ζ) =
(4ζ2 − 5)τ̂ 2

12

is the local variation of volume at order k̂. The maximum of this variation is

∣

∣V(τ̂ 2, 0)
∣

∣ =
5

12
τ̂ 2. (4.135)

Because equations (4.133) and (4.135) depend not only on k̂ but also on τ 2, and
because the two parameters are independent, it is clear that the approximation
k̂ = 0 may be not consistent.

Now, imagine that you are able to evaluate via an experiment the parameter
k̂ and that you discover that this parameter is small. It is clear that the exper-
imentally determined number may be never small enough to justify the model
corresponding to k̂ = 0 and only the modeller can choose to set k̂ = 0, or do other-
wise. Our computation shows that such an assumption might be dangerous under
certain circumstances. Indeed, while the limiting model for k̂ → 0 predicts that
during torsion the variation of volume is null, this is not always the case even for
very small k̂. To show this we generated pictures in 4.1, where two different coaxial
cylinders are considered to describe the situation evoked. The external cylinder
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is represented in the picture by only its external surface through a circumference
line of radius R = 1. It is the cylinder where no deformation occurs in the refer-
ence configuration. The dark circle stays in place for the cylinder in the current
configuration, after a torsional deformation (4.1) is imposed. Now it can be ap-
preciated, depending on the amount of torsion τ̂ imposed, how the radius reduces
with the law (4.133) and consequent change of volume occurs. In Figures 4.1 a-b)
the approximation value k̂ = 0.05 is considered, and the amounts of torsion are
τ̂ = 2 and τ̂ = 2.5 respectively. When a small value for k̂ is slightly increased to
k̂ = 0.1, the reduction of the radius for the deformed cylinder is more appreciated.
See Figures 4.1 c-d) where the parameters of the torsion are τ̂ = 2 and τ̂ = 2.5,
respectively. Clearly, the use of the model (4.126) is fraught with danger because
it is too special.

This situation is peculiar to all the constitutive models that are identified by
enforcing special mechanical behaviors via purely mathematical properties, such
as the controllability of isochoric deformations within the context of a theory to
describe the response of compressible bodies.

4.4.2 Nearly pure axial shear of compressible tube

Let us consider a compressible tube of internal and external radii A and B,
respectively, subjected to an axial axisymmetric shear deformation (4.67). Here,
in order to search for pure axial shear deformation, we refer the out-displacement
w(R) as “primary deformation” while we refer to the radial displacement r(R) as
“secondary field”. Similarly to the previous section, this means that

max
R∈[A,B]

∣

∣

∣

∣

r(R)

R
− 1

∣

∣

∣

∣

≈ O(ǫ),

or
√

I3 ≈ 1 for all R ∈ [A,B] and for any other parameters. Now let us consider
the classical Hadamard material (2.21), with strain energy function that we rewrite
here as

W = c1(I1 − 3) + k(I2 − 3) + H(I3), (4.136)

where c1 > 0 and k ≥ 0 are material constants. Clearly if k = 0, the model (4.136)
satisfies the necessary and sufficient condition (4.104) and the material will be
therefore capable of sustaining pure axial shear, for every function H(I3) satisfying
the normalization conditions on the strain energy (1.34) and (1.64).

The derivatives of the strain energy function (4.136) with respect to the invari-
ants are

W1 = c1, W2 = k, W3 = H ′(I3). (4.137)

Now it is possible to evaluate, via a suitable experiment, the magnitude of the
parameter k with respect to the parameter µ and to decide if the assumption
W2 = 0 is reasonable on the basis of fitting the experimental data. Let us consider
the model (2.23) proposed by Levinson and Burgess [79] as special case of strain
energy function (4.136),

W =
(µ

2
− k

)

(I1 − 3) + k(I2 − 3)

+ 1
2
(−2k + λ + µ) (I3 − 1) − (λ + 2µ)(

√

I3 − 1), (4.138)
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Figure 4.1: View of the transverse sections of two perturbed Blatz-Ko cylinder
(4.127): the first one is a cylinder in the reference configuration when no defor-
mation is applied (in the figure represents only its lateral surface through the
circumference line of radius R = 1), and the second one is a cylinder in the
current configuration when an amount of torsion is applied (in the figure, it is
represented by a meshed cylinder of radius (4.133)) for a) k̂ = 0.05, τ̂ = 2.0, b)
k̂ = 0.05, τ̂ = 2.5, c) k̂ = 0.1, τ̂ = 2.0, d) k̂ = 0.1, τ̂ = 2.5.

where λ and µ are the Lamé constants of linear elasticity. At k = 0 the model
(4.138) reduces to

W =
µ

2
(I1 − 3) +

1

2
(λ + µ) (I3 − 1) − (λ + 2µ)(

√

I3 − 1) (4.139)

which satisfies the necessary and sufficient condition to sustain pure axial shear.
In this last case (k = 0) it is easy to obtain the expression for the displacement
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w(R) and the stress field (see Section 4.2.3). The next step is to introduce the di-
mensionless independent variable ζ = R/B, the dimensionless dependent variables

F (ζ) = r/B, ŵ = w/B, (4.140)

and independent variables

η = A/B, k̂ = k/µ, λ̂ = λ/µ, (4.141)

K̂ = K/(Bµ), T̂ = T /µ, T̂0 = T0/µ,

so that η ≤ ζ ≤ 1. The derivatives of the strain energy (4.138) with respect to the
invariants are

W1 =
µ

2
− k, W2 = k, W3 = 1

2
(−2k + λ + µ) − λ + 2µ

2
√

I3

. (4.142)

The introduction of the dimensionless variables and of (4.142) evaluated for the
specific deformation under consideration in (4.79), leads to the equation

− 2k̂ζŵ′2F + ζF (−1 + (λ̂ + 1)F ′2)

− (λ̂ + 1)F 2(F ′ − ζF ′′) + ζ2(F ′ + ζF ′′) = 0, (4.143)

and in (4.77) leads to the equation

2kŵ′[F 2 − ζ2] + ζ(ζŵ′ − 2K̂) = 0. (4.144)

For k̂ = 0, we know that a solution for pure axial shear is F (ζ) = ζ. Here, we
consider an approximation O(k̂) solution, in the spirit of the previous section. Let
us assume that

F (ζ) = ζ + k̂g(ζ), (4.145)

where g is an unknown dimensionless function of ζ. The problem is to solve both
the equilibrium equations (4.143) and (4.144) for the unknowns F and ŵ such that
the following boundary conditions, equivalent to (4.68) and (4.69)1,

g(η) = 0, ŵ(η) = 0, T̂rr(1) = 0, (4.146)

are satisfied. Using (4.145) and (4.146)1 we obtain (at first order) the boundary
conditions that g must satisfy:

g(η) = 0, (λ + 2)g′(1) + λg(1) = 0. (4.147)

The approximation equilibrium equations (4.143) and (4.144) (at first order) be-
come

ζ
[

(λ̂ + 2)(g′ + ζg′′) − 2ŵ′2
]

− (λ̂ + 2)g = 0, (4.148)

and
1
2
ζŵ′ = K̂, (4.149)

respectively. The solution of (4.149) satisfying also the boundary condition ŵ(η) =
0 is given by

ŵ(η) = 2K̂ ln

(

ζ

η

)

. (4.150)
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Using (4.150) in (4.148), the equilibrium equation in the unknown g is given by

(λ̂ + 2)ζ[ζ(ζg′′ + g′) − g] − 8K̂2 = 0 (4.151)

from which we obtain

g(ζ) =
1 + ζ2

2ζ
d1 +

ζ2 − 1

2ζ
d2 − 2K̂2 1 + 2 ln ζ

(

λ̂ + 2
)

ζ
, (4.152)

where d1 and d2 are integration constants obtained by the boundary conditions
(4.147). From (4.78), making use of the solution (4.145), we obtain the value K̂ as

K̂ =
(λ̂ + 1 + η2)T̂0

(λ̂ + 1 + η2) +
[

(λ̂ + 1 + η2)[(λ̂ + 1 + η2) + 2k̂T̂ 2
0 (η2 − 1 − 2 ln η)]

]1/2

(4.153)
The O(k̂) volume change approximation is

J ≈ 1 + k̂T̂ 2
0

2ζ2 log η + (λ̂ + 2)ζ2 − 1 − η2 − λ̂

(λ̂ + 2)(λ̂ + 1 + η2)ζ2
. (4.154)

It is interesting to study the behaviour of J when ζ → η, because it attains the
maximum of this variation there,

J(η) ≈ 1 + k̂T̂ 2
0

2η2 log η + (λ̂ + 1)η2 − 1 − λ̂

(λ̂ + 2)(λ̂ + 1 + η2)η2
. (4.155)

Because η < 1 is arbitrary, if we consider an approximation of J(η) for small η = δ,
we obtain that

J(δ) ≈ 1 − k̂
T̂ 2

0

(λ̂ + 2)δ2
. (4.156)

Since (4.156) depends not only on k̂ but also on the square of the traction T̂ 2
0 ,

and because the two parameters are independent, it is clear that here as in the
previous example, the approximation k̂ = 0 may not be consistent. For example,
if we are able to evaluate via an experiment the parameter k̂ and we discover that
this parameter is small, say k̂ = 0.01, then we may in our upcoming numerical
simulations take A = B/10, so that η = 0.1, and assume λ̂ = 1 of the same
magnitude of µ. After these assumptions, the formula (4.156) becomes

J(δ) ≈ 1 − 1

3
T̂ 2

0 , (4.157)

and cleary we can imagine that the isochoric assumption J = 1 might be very
dangerous when the magnitude of the traction |T̂0| moves away from zero (see
Figure (4.2)), because the dependence is quadratic5.

5The formula (4.157) is a good approximation when small k̂, δ and T̂0 are considered, to avoid
zero or negative volume variation.
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Figure 4.2: Plot of J(δ) when the assumption k̂ = 0.01, δ = 0.1, λ̂ = 1 (see
formula (4.157)) against T̂0 running from zero (J = 1) to 1.5 (J ≈ 0.25).

