ON A TYPE OF CONTACT MANIFOLD

U.C. DE and J.C. GHOSH (Dedicated to the memory of Professor K. Yano)

1. THE OBJECT OF THE PAPER

Contact Riemannian manifolds satisfying $R(X, \xi)$. R = 0 where ξ belongs to the K-nullity distribution or a condition similar to it have been studied by various authors ([3], [4], [6]).

In the present paper we consider contact manifolds with characteristic vector field ξ belonging to the K-nullity distribution satisfying the condition

$$R(\xi, X).P = 0$$

where P is the Weyl projective curvature tensor and $R(\xi, X)$ is considered as a derivation of the tensor algebra at each point of the tangent space.

It is proved that either the contact manifold M^{2m+1} is locally isometric to the product manifold $E^{m+1}XS^m$ (4) or M^{2m+1} is an Einstein manifold. In the last section of this paper the contact metric manifolds satisfying div P=0 where 'div' denotes divergence are studied.

2. PRELIMIANRIES

A contact manifold is a $C^{\infty}(2m+1)$ manifold M^{2m+1} equipped with a global l-form η such that $\eta \wedge (d\eta)^m \neq 0$ everywhere on M^{2m+1} . η induces a unique vector field ξ on M^{2m+1} satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$ for every vector field X on M^{2m+1} . A Riemannian metric g is said to be associated with a contact manifold if there exists a tensor field φ of type (1,1) such that $d\eta(X,Y) = g(X,\varphi Y), \eta(X) = g(X,\xi)$ and $\varphi^2 = -I + \eta \otimes \xi$ and the manifold M^{2m+1} with a contact metric structure (φ,ξ,η,g) is usually called a contact metric manifold [1]. Also a tensor field φ is defined by φ is usually called a contact metric manifold φ satisfies φ is defined by φ is an eigenvalue of φ where φ denotes Lie differentiation and φ is an eigenvalue with eigenvector φ . Also we have φ and φ is also an eigenvalue with eigenvector φ . Also we have φ and φ is also an denotes the Riemannian connection of φ , the following relations hold

$$\nabla_X \xi = -\phi X - \phi h X \tag{2.1}$$

$$\nabla_{\xi} \Phi = 0 \tag{2.2}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y). \tag{2.3}$$

The vector field ξ is a killing vector with respect to g if and only if h = 0. A contact metric manifold $M^{2m+1}(\phi, \eta, \xi, g)$ for which ξ is a killing vector is said to be a K-contact manifold.

If the almost complex structure J on $M^{2m+1}XR$ defined by $J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$, where f is a real-valued function, is integrable, then the structure is said to be normal and $M^{2m+1}(\phi, \eta, \xi, g)$ is said to be Sasakian. If R denotes the curvature tensor of the manifold, a Sasakian manifold may be characterized by $R(X, Y)\xi = \eta(Y)X - \eta(X)Y$.

It is known that a Sasakian manifold is a K-contact manifold but the converse is not necessarily true unless dim $M^{2m+1} = 3$.

The K-nullity distribution [7] of a Riemannian manifold (M,g) for a real number K is a distribution

$$N(K): p \to N_p(K) = \{Z: T_pM / R(X, Y)Z = K[g(Z, Y)X - g(X, Z)Y]\}$$

for any $X, Y \in T_pM$.

Next, suppose that $M^{2m+1}(\phi, \eta, \xi, g)$ is a contact metric manifold with ξ belonging to the K-nullity distribution i.e.

$$R(X,Y)\xi = K[\eta(Y)X - \eta(X)Y]. \tag{2.4}$$

From (2.4) we have

$$S(X,\xi) = 2mK\eta(X) \tag{2.5}$$

where

$$S(X,Y) = \sum_{i=1}^{(2m+1)} g(R(e_i,X)Y,e_i), \qquad (2.6)$$

is the Ricci tensor and $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold.

Also from (2.4), since

$$g(R(X,Y)\xi,Z)=g(R(\xi,Z)X,Y),$$

we have

$$R(\xi, Z)X = K[g(X, Z)\xi - \eta(X)Z]. \tag{2.7}$$

3. CONTACT MANIFOLD SATISFYING $R(\xi, X)$. P = 0

The first author and N. Guha in their paper [5] considered a Sasakian manifold M^{2m+1} satisfying R(X,Y). P=0. In this paper the weaker hypothesis $R(\xi,Y)$. P=0 instead of R(X,Y). P=0 is considered.

