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1. THE OBJECT OF THE PAPER

Contact Riemannian manifolds satisfying R(X, £). R = 0 where & belongs to the K-nullity
distribution or a condition similar to it have been studied by various authors ([3], [4], [6]).

In the present paper we consider contact manifolds with characteristic vector field & belon-
ging to the K-nullity distribution satisfying the condition

R(,X).P =0

where P 1s the Weyl projective curvature tensor and R(&, X) is considered as a derivation of
the tensor algebra at each point of the tangent space.

It is proved that either the contact manifold M*™t! is locally isometric to the product
manifold E"”“XS’_” (4) or M¥"*! is an Einstein manifold. In the last section of this paper the
contact metric manifolds satisfying div P = 0 where ‘div’ denotes divergence are studied.

2. PRELIMIANRIES

A contact manifoldis a C°°(2m + 1) manifold M*"*! equipped with a global /-form T
such that | A (dn)™ # 0 everywhere on M*"+! 1 induces a unique vector field & on M2 +!
satisfying (&) = 1 and dn(&,X) = O for every vector field X on M?™"*+!. A Riemannian
metric g 18 said to be associated with a contact manifold if there exists a tensor field ¢ of type
(1,1) such that dn(X, ¥) = g(X, dY),n(X) = g(X, &) and $?> = —J + 1 ® & and the manifold
M+ with a contact metric structure (¢, &,M, g) is usually called a contact metric manifold
[1]. Also a tensor field % 1s defined by h = 1 /2L ¢ where L denotes Lie differentiation and
h satisfies @i = —hd. Thus, if A is an eigenvalue of & with eigenvector X, —A is also an
eigenvalue with eigenvector ¢X. Also we have Trh = Trdh = 0 and h& = 0. Moreover if V
denotes the Riemannian connection of g, the following relations hold

V& = —pX — phX 2.1)
g(pX, pY) = g(X,Y) — n(Xm(Y). (2.3)

The vector field & 1s a killing vector with respect to g if and only if # = 0. A contact metric
manifold M*"*t1(¢$,n, &, g) for which & is a killing vector is said to be a K-contact manifold.

If the almost complex structure J on M>"+!XR defined by J(X,f4) = ($X — fE,n(X)2),
where f 1s a real-valued function, is integrable, then the structure is said to be normal and
M+l ($,n, &, g) is said to be Sasakian. If R denotes the curvature tensor of the manifold, a
Sasakian manifold may be characterized by R(X, Y)& = n(Y)X — n(X)Y.
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It is known that a Sasakian manifold is a K-contact manifold but the converse 1s not
necessarily true unless dim M?"+! = 3,
The K-nullity distribution [7] of a Riemannian manifold (M, g) for a real number K 1s a

distribution
N(K) : p — Ny(K) = {Z: T,M / RX,Y)Z = K[3(Z, D)X — g(X, 2)Y]}
forany X,Y € T,M.

Next, suppose that M*"t1(d,n, &, g) is a contact metric manifold with & belonging to the
K-nullity distribution i.e. |

RX,V)¢ = KnhHX—nX)Y]. (2.4)
From (2.4) we have
SX, 8 = 2mEnX) (2.5)
where
(2m+1)
SX, V)= > gR(e;,X)Y,e), (2.6)
i=1 .

is the Ricci tensor and {¢;} is an orthonormal basis of the tangent space at each point of the
manifold.
Also from (2.4), since

8R(X, )¢, Z) = g(R(E, D)X, Y),

we have

R(&, )X = K[g(X, Z)& — n(X)Z]. (2.7)

3. CONTACT MANIFOLD SATISFYING R(¢,X). P =0

The first author and N. Guha in their paper [5] considered a Sasakian manifold M%"t!
satisfying R(X,Y).P = 0. In this paper the weaker hypothesis R(¢,Y). P. = 0 instead of
R(X,Y).P = 0 1is considered.

Let us suppose that

where
PX,1)Z = RX,1)Z ~ = [S(Y,2)X — S(X,2)Y] 3.2)
From (3.2) it follows that
PX, Y\Z = —-P(Y,X)Z | (3.3)
g(P(X,Y)E, &) =0, by (2.5) (3.4)

Z g(Ple;, VW e;) = 0, where {Ef} is defined in (2. 6) (3.5)
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1
gP(&,1)Z,8) = Kg(Y, Z) — 5—5(¥, Z), by (3.2) and (2.7). (3.6)

Also, we know that
(R(E, V). PYU, VW = R(&, V)P(U, V)W — P(R(E, U, V)W—

—P(U,R(, )V)W — P(U, V)R(E, NW. (3.7)