4.4.3 Another example: transverse and longitudinal waves

Another important example emphasizing that if we ignore the full scope of the
deformation, we may be misguided and we may miss real and interesting phenom-
ena, is given by the propagation of longitudinal and transverse waves.

Introducing the Cartesian coordinates (X1, X2, X3) in the undeformed config-
uration and the Cartesian coordinates (x1, x2, x3) in the current configuration, we
consider the motion given by

x1 = u(X1, t), x2 = X2 + v(X1, t), x3 = X3, (4.158)

where the longitudinal wave u and the transverse wave v must be determined from
the balance equation. The principal invariants: I1, I2 and I3, are given by

I1 = 2 + u2
X1

+ v2
X1

, I2 = 1 + 2u2
X1

+ v2
X1

, I3 = u2
X1

. (4.159)

The equations of motion (1.24) in the absence of body forces, reduce to the two
scalar equations

ρr
∂2u

∂t2
=

∂

∂X1

[2 (W1 + 2W2 + W3) uX1
] , (4.160)

ρr
∂2v

∂t2
=

∂

∂X1

[2 (W1 + W2) vX1
] .

Here the strain energy W is a function of u2
X1

and v2
X1

.
We remark that in the linearized limit, (4.160) reduces to the classical uncoupled

systems of linear wave equations (Atkin and Fox [4]).
If we consider the case u(X1, t) ≡ X1, equations (4.160) reduce, in the general

case, to an overdetermined system of two differential equations in the single un-
known v. Therefore it seems, at least at first sight, that it is not possible to ensure
the existence of a transverse wave in the nonlinear theory for any material within
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the constitutive class (1.36). It is possible that for special classes of materials,
this overdetermined system may have a solution. For example this is the case for
Hadamard materials (2.21). In the case of Hadamard materials, because u ≡ X1

and I3 = 1, we find that (4.160) reduces

ρr
∂2v

∂t2
= µ

∂2v

∂X2
1

. (4.161)

In this case, the system is compatible and the transverse wave solution may be
computed by solving a linear differential equation, as in the linearized theory of
elasticity.

Now let us consider for the Hadamard material the case where the longitudinal
wave u(X1, t) is of order ǫ, where |ǫ| << 1. Then we consider the model (2.23),

H(I3) = (λ + µ) (I3 − 1) − (λ + 2µ)
(

√

I3 − 1
)

, (4.162)

proposed by Levinson and Burgess [79]. Now equations (4.160) become

ρr
∂2u

∂t2
= (λ + 2µ)

∂2u

∂X2
1

, ρr
∂2v

∂t2
= µ

∂2v

∂X2
1

. (4.163)

In this case we find that the equations are the same as in the linearized theory:
they are uncoupled.

We take a further step and we consider a small coupling, i.e. we modify the
constitutive equation (2.21) to be

W = c1(I1 − 3) + c2(I2 − 3) + (λ + µ) (I3 − 1)

− (λ + 2µ)
(

√

I3 − 1
)

+ kI3(I1 − I3 − 2), (4.164)

where k is the coupling parameter and

c1 =
1

2
(λ + 2µ − 4k), c2 =

1

2
(2k − λ − µ). (4.165)

In this case we compute

ρr
∂2u

∂t2
= (λ + 2µ)

∂2u

∂X2
1

+ 2k
∂

∂X1

(

v2
X1

uX1

)

, (4.166)

and

ρr
∂2v

∂t2
= (µ − 2k)

∂2v

∂X2
1

+ 2k
∂

∂X1

(

u2
X1

vX1

)

. (4.167)

Clearly the term ∂(u2
X1

vX1
)/∂X1 in the right hand side of (4.167) may be (at

least at first sight) ignored because the amplitude u is small. This means that
we may consider the system of equations (4.166) and (4.167) as being decoupled.
This is indeed a way to justify the Hadamard material (2.21), which is a model
predicting an exact decoupling. As we have already remarked, any experimental
determination of the coupling k may lead to k being small but never zero.



88 Chapter 4. Isochoric deformations of compressible materials

To make the idea rigorous, we must (at least) require that, given a set of bound-
ary conditions (for example u = v = 0 at X1 = 0 and L), the initial condition is
such that u(X1, 0) ≈ O(ǫn) with suitable n ≥ 1 and that we have a suitable a priori
bound on the solution such that for any time we ensure u(X1, t) ≈ O(ǫ). Then, if
this a priori bound exists, the initial conditions satisfy the requirements and when
k is small it is possible to consider the transverse waves as being decoupled from
the longitudinal waves.

The point is that it is clear from the structure of the equations that this bound
cannot exist for all the admissible range of parameters. Let k ≈ O(ǫ). When
the longitudinal motion is small, a better approximation than the linear one is to
neglect the term 2k∂X1

(

u2
X1

vX1

)

in (4.167) (which is O(ǫ3)), but to maintain the
coupling term in (4.166) (which is O(ǫ2)). In this case (4.167) is a classical linear
wave equation; introducing c2

T = (µ− 2k)/ρr this equation admits solutions of the
usual form

v(X1, t) =
∞

∑

n=1

[

An cos(kT
n t) + Bn sin(kT

n t)
]

sin(nπX1/L),

where

kT
n = nπcT /L (4.168)

is the transverse wave number of the nth−mode and An, Bn are integration con-
stants such that the initial condition u(X1, 0) ≈ O(ǫn) is verified. If we intro-
duce this solution for v(X1, t) into (4.166) we obtain for u(X1, t) a linear but
non-autonomous equation for which is possible to search for solutions in the form

u(X1, t) =
∞

∑

n=1

ηn(t) sin(nπX1/L),

where ηn(t) are unspecified functions of t. Using standard methods of nonlinear
oscillations (Nayfeh and Mook [89]) we obtain a reduction of the equations to an in-
finite system of coupled ordinary differential equations in the unknowns ηn. These
equations are non-autonomous and they display autoparametric resonance phe-
nomena for some values of the various parameters. Therefore, an a priori bound is
impossible. This means that it does not matter how small the longitudinal motions
are, because after a certain time their amplitude cannot be neglected and a full
coupling between transverse and longitudinal motions must be considered. There-
fore, the Hadamard model is much too special to be considered as a reasonable
idealization of real elastic bodies.

Phenomena of this kind are quite common in classical mechanics. For example
in the framework of the elementary and classical theory for holonomic systems, it
is well known that unstable normal modes may not contribute to the approximate
linear theory. This happens for modes that are “latent” at the initial time. Nev-
ertheless, the higher orders neglected in the Lagrangian can awaken these latent
unstable modes, and bring the system away from equilibrium6.

6A simple and clear example of a mechanical system displaying wake-up of latent modes is
reported in page 133 of Biscari et al. [16].
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Notes

Isochoric deformations play on important role in solid mechanics and here we
have appealed to them to illustrate our thesis in the context of nonlinear elasticity.
To simplify the exposition, we have only considered the theory of unconstrained
nonlinear isotropic elasticity. But our remarks are completely general and apply
(with some modifications) in general to the use of semi-inverse methods in con-
tinuum mechanics. For example Jiang and Beatty [65] find also necessary and
sufficient conditions on the strain energy function for homogeneous and compress-
ible, anisotropic hyperelastic materials to sustain controllable, axisymmetric helical
shear deformations. Thus we think that one needs to exercise a great deal of pru-
dence in ensuring that the results obtained by using the semi-inverse method make
sense.





Chapter 5

Secondary deformations in
nonlinear elasticity

In Section 3.2.2, we have shown that in the incompressible case, the general
antiplane shear (3.64) can not be always sustained unless the axisymetric case is
considered. This means that when the geometry of the material deformed moves
away from axial symmetry, we can describe the deformation only for special par-
ticular materials. For example, consider the case of an elastic material filling the
annular region between two coaxial cylinders, with the following boundary-value
problem: hold fixed the outer cylinder and pull the inner cylinder by applying a
tension in the axial direction. A solution to this problem, valid for every incom-
pressible isotropic elastic solid, is obtained by assuming a priori that the defor-
mation field is a pure axial shear. However if consider the corresponding problem
for non-coaxial cylinders, thereby losing the axial symmetry, then it is clear that
we cannot expect the material to deform as prescribed by a pure axial shear de-
formation. Knowles’ result [72] tells us that now the boundary-value problem can
be solved with a general anti-plane deformation (not axially symmetric) only for a
subclass of incompressible isotropic elastic materials.

Moreover, in Sections 4.1 and 4.2, we have underlined how it is not always
possible for a compressible material to sustain pure torsion and pure axial shear,
respectively, unless some particular forms of strain energy functions are considered,
because in general they might be accompanied by the radial deformation. In Sec-
tion 4.4, some explanations about the dangers in forcing the compressible material
to have some special behaviours were given.

Of course, these restrictions do not mean that, for a generic material, it is
not possible to deform the solid as prescribed by our boundary conditions, but
rather that, in general, these lead to a deformation field that is more complex for
example than a pure torsion or than an anti-plane shear. Hence, we also expect
secondary deformations: a clear difficult task to understand in solving boundary-
value problem by appealing only to a semi-inverse procedure.

The theory of non-Newtonian fluid dynamics has generated a substantial lit-
erature about secondary flows, see for example Fosdick and Serrin [40]. In 1956,
Ericksen [35] conjectured that purely rectilinear flows would be possible only in
pipes of circular cross sections or cross sections made of straight lines and circles,
secondary flows being necessarily present in pipes of arbitrary cross sections. In

91
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1973, Fosdick and Serrin [40] proved a more precise version of the Ericksen’s conjec-
ture: requiring certain technical assumptions on regularity concerning the material
properties, they showed that unless the material functions characterizing the fluid
satisfied certain special relationships, the cross section ought to be a circle or the
annular region between two concentric circles.