Let us suppose that

$$R(\xi, X). P = 0 \tag{3.1}$$

where

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{2m}[S(Y,Z)X - S(X,Z)Y]. \tag{3.2}$$

From (3.2) it follows that

$$P(X,Y)Z = -P(Y,X)Z \tag{3.3}$$

$$g(P(X, Y)\xi, \xi) = 0$$
, by (2.5) (3.4)

$$\sum_{i} g(P(e_i, V)W, e_i) = 0, \text{ where } \{e_i\} \text{ is defined in } (2.6)$$
 (3.5)

$$g(P(\xi, Y)Z, \xi) = Kg(Y, Z) - \frac{1}{2m}S(Y, Z)$$
, by (3.2) and (2.7). (3.6)

Also, we know that

$$(R(\xi, Y). P)(U, V)W = R(\xi, Y)P(U, V)W - P(R(\xi, Y)U, V)W -$$

$$-P(U, R(\xi, Y)V)W - P(U, V)R(\xi, Y)W.$$
(3.7)

In virtue of (3.1) we get from (3.7) that

$$g(R(\xi, Y)P(U, V)W, \xi) - g(P(R(\xi, Y)U, V)W, \xi) - g(P(U, R(\xi, Y)V)W, \xi) -$$

$$-g(P(U, V)R(\xi, Y)W, \xi) = 0.$$
(3.8)

Now putting $Y = U = e_i$ in (3.8), $\{e_i\}$, i = 1, 2, ..., 2m + 1 being an orthonormal basis of the tangent space at any point of the manifold, in the relation (3.8) we get

$$\sum_{i} \{ g(R(\xi, e_i)P(e_i, V)W, \xi) - g(P(R(\xi, e_i)e_i, V)W, \xi) - g(P(e_i, R(\xi, e_i)V)W, \xi) - g(P(e_i, V)R(\xi, e_i)W, \xi) \} = 0$$
(3.9)

But

$$\sum_{i} g(R(\xi, e_{i})P(e_{i}, V)W, \xi)$$

$$= \sum_{i} g[K\{g(P(e_{i}, V)W, e_{i})\xi - \eta(P(e_{i}, V)W)e_{i}\}, \xi], \text{ by } (2.7)$$

$$= \sum_{i} [Kg(P(e_{i}, V)W, e_{i})g(\xi, \xi) - Kg(P(e_{i}, V)W, \xi)g(e_{i}, \xi)]$$

$$= \sum_{i} -Kg(P(e_{i}, V)W, \xi)g(e_{i}, \xi), \text{ by } (3.5)$$

$$= -Kg(P(\xi, V)W, \xi)$$

$$\sum_{i} g(P(R(\xi, e_{i})e_{i}, V)W, \xi)$$

$$= \sum_{i} g[P\{K(g(e_{i}, e_{i})\xi - \eta(e_{i})e_{i}), V\}W, \xi], \text{ by } (2.7)$$

$$= (2m+1)Kg(P(\xi, V)W, \xi) - \sum_{i} K[g(e_{i}, \xi)g(P(e_{i}, V)W, \xi)]$$

$$= (2m+1)Kg(P(\xi, V)W, \xi) - Kg(P(\xi, V)W, \xi)$$

$$= 2mKg(P(\xi, V)W, \xi)$$

$$\sum_{i} g(P(e_{i}, R(\xi, e_{i})V)W, \xi)$$
(3.12)

$$= \sum_{i} g[P(e_{i}, K\{g(V, e_{i})\xi - \eta(V)e_{i}\})W, \xi], \text{ by } (2.7)$$

$$= \sum_{i} [Kg(g(V, e_{i})P(e_{i}, \xi) - Kg(g(V, \xi)P(e_{i}, e_{i})W, \xi)]$$

$$= -Kg(P(\xi, V)W, \xi)]$$

$$\sum_{i} g(P(e_{i}, V)R(\xi, e_{i})W, \xi)$$

$$= \sum_{i} g[P(e_{i}, V)\{K(g(W, e_{i})\xi - \eta(W)e_{i})\}, \xi], \text{ by } (2.7)$$

$$= \sum_{i} Kg[(P(e_{i}, V)\xi, \xi)g(W, e_{i})] - \sum_{i} Kg(P(e_{i}, V)e_{i}, \xi)\eta(W)$$

$$= (2m + 1)K^{2}\eta(V)\eta(W) - \frac{Kr}{2m}\eta(V)\eta(W), \text{ by } (3.4) \text{ and } (3.2)$$

where r denotes the scalar curvature.