In virtue of (3.1) we get from (3.7) that
gRE,NPU, VYW, &) — g(P(REE,NU,VIW, &) — g(P(U,R(E, NVIW, £)—

—g(P(U, V)R(E, YW, &) = 0. (3.8)

Now putting Y = U = ¢; in (3.8), {e;},i = 1,2,...,2m + 1 being an orthonormal basis of
the tangent space at any point of the manifold, in the relation (3.8) we get

> " {8(R(E, e)P(ei, VIW, £) — g(P(R(E, eei, VIW, E)

—g(P(e;, R(E,e)VIW, &) — g(P(e;, VIR(E, )W, &)} =0 (3.9)
But

D 2(R(E, ePlei, VIW, E) (3.10)
=) g[K{g(P(e;, VIW,e)& —n(Pei, VIW)ei}, E], by (2.7)
— Z[Kg(P(EH V)W} E'i)g(&, E,) — Kg(P(Eh "/)W} E,)g(ff, E?)]

=" —Kg(P(ei, V)W, £)g(ei, £), by (3.5)

= — Kg(P(&, V)W, &)
> g(P(R(E, e)e;, VIW, £) (3.11)

= g[P{K(g(e;, &) —n(ee:), VIW, E], by (2.7)
—2m + DKg(P(E,VIW, &) — > Klg(e;, £)g(Plei, VYW, E)]

=(2m + 1Kg(P(&, VIW, &) — Kg(P(&, V)W, &)
=2mKg(P(&, V)W, &)

> g(P(ei, R(E,e)VIW, &) (3.12)
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— Z g[P(EHK{g(V, EE)E- o T’I(V)Ez})wa ‘E»]: b}” (2 7)
— Z[Kg(g(V, Ef)P(Ef} E,) — Kg(g(va E.)P(Eh E;‘)W, El)]

= — Kg(P(E, V)W, E)]
> g(Pe;, VIR(E, )W, &) (3.13)

= glP(ei, ){K(@gW, )& —=n(Wen}, £], by (2.7)

= Kel(Pes, VIE, E)g(W, e)] — ) Kg(Plei, Viei, Em(W)

K
=(2m + DK (VW) — Eiﬂ(v)ﬂ(m, by (3.4) and (3.2)

where r denotes the scalar curvature.
From (3.9), using (3.10), (3.11), (3.12) and (3.13), we get

K
_omKe(P(E, VIW, £) — 2m + DK (Wn(V) + ;—mn(wmm =0

and using (3.6) we have
KIWn(V){—@m + DK + =} = 2mKg(V, W) + S(V, W)] = 0.
Then either K = 0O, or
S(V, W) = 2mKg(V, W) + n(V)n(W)[2m + DK — 51 (3.14)
If K = 0, then from (2.4) we get
RX,Y)¢ = 0. (3.15)
If K # 0, putting V = W = ¢; in (3.14) we get
r=KQ2m+ 1)2m

and (3.14) becomes
S(V, W) = 2mKg(V, W). (3.16)

Now we use the following result due to Blair [2]

Result 1. Let M*" (b, 1, &, g) be a contact metric manifold with R(X, Y)& = 0 for all vector
fields X,Y. Then M*"t1 is locally the Riemannian product of a flat (m + 1)-dimensional
manifold and m-dimensional manifold of positive curvature 4.

Then we get from (3.5) and (3.16) the following theorem:
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Theorem 1. Let M*"+1($p,n, &, g) be a contact metric manifold with & belonging to the
K-nullity distribution satisfying R(§,X). P = 0. Then either M*"T! is locally the product of
a flat (im + 1)-dimensional Riemannian manifold and an m-dimensional manifold of positive
curvature 4 or M*" 1 is an Einstein manifold.

If K = 1, then by (3.16), we can state the following Corollary.

Corollary. A Sasakian manifold M*"t! satisfying R(&,X). P = 0 is an Einstein manifold.

4. CONTACT METRIC MANIFOLD SATISFYINGDIVP =0
From (3.2) we get

2m — 1
2= Divxs)1,2) ~ (VrHX, )

(divP)(X, V)Z =

Then divP = 0 <= (VxQ)Y = (VyQ)X where S(X,Y) = g(QX, Y).
Hence using Theorem 3.1 of [3] we can state the following theorem:

Theorem 2. Let M*"+! be a contact metric manifold with & belonging to the K-nullity
distribution satisfying divP = 0. Then either M*™*! is locally the product of a flat (m + 1)-
dimensional Riemannian manifold and an m-dimensional manifold of constant curvature 4

or M*"*+1 is an Einstein Sasakian manifold.
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