In solid mechanics, Fosdick and Kao [39] were the first to explore the coun-
terpart to Ericksen’s conjecture in fluids within the context of nonlinear elasticity.
Denoting by (i1, i2, i3) an orthonormal basis in rectangular Cartesian coordinates,
they consider a cylindrical domain, whose generators are parallel to the axis i3,
with bounded and connected cross section A having boundary

∂A =
n

⋃

i=0

∂Ai (5.1)

consisting of n + 1 sufficiently smooth non intersecting closed curves, where ∂A0

is the external boundary of A which encloses all other inner boundaries ∂Ai (i =
1, . . . , n). Fosdick and Kao [39] assume the displacement u to be decomposed into
an axial component w = w(X1, X2) and a cross sectional component v = v(X1, X2)
and consider the following boundary condition

w =

{

0 on ∂A0

wi on ∂Ai (i = 1, . . . , n)
(5.2)

and v = 0 on ∂A. First, they show that in general, rectilinear shear (v = 0) of
cylinders is not always possible, unless the cross-section is a circle or the annular
region between two concentric circles. Then, they analyse the problem which in-
cludes not only an axial shear deformation but also the possibility of cross-sectional
distortion. They use the specific driving force (applied shear) a, as small param-
eter and consider the following perturbation problem for uniformly infinitesimal
boundary data,

a = εā, wi = εw̄i (i = 1, 2, . . . , n) (5.3)

w =
n

∑

i=1

wiεi, v =
n

∑

i=1

viεi,

where ε ≪ 1 is a real non-negative number, ā and w̄i (i = 1, 2, . . . , n) are constant
numbers independent of ε which carry, respectively, the dimensions of force per
unit volume and displacement, and wi, vi (i = 1, 2, . . . , n) are functions depending
of the same arguments of w and v, respectively. It follows immediately from the
assumed form for the displacement field that when ε = 0, there is no displacement
and this has to be expected as there is no driving force. Using (5.3), the balance
equations and the constraint of incompressibility, Fosdick and Kao [39] find vi = 0
for i = 1, 2, 3 and show that v4 is necessary different from zero. Thus secondary
deformations appear at only fourth order.

Another possibility of perturbation approach in order to investigate for sec-
ondary deformations is given by departure from circular symmetry. Mollica and
Rajagopal [83] showed that in this last case the secondary deformations appear
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at first order when the driving force is a fixed value placed without restrictions,
the perturbation parameter being the departure from circularity. The deformation
that they consider takes place between two infinite cylinders eccentrically placed
and it can be driven by an axial pressure gradient or by the axial motion of one
of the boundaries. They use the eccentricity ε which is the distance between the
centers of cylinders as the perturbation parameter. In a Cartesian coordinates
system (X,Y, Z), the equations for two cylinders, whose radii are R1 and R2, with
R1 < R2, are

X2 + Y 2 = R2
2, (5.4)

(X − |−−−→O1O2|)2 + Y 2 = R2
1,

where |−−−→O1O2| is the eccentricity and they let

ε =
|−−−→O1O2|

R1

, (5.5)

be a dimensionless small parameter. Let (R, Θ, Z) and (r, θ, z) be cylindrical co-
ordinates in reference and current configuration, respectively. Then they consider
a deformation of the form

r = R + εv(R, Θ) + o(ε),

θ = Θ + εw(R, Θ) + o(ε), (5.6)

z = Z + f(R) + εg(R, Θ) + o(ε).

At order zero (ε = 0), (5.6) is not the undeformed state (here it is therefore
different from previous case (5.3)), but it is an axially symmetric deformation. For
the problem under investigation, they assume that the outer cylinder is fixed while
the inner cylinder translates in the axial direction by a fixed amount fw. Thus,
denoting by C1 and C2 the inner and outer cylinders, respectively, from (5.6), they
set

εv(R, Θ)|C1
= εw(R, Θ)|C1

= 0,

εv(R, Θ)|C2
= εw(R, Θ)|C2

= 0, (5.7)

f(R) + εg(R, Θ)|C1
= fw,

f(R) + εg(R, Θ)|C2
= 0.

After that, they suppose that the incompressible material is described by the fol-
lowing strain energy function

W (I1, I2) =
δ1

2b

{[

1 +
b

n
(I1 − 3)

]n

− 1

}

− δ2

2
{I2 − 3} , (5.8)

where δ1, δ2, b, n are material parameters. When n = 1, the model (5.8) reduces to
the classical Mooney-Rivlin model (2.3), while if δ2 = 0, it reduces to the power-law
model (2.16). As well, they set

δ1 > 0, δ2 < 0, 1 > n >
1

2
, n > 1, b > 0, (5.9)
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Figure 5.1: Shrink fit of an elastic tube, followed by the combination of simple
torsion and helical shear. (The figure does not respect scales among the various
deformations).

such that from the analysis of Fosdick and Kao [39], the material cannot exhibit a
purely axial displacement when subjected to axial shear, and secondary displace-
ments are therefore necessary. Using (5.6), the boundary conditions (5.7), the
balance equations and the constraint of incompressibility, Mollica and Rajagopal
[83] establish that secondary deformations at first order in ε are possible when
the driving force is not small and the annular region deviates slightly from axial
symmetry.

In the next section we consider a complex deformation field in isotropic in-
compressible elasticity, to point out by an explicit example (extracted from our
work [27]) the situations just evoked, and to elaborate on their possible impact on
solid mechanics. The deformation field takes advantage of the radial symmetry;
therefore we find it convenient to visualize it by considering an elastic cylinder.

5.1 An analytic example of secondary deforma-

tions

For a better understanding of the “real” situation we evoke, let us imagine
that a corkscrew has been driven through a cork (the cylinder) in a bottle. The
inside of the bottleneck is the outer rigid cylinder and the idealization of the gallery
carved out by the corkscrew constitutes the inner coaxial rigid cylinder. Our first
deformation is purely radial, originated from the introduction of the cork into the
bottleneck and then completed when the corkscrew penetrates the cork (a so-called
shrink fit problem, which is a source of elastic residual stresses here). We call A,
B the respective inner and outer radii of the cork in the reference configuration
and r1 > A, r2 < B their current counterparts. Then we follow with a simple
torsion combined to a helical shear, in order to model pulling the cork out of the
bottleneck in the presence of a contact force. Figure 5.1 sketches this deformation.

Of course, we are aware of the shortcomings of our modelling with respect to the
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description of a “real” cork-pulling problem, because no cork is an infinitely long
cylinder, nor is a corkscrew perfectly straight. In addition, traditional corks made
from bark are anisotropic (honeycomb-shaped mesoscopic structure) and possess
the remarkable (and little-known) property of having an infinitesimal Poisson ratio
equal to zero, see the review article by Gibson et al. [46]. However we note
that polymer corks have appeared on the world wine market; they are made of
elastomers, for which incompressible, isotropic elasticity seems like a reasonable
framework (indeed the documentation of these synthetic wine stoppers indicates
that they lengthen during the sealing process)1.

5.1.1 Equilibrium equations

Consider a long hollow cylindrical tube composed of an isotropic incompressible
nonlinearly elastic material. At rest, the tube is in the region

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −∞ ≤ Z ≤ ∞, (5.10)

where (R, Θ, Z) are the cylindrical coordinates associated with the undeformed
configuration, and A and B are the inner and outer radii of the tube, respectively.

Consider the general deformation obtained by the combination of radial dilata-
tion, helical shear and torsion as

r = r(R), θ = Θ + g(R) + τZ, z = λZ + w(R), (5.11)

where (r, θ, z) are the cylindrical coordinates in the deformed configuration; τ is
the amount of torsion; and λ is the stretch ratio in the Z-direction. Here, g and
w are yet unknown functions of R only. (The classical case of torsion deformation
(4.1) corresponds to w = g = 0, λ = 1.) Hidden inside (5.11) is the shrink fit
deformation

r = r(R), θ = Θ, z = λZ, (5.12)

which is (5.11) without any torsion or helical shear (τ = g = w ≡ 0). The physical
components of the deformation gradient F and of its inverse F−1 are then





r′ 0 0
rg′ r/R rτ
w′ 0 λ



 and





rλ/R 0 0
rw′τ − rg′λ r′λ −rr′τ
−rw′/R 0 rr′/R



 , (5.13)

respectively. Note that we used the incompressibility constraint in order to com-
pute F−1; it states that det F = 1, so that

r′ =
R

λr
. (5.14)

In our first deformation, the cylindrical tube is pressed into a cylindrical cavity
with inner radius r1 > A and outer radius r2 < B. It follows by integration of the
equation (5.14) that

r(R) =

√

R2

λ
+ α, (5.15)

1We hope that this study provides a first step toward a nonlinear alternative to the linear
elasticity testing protocols presented in the international standard ISO 9727. We also note that
low-cost shock absorbers often consist of a moving metal cylinder, glued to the inner face of an
elastomeric tube, whose outer face is glued to a fixed metal cylinder [56].
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where now

α =
B2r2

1 − A2r2
2

B2 − A2
, λ =

B2 − A2

r2
2 − r2

1

. (5.16)

We compute the physical components of the left Cauchy-Green strain tensor B =
FF T from (5.13) and find its first three principal invariants as

I1 = (r′)2 + (rg′)2 + (r/R)2 + (rτ)2 + λ2 + (w′)2, (5.17)

I2 = (rλ/R)2 + (rw′τ − rg′λ)2 + (rw′/R)2 + (R/r)2 + (1/λ)2 + (Rτ/λ)2,

and of course, I3 = 1. For a general incompressible hyperelastic solid, the Cauchy
stress tensor T is given by (1.40). Having computed B−1 = (F T )−1F−1 from
(5.13), we find that the components of T are

Trr = −p + 2W1(r
′)2 − 2W2

[

(rλ/R)2 + (rw′τ − rg′λ)2 + (rw′/R)2
]

,

Tθθ = −p + 2W1

[

(rg′)2 + (r/R)2 + (rτ)2
]

− 2W2(R/r)2,

Tzz = −p + 2W1[λ
2 + (w′)2] − 2W2

[

(1/λ)2 + (Rτ/λ)2
]

, (5.18)

Trθ = 2W1(rr
′g′) − 2W2(w

′τ − g′λ)R,

Trz = 2W1(r
′w′) − 2W2

[

rRg′τ − rRw′τ 2/λ − rw′/(λR)
]

,

Tθz = 2W1(rw
′g′ + rλτ) + 2W2(r

′Rτ).