From (3.9), using (3.10), (3.11), (3.12) and (3.13), we get

$$-2mKg(P(\xi,V)W,\xi) - (2m+1)K^2\eta(W)\eta(V) + \frac{rK}{2m}\eta(W)\eta(V) = 0$$

and using (3.6) we have

$$K[\eta(W)\eta(V)\{-(2m+1)K+\frac{r}{2m}\}-2mKg(V,W)+S(V,W)]=0.$$

Then either K = 0, or

$$S(V, W) = 2mKg(V, W) + \eta(V)\eta(W)[(2m+1)K - \frac{r}{2m}]. \tag{3.14}$$

If K = 0, then from (2.4) we get

$$R(X,Y)\xi = 0.$$
 (3.15)

If $K \neq 0$, putting $V = W = e_i$ in (3.14) we get

$$r = K(2m+1)2m$$

and (3.14) becomes

$$S(V,W) = 2mKg(V,W). \tag{3.16}$$

Now we use the following result due to Blair [2]

Result 1. Let $M^{2m+1}(\phi, \eta, \xi, g)$ be a contact metric manifold with $R(X, Y)\xi = 0$ for all vector fields X, Y. Then M^{2m+1} is locally the Riemannian product of a flat (m+1)-dimensional manifold and m-dimensional manifold of positive curvature 4.

Then we get from (3.5) and (3.16) the following theorem:

Theorem 1. Let $M^{2m+1}(\phi, \eta, \xi, g)$ be a contact metric manifold with ξ belonging to the K-nullity distribution satisfying $R(\xi, X)$. P = 0. Then either M^{2m+1} is locally the product of a flat (m+1)-dimensional Riemannian manifold and an m-dimensional manifold of positive curvature 4 or M^{2m+1} is an Einstein manifold.

If K = 1, then by (3.16), we can state the following Corollary.

Corollary. A Sasakian manifold M^{2m+1} satisfying $R(\xi, X)$. P = 0 is an Einstein manifold.

4. CONTACT METRIC MANIFOLD SATISFYING DIV P=0

From (3.2) we get

$$(\operatorname{div}P)(X,Y)Z = \frac{(2m-1)}{2m}[(\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z)].$$

Then $divP = 0 \iff (\nabla_X Q)Y = (\nabla_Y Q)X$ where S(X, Y) = g(QX, Y). Hence using Theorem 3.1 of [3] we can state the following theorem:

Theorem 2. Let M^{2m+1} be a contact metric manifold with ξ belonging to the K-nullity distribution satisfying divP = 0. Then either M^{2m+1} is locally the product of a flat (m+1)-dimensional Riemannian manifold and an m-dimensional manifold of constant curvature 4 or M^{2m+1} is an Einstein Sasakian manifold.

Acknowledgement: The authors are grateful to the referee for his valuable suggestions in the improvement of the paper.

REFERENCES

- [1] D.E. BLAIR, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [2] D.E. BLAIR, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977) 319-324.
- [3] C. BAIKOUSSIS and T. KOUFOGIORGOS, On a type of contact manifolds, J. Geom. 46 (1993), No. 1-2, 1-9.
- [4] U.C. DE and G. PATHAK, On a type of contact manifolds, Mathematica Balkanica, New Series Vol. 7, 1993, Fasc. 2, 113-118.
- [5] U.C. DE and N. GUHA, On a type of Sasakian manifold, Analele Stiintifice ale Universitatii, "A1. I. Cuza", Din Iasi, Romania, 38 (1992), f. 1, 121-124.
- [6] D. PERRONE, Contact Riemannian manifolds satisfying $R(X, \xi)$. R = 0, The Yokohama Mathematical Journal, Vol. 39, No. 2, Feb. 1992, pp. 141-149.
- [7] S. TANNO, Ricci Curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988) 441-448.

Received January 18, 1995
Department of Mathematics
University of Kalyani
Kalyani - 741 235
West Bengal, India.