Finally the equilibrium equations, in the absence of body forces, are: div T = 0;
for fields depending only on the radial coordinate as shown here, they reduce to

dTrr

dr
+

Trr − Tθθ

r
= 0,

dTrθ

dr
+

2

r
Trθ = 0, (5.19)

dTrz

dr
+

1

r
Trz = 0.

5.1.2 Boundary conditions

Now consider the inner face of the tube: we assume that it is subject to a
vertical pull,

Trz(A) = TA
0 , Trθ(A) = 0, (5.20)

say. Then by integrating the second and third equations of equilibrium (5.19)2,3,
we find that

Trz(r) =
r1

r
TA

0 , Trθ(r) = 0. (5.21)

The outer face of the tube (in contact with the glass in the cork/bottle problem)
remains fixed, so that

w(B) = 0, g(B) = 0, Trr(B) = T0, (5.22)

say. In addition to the axial traction applied on its inner face, the tube is subject
to a resultant axial force N (say) and a resultant moment M (say),

N =

∫ 2π

0

∫ r2

r1

Tzzrdrdθ, M =

∫ 2π

0

∫ r2

r1

Tθzr
2drdθ. (5.23)
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Note that the traction T0 of (5.22) is not arbitrary but is instead determined by
the shrink fit pre-deformation (5.12), by requiring that N = 0 when TA

0 = τ =
g = w ≡ 0 (this process is detailed in the Section 5.1.3 for the neo-Hookean
material). Therefore, T0 is connected with the stress field experienced by the
cork when it is introduced in the bottleneck. In the rest of this explanation we
aim at presenting results in dimensionless form. To this end, we normalize the
strain energy function W and the Cauchy stress tensor T with respect to µ, the
infinitesimal shear modulus; hence we introduce W and T defined by

W =
W

µ
, T =

T

µ
. (5.24)

Similarly we introduce the following non-dimensional variables,

η =
A

B
, R =

R

B
, ri =

ri

B
, w =

w

B
, α =

α

B2
, τ = Bτ, (5.25)

so that η ≤ R ≤ 1. Also, we find from (5.16) that

α =
r2
1 − η2r2

2

1 − η2
, λ =

1 − η2

r2
2 − r2

1

. (5.26)

Turning to our cork or shock absorber problems, we imagine that the inner
metal cylinder is introduced into a pre-existing cylindrical cavity (this precaution
ensures a one-to-one correspondence of the material points between the reference
and the current configurations). In our upcoming numerical simulations, we take
A = B/10 so that η = 0.1; we consider that the outer radius is shrunk by 10%,
r2 = 0.9B, and that the inner radius is doubled, r1 = 2A; finally, we apply a
traction, the magnitude of which is half the infinitesimal shear modulus: |TA

0 | =
µ/2. This gives

α ≃ 3.22 × 10−2, λ ≃ 1.286, T
A

0 = −0.5. (5.27)

At this point it is possible to state clearly our main observation. A first glance
at the boundary conditions, in particular at the requirements that g be zero on the
outer face of the tube, gives the expectation that g ≡ 0 everywhere is a solution
to our boundary-value problem, at least for some simple forms of the constitutive
equations. In what follows, we find that, for the neo-Hookean solids, g ≡ 0 is
indeed a solution, whether there is a torsion τ or not. However if the solid is not
neo-Hookean, then it is necessary that g 6= 0 when τ 6= 0, and the picture becomes
more complex. For this reason, we classify as “purely academic” the question:

Which is the most general strain-energy density for which it is possible
to solve the above boundary value problem with g ≡ 0?

Indeed, there is no “real world” material, the behaviour of which is ever going to
be described exactly by that strain-energy density (supposing it exists). Instead a
more pertinent issue to raise for “real word applications” is whether we are able to
evaluate the importance of latent (secondary) stress fields, because they are bound
to be woken up (triggered) by the deformation.
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5.1.3 neo-Hookean materials

First, we consider the special strain energy function which generates the class
of neo-Hookean materials (2.1). Note that here and hereafter, we use the non-
dimensional quantities introduced previously, from which we drop the overbar for
convenience. Hence, the components of the (non-dimensional) stress field in a
neo-Hookean material reduce to

Trr = −p + (r′)2, Tθθ = −p + (rg′)2 + (r/R)2 + (rτ)2,

Tzz = −p + λ2 + (w′)2, Trθ = rr′g′, (5.28)

Trz = r′w′, Tθz = rg′w′ + rλτ.

Substituting into (5.21) we find that

w′ = λr1T
A
0 /R, g′ = 0, (5.29)

and by integration, using (5.22), that

w = λr1T
A
0 ln R, g = 0. (5.30)

In Figure 5.2a, we present a rectangle in the tube at rest, which is delimited
by 0.1 ≤ R ≤ 1.0 and 0.0 ≤ Z ≤ 1.0. Then it is subject to the deformation
corresponding to the numerical values of (5.27). To generate Figure 5.2b, we
computed the resulting shape for a neo-Hookean tube, using (5.11), (5.15), and
(5.30).

Now that we know the full deformation field, (see (5.11) and (5.30)), we can
compute Trr−Tθθ from (5.28) and deduce Trr by integration of (5.19)1, with initial
condition (5.22)3. Then the other field quantities follow from the rest of (5.28).
Finally, we find in turn that

Trr =
1

2λ

{

ln
λr2

2R
2

R2 + αλ
+ (R2 − 1)

[

α

r2
2 (R2 + αλ)

+ τ 2

]}

+ T0,

Tθθ = Trr +

(

R2

λ
+ α

) (

1

R2
+ τ 2

)

− R2

λ(R2 + αλ)
, (5.31)

Tzz = Trr + λ2

(

1 +
r2
1(T

A
0 )2

R2

)

− R2

λ(R2 + αλ)

(where we used the identity 1 + αλ = λr2
2, see (5.15) with R = 1), and that

Trθ = 0, Trz =
r1

√

R2

λ
+ α

TA
0 , Tθz = λτ

√

R2

λ
+ α. (5.32)

The constant T0 is fixed by the shrink fit pre-deformation (5.12), imposing that
N = 0 when τ = g = w = TA

0 ≡ 0, or

(T0+λ2)(1−η2)+
1

λ

∫ 1

η

[

ln
λr2

2R
2

R2 + αλ
+

α(R2 − 1)

r2
2(R

2 + αλ)
− 2R2

R2 + αλ

]

RdR = 0. (5.33)
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Figure 5.2: (a, b) Pulling on the inside face of a neo-Hookean tube. Here the
vertical axis is the symmetry axis of the tube.
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Using (5.33) and (5.23), (5.31), (5.32), we find the following expressions for the
resultant moment,

M = π(r4
2 − r4

1)λτ/2, (5.34)

and for the axial force,

N = 2πλr2
1| ln η|

(

TA
0

)2 − π

4
(r2

2 − r2
1)

2τ 2. (5.35)

We now have a clear picture of the response of a neo-Hookean solid to the
deformation (5.11), with the boundary conditions of Section 5.1.2. First, we saw
that here the contribution g(R) is not required for the azimuthal displacement,
whether there is a torsion τ or not. Also, if a moment M 6= 0 is applied, then the
tube suffers an amount of torsion τ 6= 0 proportional to M . On the other hand, if
the tube is pulled by the application of an axial force only (N 6= 0) and no moment
(M = 0), then τ = 0 and no azimuthal shear occurs at all.

5.1.4 Generalized neo-Hookean materials

As a first broadening of the neo-Hookean strain-energy density (2.1), we con-
sider generalized neo-Hookean materials (2.12). To gain access to the Cauchy
stress components in this context, it suffices to take W2 = 0 and W1 = W ′, where
the prime stands for the derivatives of W with respect to the first invariant, in
equations (5.18). In particular,

Trθ = 2rr′g′W ′, (5.36)

and the integrated equation of equilibrium (5.21)2 gives g′ = 0. By integrating,
with (5.22)2 as an initial value, we find that

g ≡ 0. (5.37)

Hence, just as in the neo-Hookean case, azimuthal shear can be avoided altogether,
whether there is a torsion τ or not. We are left with an equation for the axial shear,
namely (5.21)1, which can be written as

2W ′(I1)w
′(R) =

λr1

R
TA

0 . (5.38)

Obviously the same steps as those taken for neo-Hookean solids may be followed
here for any given strain energy density (2.12), but now by resorting to a numerical
treatment. Horgan and Saccomandi [62] show, through some specific examples
of hardening generalized neo-Hookean solids, how rapidly involved the analysis
becomes, even when there is only helical shear and no shrink fit. Instead, we
simply point out some striking differences between our present situation and the
neo-Hookean case. We remark that I1 is of the form (5.17)1 at g ≡ 0, i.e.

I1 = λ2 +
R2

λ(R2 + αλ)
+

(

R2

λ
+ α

) (

1

R2
+ τ 2

)

+ [w′(R)]2. (5.39)

It follows that (5.38) is a nonlinear differential equation for w′, in contrast to the
neo-Hookean case. Another contrast is that the axial shear w is now intimately
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coupled to the torsion parameter τ , and that this dependence is a second-order
effect (τ appears above as τ 2).

A similar problem where the azimuthal shear has not been ignored, but the
axial shear has been considered null, i.e. w ≡ 0 has been recently considered by
Wineman [130].

5.1.5 Mooney–Rivlin materials

In this section, we specialize the general equations of section 5.1.1 to the
Mooney–Rivlin form of the strain energy function (2.3), which in its non-
dimensional form reads

W =
I1 − 3 + m(I2 − 3)

2(1 + m)
, (5.40)

so that

2W1 =
1

1 + m
, 2W2 =

m

1 + m
, (5.41)

where m > 0 is a material parameter, distinguishing the Mooney–Rivlin material
from the neo-Hookean material (2.1), and also allowing a dependence on the second
principal strain invariant I2, in contrast to the generalized neo-Hookean solids of
the previous section. Then the integrated equations of equilibrium (5.21) read

(

R + mτ 2r2R + mr2/R
)

w′ − (mτλr2R)g′ = (1 + m)λr1T
A
0 ,

(mτλ)w′ − (1 + mλ2)g′ = 0. (5.42)

First we ask ourselves if it is possible to avoid torsion during the pulling of the
inner face. Taking τ = 0 above gives

(R + mr2/R)w′ = (1 + m)λr1T
A
0 , g′ = 0. (5.43)

It follows that here it is indeed possible to solve our boundary value problem. We
find

w = λr1T
A
0

λ(1 + m)

2(λ + m)
ln

[

mαλ + (λ + m)R2

mαλ + (λ + m)

]

, g = 0. (5.44)

However if τ 6= 0, then it is necessary that g 6= 0, otherwise (5.42)2 gives w′ = 0
while (5.42)1 gives w′ 6= 0, a contradiction. This constitutes the first departure
from the neo-Hookean and generalized neo-Hookean behaviours: torsion (τ 6= 0)
is necessarily accompanied by azimuthal shear (g 6= 0). In the case τ 6= 0, we
introduce the function Λ = Λ(R) defined as

Λ(R) = (R + mr2/R)(1 + mλ2) + mτ 2r2R, (5.45)

(recall that r = r(R) is given explicitly in (5.15)). We then solve the system (5.42)
for w′ and g′ as

w′ = (1 + m)(1 + mλ2)λ
TA

0

Λ(R)
r1, g′ = m(1 + m)λ2 TA

0

Λ(R)
τr1, (5.46)

making clear the link between g and τ . Thus for the Mooney–Rivlin material,
the azimuthal shear g is a latent mode of deformation; it is woken up by any
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amount of torsion τ . Recall that, at first sight, the azimuthal shear component
of the deformation (5.11) seemed inessential to satisfy the boundary conditions,
especially in view of the boundary condition g(1) = 0. However, a non-zero W2

term in the constitutive equation clearly couples the effects of a torsion and an
azimuthal shear, as displayed explicitly by the presence of τ in the expression for
g′ above. It is perfectly possible to integrate equations (5.46) in the general case,
but to save space we do not reproduce the resulting long expressions. With them,
we generated the deformation field picture of Figure 5.3(a,b) and Figure 5.4(a,b).
There we took the numerical values of (5.27) for α, λ, TA

0 ; we took a Mooney–
Rivlin solid with m = 5.0; we imposed a torsion of amount τ = 0.5; and we looked
at the deformation field in the plane Z = 1 (reference configuration) and z = λ
(current configuration).

Although the secondary fields appear to be slight in the picture, they are
nonetheless truly present and cannot be neglected. To show this, we consider
a perturbation method to obtain simpler solutions and to understand the effect of
the coupling, by taking m small. Then integrating (5.46), we find at first order
that

w

r1TA
0

≃ (1 + m)λ ln R − 1

2
m

[

τ 2R2 + 2(1 + τ 2αλ) ln R − αλ/R2 − τ 2 + αλ
]

,

g

r1TA
0

≃ λ2τm ln R. (5.47)

Hence, the secondary field g exists even for a nearly neo-Hookean solid (if m is
small, then g is of order m.) Interestingly, we also note that the azimuthal shear
g in (5.47) varies in a homogeneous and linear manner with respect to the torsion
parameter τ and in a quadratic manner with respect to the axial stretch λ, showing
that the presence of this secondary deformation field cannot be neglected when the
effects of both the prestress and the torsion are taken into account. To complete
the picture, we use the first-order approximations

2W1 ≃ 1 − m, 2W2 ≃ m, (5.48)

to obtain the stress field as

Trr ≃ −p + (1 − m) (r′)2 − m
{

(rλ/R)2 +
[

(rτ)2 + (r/R)2
] (

λr1T
A
0

)2
/R2

}

,

Tθθ ≃ −p + (1 − m)
[

(r/R)2 + (rτ)2
]

− m(R/r)2,

Tzz ≃ −p +
(

λTA
0 r1

)2
[

(

1 + 2mλ2
) 1

R2
− 2

R

(

τ 2r2

R
+

r2

R3
+

λ2

R
− 1

2R

)

m

]

+ (1 − m) λ2 − m
[

(1/λ)2 + (Rτ/λ)2
]

, (5.49)

Trθ ≃ rr′g′ − mλr1T
A
0 τ,

Trz ≃ (1 − m) (r′w′) + mλr1T
A
0

[

rRτ 2/λ + r/(λR)
]

/R,

Tθz ≃ (1 − m) rλτ + λrr1T
A
0 g′/R + m(r′Rτ).
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Figure 5.3: (a, b) Pulling on the inside face of a Mooney–Rivlin tube, with a
clockwise torsion. We have setted m = 5.0, A = B/10, r1 = 2A, r2 = 0.9B, τ =
0.5, |TA

0 | = µ/2.
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Figure 5.4: (a, b) Pulling on the inside face of a Mooney–Rivlin tube, with a
clockwise torsion. We have setted m = 5.0, A = B/2, r1 = 0.6B, r2 = 0.9B, τ =
0.5, |TA

0 | = µ/2.
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5.2 Final remarks

In non-Newtonian fluid mechanics and in turbulence theory, the existence of
shear-induced normal stresses on planes transverse to the direction of shear is at
the root of some important phenomena occurring in the flow of fluid down pipes
of non-circular cross section (see [40]). In other words, pure parallel flows in tubes
without axial symmetry are possible only when we consider the classical theory
of Navier-Stokes equations or the linear theory of turbulence or tubes of circular
cross section.

In nonlinear elasticity theory, similar phenomena are reported. Hence Fosdick
and Kao [39] and Mollica and Rajagopal [83] show that, for general isotropic in-
compressible materials, an anti-plane shear deformation of a cylinder with non
axial-symmetric cross section causes a secondary in-plane deformation field, be-
cause of normal stress differences. In compressible nonlinear elasticity pure torsion
is possible only in a special class of materials, but we know that torsion plus a
radial displacement is possible in all compressible isotropic elastic materials.

Now a further example is given in the literature from our recent work [27], where
axial symmetry holds and the boundary conditions suggest that an axial shear
deformation field is sufficient to solve the boundary value problem, but nevertheless,
the normal stress difference wakes up a latent azimuthal shear deformation.

In conclusion, from these notes, it comes out that it is not really as cru-
cial to determine the class of materials for which a given deformation
field is possible, as it may be crucial to classify all the latent defor-
mations associated with a given deformation field in such a way that
this field is controllable for the entire class of materials. Indeed, no
“real” material, even when we accept that its mechanical behaviour is
purely elastic, is ever going to be described exactly by a special choice of
strain-energy. Looking for special classes of materials for which special
deformations fields are admissible may mislead us in our understanding
of the nonlinear mechanical behaviour of materials.

5.3 A nice conjecture in solid mechanics

In the example discussed for secondary deformation, we have used a strong
analogy with a cork-pulling problem, by modelling a cork as an incompressible
rubber-like material. When we try to apply the previous results to the extraction
of a cork from the neck of a bottle, the following remarks seem to be relevant.
From the elementary theory of Coulomb friction, it is known that the pulled cork
starts to move when, in modulus, the friction force exerted on the neck surface is
equal to the normal force times the coefficient of static friction. In our case this
means that

√

|Trz(1)|2 + |Trθ(1)|2 = fS |Trr(1)| = fS |T0| , (5.50)

where fS is the coefficient of static friction. Using (5.21), we find that the elements
of the left handside of equality (5.50) are

Trz(1) = (r1/r2)T
A
0 , Trθ(1) = 0. (5.51)
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Figure 5.5: There are two main types of corkscrews: one that relies on pulling only
(left) and one that adds a twist to the cork-pulling action (right). The analysis
developed, indicates that the second type is more efficient.

Now, our main concern is to understand if it is better to apply a moment M 6= 0
when uncorking a bottle, than to pull only. First we suppose the cork is described
by a neo-Hookean model (2.1). Then, to address this question, we note that the
left-hand side of inequality (5.50) increases when |TA

0 | increases; on the other hand,
combining (5.34) and (5.35), we have

(TA
0 )2 =

[

N + 1
πλ2(r2

1
+r2

2
)2

M2
]

(2πλr2
1| ln η|) . (5.52)

It is now clear, that for a fixed value of TA
0 , in the case M 6= 0, it is necessary

to apply an axial force, the intensity of which is less than the one in the case

M = 0. Moreover, Equation (5.52) shows that
(

TA
0

)2
grows linearly with N but

quadratically with M2. With respect to efficient cork-pulling, the conclusion is that
adding a twisting moment to a given pure axial force is more advantageous than
solely increasing the vertical pull. Moreover, we observe that a moment is applied
by using a lever and this is always more convenient from an energetic point of view.
Recall that we made several simplifying assumptions to reach these results: not
only infinite axial length, incompressibility, and isotropy, but also the choice of a
truly special strain energy function.

In the end, we evoke a classic wine party dilemma:

Which kind of corkscrew system requires the least effort to uncork a
bottle?

Figure 5.5 sketches the two working principles commonly found in commercial
corkscrews. The most common type (on the left) relies on pulling only (directly or

2Using the stress field (5.49) it is straightforward, but long and cumbersome, to derive the
analogue for a Mooney–Rivlin solid with a small m of relation (5.52) (which was established for
neo-Hookean solids). However, nothing truly new is gained from these complex formulae with
respect to the simple neo-Hookean case, and we do not pursue this aspect any further.
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through levers) and the other type (on the right) relies on a combination of pulling
and twisting. Notwithstanding the shortcomings of this model with respect to an
actual uncorking, we are confident that we have provided a scientific argument to
those wine amateurs who favour the second type of corkscrews over the first.

Notes

In this chapter we have emphasized another important aspect in the use of
the semi-inverse method: the emergence of secondary flows in fluid dynamics and
of latent deformations (secondary fields) in solid mechanics. Navier-Stokes fluids
or isotropic incompressible hyperelastic materials are clearly constructions of the
mind. No real-world fluid is exactly a Navier-Stokes fluid and no real-world elas-
tomer can be precisely characterized from a given elastic strain energy (in fact, the
experimental data associated with the extension of a rubber band can be approx-
imated by several, widely different, strain energy functions). It is fundamental to
keep this observation in mind in order to understand that the results obtained by
a semi-inverse method can be misleading at times. For example, we know that a
Navier-Stokes fluid can move by parallels flows in a cylindrical tube of arbitrary sec-
tion. To derive this result, we use the semi-inverse method by considering that the
velocity possesses a non-zero component only along the generatrix of the cylinder
and that this field is a function of the section variables only; then the Navier-Stokes
equations are reduced to a linear parabolic equation which we solve by taking no-
slip boundary conditions. This picture is specific to Navier-Stokes fluids. In fact, if
the relation between the stress and the stretching is not linear, then a fluid can flow
in a tube by parallel flows if and only if the tube possesses cylindrical symmetry
(see Fosdick and Serrin [40]). If the tube is not cylindrically symmetric, then what
is going on? Clearly any real fluid may flow in a tube, irrespective of whether it is
a Navier-Stokes fluid or not. In reality we observe the birth of secondary flows, i.e.
flows in the section of the cylinder. The true, meaningful problem is to understand
when these secondary flows can be or cannot be neglected; it is not to determine
for which special theory secondary flows disappear.

Here, an analogous phenomenon in non-linear elasticity is derived where the
counterpart to secondary flows is the notion of latent deformations, i.e. deforma-
tions that are woken up from particular boundary conditions. Boundary conditions
allow semi-inverse simple solutions for special materials, but for general materials
they pose very difficult tasks. Many studies (see Chapter 4) sought to character-
ize the special strain energy functions for which particular classes of deformations
turn out to be possible (or, using a standard terminology, turn out to be control-
lable). For example: which elastic compressible isotropic materials support simple
isochoric torsion? In fact, it is of no utility to understand which materials possess
this property, because these materials do not exist. It is far more important to
understand which complex geometrical deformation accompanies the action of a
moment twisting a cylinder. The range of results to be derived possesses meaning-
ful applications, most importantly in biomechanics. In hemo-dynamics, it is often
assumed that the arterial wall deforms according to simple geometric fields, but
this hypothesis does not take into account several fundamental factors. A specific
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example is the effect of torsion on microvenous anastomotic patency and early
thrombolytic phenomenon (see Selvaggi et al. [116]).

While there exists a remarkable literature on secondary flows in fluid dynamics,
most notably by Rivlin, Ericksen, and Green (see for example the classic paper
[109]), very little is known in solid mechanics about latent deformations. The
main references in that area are: Fosdick and Kao [39], Mollica and Rajagopal
[83], Horgan and Saccomandi [63].

Of course, our work [27] is another result to add to the previous ones, enrich-
ing therefore the literature of latent deformations in solid mechanics. The article
[27] has been noticed in Science magazine [31/08/07, 317, no 5842, 1151, DOI:
10.1126/science.317.5842.1151a] where the paper has been qualified

A very nice application of the theory of nonlinear elasticity,

and noticed also by the Daily Telegraph [22/08/07] and La Recherche [11/07].





Chapter 6

Euler buckling for compressible
cylinders

One of the first, and most important, problems to be tackled by the theory
of linear elasticity is that of the buckling of a column under an axial load. Using
Bernoulli’s beam equations, Euler found the critical load of compression Ncr leading
to the buckling of a slender cylindrical column of radius B and length L. As
recalled by Timoshenko and Gere [124], Euler looked at the case of an ideal column
with (built in)-(free) end conditions. What is now called “Euler buckling”, or the
“fundamental case of buckling of a prismatic bar” [124] corresponds to the case of
a bar with hinged-hinged end conditions. The corresponding critical load is given
by

Ncr

π3B2
=

E

4

(

B

L

)2

, (6.1)

where E is the Young modulus. The extension of this formula to the case of
a thick column is a non-trivial, even sophisticated, problem of non-linear three-
dimensional elasticity. In general, progress can be only made by using reductive
(rod, shells, etc.) theories. However, there is another choice of boundary condi-
tions for which the criterion (6.1) is valid: namely, the case where both ends are
“guided” or ”sliding” (the difference between the two cases lies in the shape of the
deflected bar, which is according to the half-period of a sine in one case and of a
cosine in the other case). In exact non-linear elasticity, there exists a remarkable
three-dimensional analytical solution to this problem (due to Wilkes [129]) which
describes a small-amplitude (incremental) deflection superimposed upon the large
homogeneous deformation of a cylinder compressed between two lubricated platens.
In this case, the Euler formula can be extended to the case of a column with finite
dimensions, for arbitrary constitutive law.

The exact incremental solution allows for an explicit derivation of Euler’s for-
mula at the onset of non-linearity, which combines third-order elastic constants
with a term in (B/L)4. Goriely et al. [47], showed that for an incompressible
cylinder,

Nc

π3B2
=

E

4

(

B

L

)2

− π2

96

(

20

3
E + 9A

) (

B

L

)4

, (6.2)

where A is Landau’s third-order elasticity constant. This formula clearly shows
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that geometrical non-linearities (term in (B/L)4) are intrinsically coupled to phys-
ical non-linearities (term in A) for this problem. (For the connection between
Euler’s theory of buckling and incremental incompressible nonlinear elasticity, see
the early works of Wilkes [129], Biot [13], Fosdick and Shield [41], and the references
collected in [47].)

Now, in third-order incompressible elasticity, there are two elastic constants:
the shear modulus µ (= E/3) and A (see (2.45)). In third-order compressible elas-
ticity, there are five elastic constants: λ and µ, the (second-order) Lamé constants
(or equivalently, E and ν, Young’s modulus and Poisson’s ratio), and A, B, and C,
the (third-order) Landau constants (see (2.43)). Euler’s formula at order (B/L)2,
equation (6.1), involves only one elastic constant, E. It is thus natural to ask
whether Poisson’s ratio, ν, plays a role in the non-linear correction to Euler for-
mula of (B/L)4, the next-order term. The final answer is found in our recent work
[26] as formula (6.32) below, which shows that the non-linear correction involves
all five elastic constants.

6.1 Finite compression and buckling

In this section, we recall the equations governing the homogeneous compression
of a cylinder in the theory of exact (finite) elasticity and we also use the form of
some incremental solutions that is, of some small-amplitude static deformations
which may be superimposed upon the large compression and which indicate the
onset of instability for the cylinder.

The mathematical method used to determine the solutions for incremental so-
lution is another example for the semi-inverse method. In fact our ansatz for the
components of the mechanical displacement will be in looking for incremental static
solutions that are periodic along the circumferential and axial directions, and have
yet unknown radial variations (see formula (6.10)).

6.1.1 Large deformation

We take a cylinder made of a hyperelastic, compressible, isotropic solid with
strain energy function W = Ŵ (λ1, λ2, λ3) say, with radius B and length L in its
undeformed configuration. We denote by (R, Θ, Z) the coordinates of a particle in
the cylinder at rest, in a cylindrical system.

Then we consider that the cylinder is subject to the following deformation,

r = λ1R, θ = Θ, z = λ3Z, (6.3)

where (r, θ, z) are the current coordinates of the particle initially at (R, Θ, Z), λ1 is
the radial stretch ratio and λ3 is the axial stretch ratio. Explicitly, λ1 = b/B and
λ3 = l/L, where b and l are the radius and length of the deformed cylinder, respec-
tively. The physical components of F , the corresponding deformation gradient,
are:

F = Diag (λ1, λ1, λ3) , (6.4)

showing that the deformation is equi-biaxial and homogeneous (and thus, univer-
sal).



Chapter 6. Euler buckling for compressible cylinders 111

The (constant) Cauchy stresses required to maintain the large homogeneous
compression are given by formula (1.42),

Ti = J−1λiWi, i = 1, 2, 3 (no sum), (6.5)

where Wi ≡ ∂W/∂λi. In our case, T1 = T2 because the deformation is equi-biaxial,
and T1 = T2 = 0 because the outer face of the cylinder is free of traction. Hence

T1 = T2 = λ−1
1 λ−1

3 W1 = 0, T3 = λ−2
1 W3. (6.6)

Note that we may use the first equality to express one principal stretch in terms
of the other (provided, of course, that inverses can be performed).

6.1.2 Incremental equations

Now we recall the equations governing the equilibrium of incremental solutions,
in the neighborhood of the finite compression. They read in general as (1.80)

div ΣT = 0, (6.7)

where Σ is the incremental nominal stress tensor. It is related to u, the incremental
mechanical displacement, through the incremental constitutive law (1.81), that in
component form can be written as

Σji = A0jilkuk,l, (6.8)

where the comma denotes partial differentiation with respect to the current coordi-
nates and A0 is the fourth-order tensor of incremental elastic moduli. Its non-zero
components, in a coordinate system aligned with the principal axes of strain, are
given by (1.84). Note that here, some of these components are not independent
one from another because λ1 = λ2 and T1 = T2 = 0. In particular, we find that

A01212 = A02121 = A01221, A02323 = A01313 = A01331 = A02332,

A02222 = A01111, A02233 = A01133, A03232 = A03131, (6.9)

A01122 = A01111 − 2A01212.

6.1.3 Incremental solutions

We look for incremental static solutions that are periodic along the circum-
ferential and axial directions, and have yet unknown radial variations. Thus our
ansatz for the components of the mechanical displacement is the same as Wilkes’s
[129]:

ur = Ur(r) cos nθ cos kz,

uθ = Uθ(r) sin nθ cos kz, (6.10)

uz = Uz(r) cos nθ sin kz,

where n = 0, 1, 2, . . . is the circumferential mode number ; k is the axial wavenum-
ber ; the subscripts (r, θ, z) refer to components within the cylindrical coordinates
(r, θ, z); and all upper-case functions are functions of r alone.
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Dorfmann and Haughton [31] show that the following displacements U (1), U (2),
and U (3) are solutions to the incremental equations (6.7),

U (1)(r), U (2)(r) =

[

I ′

n(qkr),− n

qkr
In(qkr),−(A01111q

2 −A03131)

q(A01313 + A01133)
In(qkr)

]T

,

(6.11)
and

U (3)(r) =

[

1

r
In(q3kr),−q3k

n
I ′

n(q3kr), 0

]T

, (6.12)

where q = q1, q2 in turn and In is the modified Bessel function of order n. Here q1,
q2, and q3 are the square roots of the roots q2

1, q2
2 of the following quadratic in q2:

A01313A01111q
4 + [(A01133 + A01313)

2 −A01313A03131

−A03333A01111]q
2 + A03333A03131 = 0, (6.13)

and of the root of the following linear equation in q2

A01212q
2 −A03131 = 0, (6.14)

respectively.
From (6.8) we find that the incremental traction on planes normal to the axial

direction has components of the same form as that of the displacements, namely

Σrr = Srr(r) cos nθ cos kz,

Σrθ = Srθ(r) sin nθ cos kz, (6.15)

Σrz = Srz(r) cos nθ sin kz,

say, where again the functions Srr, Srθ, Srz are functions of r alone. Then we find
that the traction solutions corresponding to the solutions (6.11) and (6.12) are
given by

rS(1)(r), rS(2)(r) =

[

2A01212I
′

n(qkr)

−
(

2A01212
n2

qkr
+ qkrA01111 −

krA01133 (A01111q
2 −A03131)

q (A01313 + A01133)

)

In(qkr),

2nA01212

(

In(qkr)

qkr
− I ′

n(qkr)

)

,−krA01313

(A01111q
2 −A03131

A01313 + A01133

+ 1

)

I ′

n(qkr)

]T

,

(6.16)

and

rS(3)(r) =

[

2A01212

(

In(q3kr)

r
− q3kI ′

n(q3kr)

)

,

A01212

(

2q3k

n
I ′

n(q3kr) −
(

2n

r
+

q2
3k

2r

n

)

In(q3kr)

)

,−kA01313In(q3kr)

]T

. (6.17)
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The general solution to the incremental equations of equilibrium is thus of the
form

rS(r) =
[

rS(1)(r)
∣

∣

∣rS(2)(r)
∣

∣

∣rS(3)(r)
]

c, (6.18)

where S ≡ [Srr, Srθ, Srz]
T , and c is a constant three-component vector. Note that

we use the quantity rS for the traction (instead of S), because it is the Hamiltonian
conjugate to the displacement in cylindrical coordinates [117].

Now when the cylinder is compressed (by platens say), its end faces should stay
in full contact with the platens so that the first incremental boundary condition is

uz = 0, on z = 0, l, (6.19)

which leads to [31, 47]

k = mπ/l, (6.20)

for some integer m, the axial mode number. From (6.15), we now see that on the
thrust faces, we have

Σrz = 0, on z = 0, l, (6.21)

which means that the end faces of the column are in sliding contact with the
thrusting platens. In other words, in the limit of a slender column, we recover the
Euler strut with sliding-sliding, or guided-guided end conditions. In Figure 6.1,
we show the first two axi-symmetric and two asymmetric modes of incremental
buckling.

The other boundary condition is that the cylindrical face is free of incremental
traction: S(b) = 0. This gives

∆ ≡ det
[

bS(1)(b)
∣

∣

∣bS(2)(b)
∣

∣

∣bS(3)(b)
]

= 0. (6.22)

6.2 Euler buckling

6.2.1 Asymptotic expansions

We now specialize the analysis to the asymmetric buckling mode n = 1, m = 1,
corresponding to the Euler buckling with guided-guided end conditions, in the
limit where the axial compressive stretch λ3 is close to 1 (the other modes are
not reached for slender enough cylinders). To this end, we only need to consider
the third-order elasticity expansion of the strain energy density (2.43). (Note that
there are other, equivalent, expansions based on other invariants, such as the ones
proposed by Murnaghan [86], Toupin and Bernstein [125], Bland [17], or Eringen
and Suhubi [37], see Norris [91] for the connections.)

To measure how close λ3 is to 1, we introduce ǫ, a small parameter proportional
to the slenderness of the deformed cylinder,

ǫ = kb = πb/l. (6.23)
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n=0

m=1

n=0

m=2

n=1

m=1

n=1
m=2

Figure 6.1: First two axi-symmetric and two asymmetric modes of buckling for a
compressed strut with guided-guided end conditions: n is the circumferential mode
number and m the axial mode number. For slender enough cylinders, the n = 1,
m = 1 mode is the first mode of buckling.

Then we expand the radial stretch λ1 and the critical buckling stretch λ3 in terms
of ǫ up to order M ,

λ1 = λ1(ǫ) = 1 +
M

∑

p=1

αpǫ
p + O(ǫM+1), λ3 = λ3(ǫ) = 1 +

M
∑

p=1

βpǫ
p + O(ǫM+1),

(6.24)
say, where the α’s and β’s are to be determined shortly. Similarly, we expand ∆
in powers of ǫ,

∆ =

Md
∑

p=1

dpǫ
p + O(ǫMd+1),

and solve each order dp = 0 for the coefficients αp and βp, making use of the
condition T1 = 0. We find that αp and βp vanish identically for all odd values of
p, and that λ1 and λ3, up to the fourth-order in ǫ, are given by

λ1 = 1 + α2ǫ
2 + α4ǫ

4 + O(ǫ6), λ3 = 1 + β2ǫ
2 + β4ǫ

4 + O(ǫ6), (6.25)
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with α2 and α4 given by

α2 =
ν

4
, (6.26)

and

α4 = −ν(1 + ν)

32
−

(1 + ν)(1 − 2ν)

16E

[

ν2A + (1 − 2ν + 6ν2)B + (1 − 2ν)2C
]

− νβ4, (6.27)

wherein

β2 = −1

4
, (6.28)

and

β4 =
29 + 39ν + 8ν2

96(1 + ν)
+

1

16E

[

(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3C
]

.

Note that we switched from Lamé constants to Poisson’s ratio and Young’s modulus
for these expressions, using the connections (1.53).

6.2.2 Onset of nonlinear Euler buckling

The analytical results presented above are formulated in terms of the current
geometrical parameter ǫ, defined in (6.23). In order to relate these results to the
classical form of Euler buckling, we introduce the initial geometric slenderness
B/L. Recalling that ǫ = πb/l, λ3 = l/L, and b = λ1B, we find that

ǫλ3 = πλ1(B/L). (6.29)

We expand ǫ in powers of B/L, and solve (6.29) to obtain

ǫ = π(B/L) + (α2 − β2)π
3(B/L)3 + O

(

(B/L)4
)

= π(B/L) + (1 + ν)(π3/4)(B/L)3 + O
(

(B/L)4
)

. (6.30)

Second, we wish to relate the axial compression to the current axial load N .
To do so, we integrate the axial stress over the faces of the cylinder,

N = −2π

∫ b

0

rT3dr = −πb2T3 = −πλ2
1B

2T3, (6.31)

because T3 is constant, given by (6.6)2.
Finally, in order to write the nonlinear buckling formula, we expand λ1 and

λ3 in (6.31), using (6.25), and then expand ǫ in powers of the slenderness (B/L),
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using (6.30). It gives the desired expression for the first non-linear correction to
Euler formula,

Nc

π3B2
=

E

4

(

B

L

)2

− π2

96
δ NL

(

B

L

)4

, (6.32)

where

δ NL = 2
13 + 12ν − 2ν2

(1 + ν)
E+

12
[

(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3C
]

. (6.33)

We now check this equation against its incompressible counterpart (6.2). The-
oretical considerations and experimental measurements [22, 29, 94, 131], show that
in the incompressible limit, E and A remain finite,

ν → 1/2, (1 − 2ν)B → −E/3, (1 − 2ν)3C → 0. (6.34)

It is then a simple exercise to verify that (6.32) is indeed consistent with (6.2) in
those limits.

6.2.3 Examples

Table 6.1: Lamé constants and Landau third-order elastic moduli for five solids (109 N·
m−2)

material λ µ A B C
Polystyrene 1.71 0.95 −10 −8.3 −10.6
Steel Hecla 37 111 82.1 −358 −282 −177
Aluminium 2S 57 27.6 −228 −197 −102
Pyrex glass 13.5 27.5 420 −118 132
SiO2 melted 15.9 31.3 −44 93 36

To evaluate the importance of the non-linear correction, we computed the crit-
ical axial stretch ratio of column buckling for two solids. In Table 6.1, we list the
second- and third-order elastic constants of five compressible solids, as collected
by Porubov [101] (in the Table we converted the “Murnaghan constants” given by
Porubov to Landau constants A,B, C). Figure 6.2 shows the variations of λ3 with
the squared slenderness (B/L)2, for pyrex and silica (two last lines of Table 1).

Notes

The present analysis can be considered an extension of the article [47] from
incompressible solids to compressible solids. It provides an asymptotic formula
for the critical value of the load for the Euler buckling problem, with guided-
guided (sliding-sliding) end conditions. This formula was checked both in the
incompressible limit and on particular cases against the exact value of the buckling
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Euler
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Figure 6.2: Comparison of the different Euler formulas obtained by expanding the
exact solution to order 2 (classical Euler buckling formula, plot labeled “Euler2”)
and to order 4 (plot labeled “Euler4”), for pyrex (a) and for silica (b).

obtained from the exact solutions. Not surprisingly it reinforces the universal and
generic nature of the Euler buckling formula, as the correction is small for most
systems even when nonlinear elastic effects and nonlinear geometric effects are
taken into account. It would be of great interest to see if these effects could be
observed experimentally.

We note that Goriely et al. [47] write the equations for the linearized problem
of instability using the Stroh formalism [122]. They adapt the work of Shuvalov
[117] on waves in anisotropic cylinders to develop a Stroh-like formulation of the
problem. From a computational perspective, the Stroh formalism is particularly
well suited and well behaved (Biryukov [14]; Fu [42]) and if numerical integration
was required it would provide an ideal representation of the governing equation.

Here we could have also presented the linearized problem of instability for the
compressible cylinder within the Stroh formalism. We have omitted this formalism
because it was not essential for our discussion.
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Articles in the press relating our work [27]

Our article [27] has been noticed by the international press and web sites.
On August 21, 2007 the Proceedings of the Royal Society of London A published

our article [27] online and the following day it was just noticed by The Daily
Telegraph [August 22, 2007]. A few days later [August 31, 2007] Science magazine
[Vol. 317, no 5842, 1151, DOI: 10.1126/science.317.5842.1151a] reported its results
too. Our research has also been noticed in La recherche magazine [November, 2007,
no. 413].

Some websites which liked our results are: UK Wine Show [August 25, 2007,
http://www.thirtyfifty.co.uk], The Math Gateway of the Mathematical Association
of America [October 9, 2007, http://mathdl.maa.org/mathDL] and the website
Cyberpresse.ca [October 31, 2007, http://www.cyberpresse.ca].

Professor Sir Michael Berry, Editor of the Proceedings of the Royal Society A,
later included our article in a list of “outliers”, [Editorial Proceedings of The Royal
Society A, January 8, 2010 466:1-2; published online before print November 11,
2009, doi:10.1098/rspa.2009.0535].

In the following pages, reproduce these press clippings.
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Health Research Funding:

No Relief in Sight
Some policy wonks have suggested that foun-
dations and other private sources will compen-
sate for the flat National Institutes of Health
(NIH) budget (Science, 11 May, p. 817). That’s
wishful thinking, says Research!America, a
nonprofit group in Alexandria, Virginia, that
tracks U.S. health research funding. Its latest
analysis (below) shows that nonindustry private
funding represented 2% of the $116 billion
spent on U.S. health research in 2006 and 
has been “completely flat” since 2001, says
Research!America policy analyst Stacie Propst.

Spending by industry has risen slightly since
NIH’s budget stalled at about $29 billion after
2004, but Propst predicts a dip because indus-
try research funding typically follows federal
patterns with a lag of a few years. The propor-
tion of each U.S. health care dollar that now
goes to research is 5.5 cents and falling, Propst
adds; meanwhile, countries such as the United
Kingdom and Singapore, although still behind
the United States, are expanding their invest-
ments. “The trends are not good,” says
Research!America President Mary Woolley.

Filet of Zebrafish
Long a favorite of develop-

mental biologists, the
zebrafish is now catching on
with researchers studying

cancer, drug addiction, and
numerous other conditions. 

A new anatomical atlas for this scientific school
is FishNet from the Victor Chang Cardiac
Research Institute in Sydney, Australia.

The reference, which features 36,000 images
captured using optical projection tomography,
is the first to detail the fish’s structure from
embryo to adult. For each stage, visitors can call

counterintuitive ways. For example, they show
that a cork can twist internally even if it is
pulled straight up. Such “secondary deforma-
tions” should not be overlooked, Destrade says.
As a sidelight, the team also showed that pulling

and twisting extracts the cork with less
force than pulling alone.

That result won’t sur-
prise enophiles, says

Rajendra Kanodia,
proprietor of the Web

site Corkscrew.com. 
He notes that the first patented corkscrew,
invented in 1795 by Englishman Samuel
Henshall, included a disk just above the

screw, or “worm,” that butts up against 
the cork, allowing the user to twist and pull it
simultaneously. Cornelius Horgan, an applied
mechanician at the University of Virginia,
Charlottesville, calls the analysis “a very nice
application of the theory of nonlinear elastic-
ity,” which is currently undergoing a renaissance
with its applications to biological materials.

www.sciencemag.org SCIENCE VOL 317 31 AUGUST 2007 1151

RANDOMSAMPLES
E D I T E D  B Y R O B E R T C O O N T Z

up lengthwise or cross-sectional slices, many of
which include labels that pinpoint nascent
organs and other features. Additional image
sets highlight the developing nervous system
and the skeleton. >>
www.FishNet.org.au

Crisp, With a

Hint of Calculus
It’s official: A cork will come out of a wine
bottle more easily if you twist it as you
pull. That’s what physicist Michel
Destrade of the French national
research agency, CNRS, in Paris and
engineer Giuseppe Saccomandi and
mathematician Riccardo De Pascalis
of the University of Lecce in Italy
reported last week online in the
Proceedings of the Royal Society A.

The team analyzed the problem to
underscore that solids can deform in

0

10

20

30

40

50

60

70

2001 2002 2004* 2005 2006

Industry * No report compiled

  for 2003.

M
il
li
o
n
s 

o
f 

d
o
ll
a
rs

Federal gov.

Universities

State and local gov.

Other private

80

Researchers working in central China have photographed one of the world’s most

poorly studied mammals, the Chinese mountain cat. First described by scientists in

1892, the cat (Felis bieti) is known only from a few skins in museums and six live

animals in Chinese zoos, says Jim Sanderson, a mammalogist and founder of the

Small Cat Conservation Alliance. In May 2003, Sanderson and colleagues Yin

Yufeng and Drubgyal (his single Tibetan name) set out to find it in the wild. The

effort paid off this summer, when their camera traps on the Tibetan Plateau in

northwestern Sichuan Province caught eight photos of the cats hunting at night.

Sanderson hopes the images will encourage conservation of the cat.
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M a t h I n T h e N e w s
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Editorial

In my last editorial, I explained that in order to cope with the large number of
papers that were being submitted to Proc. R. Soc. A, every paper we received
would be pre-assessed by a member of the Editorial Board, and referees for
papers that passed this hurdle were asked to apply stringent quality standards.
These procedures, initiated by my predecessor Trevor Stuart, have now proved
successful in several ways. Referees no longer waste time reporting on papers
that have no chance of being accepted—sometimes because they are poor, but
more often because although they contain good science their content is deemed
suitable for a more specialist journal. Publication has been greatly accelerated:
the current receipt to acceptance time is 90 days. Moreover, the rejection rate
has been brought down from an unrealistic height of more than 80 per cent to a
more reasonable 72 per cent (getting the right rate is delicate: with 100 per cent,
nobody would submit papers; with 0 per cent, we would be publishing trash).
These improvements would not have occurred without the efforts of Joanna

Harries and Louise Gardner in the journal office, the Society’s publications
production staff and, of course, indispensable advice from the Editorial Board.
Proc. R. Soc. A aims to publish papers across the whole of the physical sciences.

I am interpreting this very widely. Recently, we have published serious scientific
studies of a painting by Monet (interpreting the position of the sun to determine
where and when it was painted; Baker & Thornes 2006), Viking navigation (to
determine whether they could have used the polarization of skylight; Hedegus
et al. 2007), erasing toner on office paper (to enable it to be re-used; Counsell &
Allwood 2009), stability of the Millennium bridge (MacDonald 2009), dynamics of
golf swings (Sharp 2009), efficiency of gaits (Srinivasan & Ruina 2007), stresses (in
the cork) during the opening of wine bottles (De Pascalis et al. 2007), etc. These
outliers supplement our core papers, reporting substantial, occasionally seminal,
advances in quantum physics, engineering, information science, materials science,
pure and applied mathematics, and chemistry (for which we are at last starting
to attract papers in numbers commensurate with the scientific importance of
that subject).
A curse of researchers, publishers and editors is the fashionable emphasis on

bibliometric indicators. Chief among these evils is the impact factor. Ours is
increasing but still rather low (currently 1.7). But the impact factor is a measure
only of short-term success (citations over the preceding 2 years); for Proc. R.
Soc. A, a better indicator is the citation half-life. Ours is off-scale: greater than
ten years, reflecting our aim of publishing slow-burning, long-lasting, papers.
In this anniversary year, celebrating 350 years since the foundation of the

Royal Society, we plan to publish a series of invited articles, contributed by
world-leading authorities across the range of subjects that we cover. The first

This journal is © 2009 The Royal Society1
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of these, ‘Nanostructured Bainite’, by H.K.D.H. Bhadeshia (Bhadeshia 2010),
appears in this issue. These articles will reinforce our position as one of the best,
as well as the oldest, journals of physical science.

Michael Berry
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To generate Pictures 2.1-2.2, we used for the stretch λ and the Biot stress
f = t/λ (with t the principal stress) the following data

λ 1 1.02 1.12 1.24 1.39 1.58 1.9 2.18 2.42
f 0 0.26 1.37 2.3 3.23 4.16 5.1 6 6.9

λ 3.02 3.57 4.03 4.76 5.36 5.75 6.15 6.4
f 8.8 10.7 12.5 16.2 19.9 23.6 27.4 31

λ 6.6 6.85 7.05 7.15 7.25 7.4 7.5 7.6
f 34.8 38.5 42.1 45.8 49.6 53.3 57 64.4

To generate Pictures 2.3-2.4, we used for the stretch λ and for the Biot stress
divided for λ, f/λ, the following data

λ 1 1.027 1.065 1.115 1.14 1.20 1.31 1.42 1.68
f/λ 0 0.92 1.50 2.17 2.30 2.77 3.38 3.65 3.93

λ 1.94 2.49 3.03 3.43 3.75 4.07 4.26 4.45
f/λ 4.01 3.93 4.17 4.28 4.64 4.94 5.27 5.54

I thank Professor Ogden for having given me the above data.
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[51] Hadamard, J., Leçons sur la Propagation des Ondes et les Équations de
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