EXTENDING NORMS ON GROUPS

THOMAS BOKAMP

Following Farkas, by a norm » on a group G I shall understand a function n on G to the set
of non-negative real numbers, satisfying

l.geG:n(g) =0 g=1,

2.Yg € G:n(g™!) = n(g), and

3.Vg, h € G:n(gh) < n(g) + n(h).

[ call n a seminorm, if only n(1) = O 1nstead of the first condition.

Beginning with some general remarks on normed groups, I will discuss the possibility of
extending norms from a normal subgroup to the whole group. A sufficient condition for the
existence of such an extension is found, which demands that the inner automorphisms of the
whole group do not move the elements of the subgroup too far and that there exists a factor
set of the given extension of groups, which 1s bounded on one side.

So I get a counterpart to the necessary condition, which was found by Farkas in [3].

1. GENERAL PROPERTIES OF NORMED GROUPS

The first question one should ask is: Does a norm on a group define a unique topology on

that group, and if so, do we get a topological group? The following theorem sums up the
answetr.

Theorem 1.1. Let G be a group, equipped with a topology. Then the following statements
are equivalent:

I. Gis atopological group, whose topology is Hausdorff and admits a countable basis for
the system of neighborhoods of the identity.

2. G is a topological group, whose topology can be defined by a right-invariant metric.

3. There is a norm n on G, such that the topology on G is generated both by the right-
imvariant metric

d,: G x G — [0,00[,(g,h) — n(gh™")

any by the left-invariant metric

d: G x G — [0,00[,(g,h) — n(g~"h).

Proof. The equivalence of the first and second statement is given by the Birkhoft-Kakutani
theorem, see e.g. [1]. If we suppose these statements to be true, d shall denote the right-
invariant metric, it is easy to see, thatn : G — [0, oc[, g +— d(1, g) defines a norm on G. For
this norm we get by right-invariance of our metric d = d,. A simple calculation also proofs
d; to be a left-invariant metric, whenever n is a norm. So we have to show, that d; gives rise
to the same topology as d,.

Let € >0. Since we assume G to be a topological group by the topology of d, there is a
0 >0, such that

Ve he G:dg ', hnmh<d = dgh<e.
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Formulating this in terms of the metrics d, and d; we get
Vg,he G:df(g,h)y<d = d(g,h)<e.

A similar conclusion gives the analogue result with d, and d; interchanged, which then proves
the topologies defined by d, and d; to be equivalent.

The last thing to be proved 1s that the third statement implies the first two. As we have
already seen for d; and may easily be seen for d, too, these functions are metrics on G, left-
invariant and right-invariant respectively, whenever n 1s a norm. Since these metrics generate
the same topology on G, we get

Ve>0,g€G:301(e)>0:Vhe G:n(h '9)<8,(g) = n(gh™H<e.
and hereby Ve0,g,h € G: 36 >0:Vg' I, € G:
max{n(hh'~"),n(g"'g)} <& = n(gh(g'h) " <e,

since for & = §;(g) /2 we have n((hh'~'g'~)g) < 8,(g) and so n(g(hh'~'g'~")) = n(gh(g’
')~y < e. This last relation implies the continuity of the product on G, since it is by
assumption unimportant, which of the metrics we use.

Finally we get the continuity of the operation “taking inverses” by d,(g, h) = di(g~ ', h™1),
which holds for all g, s € G. g.e.d.

Due to the symmetry of the statements, even more 1s true. First, we can interchange
“lett” and “right” 1n all statements and, second, we may not claim the topologies in the third
statement to be equal, since they will be equal, if they are only comparable.

The theorem also shows, that the theories of norms on groups and of right-invariant (or
left-invariant) metrics on groups are equivalent, since there are canonical bijective mappings
between these structures on a given group.

In abelian groups the definitions of the left-invariant and the right-invariant metric coincide
of course, so any normed abelian group is a topological group.

Any group G can be endowed with the trivial norm, assigning O to the identity element and
1 to all other elements. This trivial norm 1s designated & and gives an embedding of abstract
groups into the class of normed groups.

The best known examples for norms on groups are the wordnorms, which are defined here
together with “generalized wordnorms”, a tool for the construction of norms.

Definition 1.1. Let G be a group. For a generating set E of elements of G and a map
k:E— [0,0c[, we call themap |- |y : G — [0, 00|, defined for g € G by

(N
‘glk .= iﬂf< Zlaf‘k(xi) [” = mel:-**rxﬂ & Ew Kly.ooy &Ky = Z

L i=1

Fi
such that H.xf“" =g/,

f:] y
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the seminorm associated to the map k. If this seminorm is indeed a norm, we speak of the
generalized wordnorm associated to the map k. If k = 1, then | - |, =: {g is called the
wordnorm (associated to the generator E).

It’s easy to see that wordnorms are indeed norms and that seminorms associated to such a
map are indeed seminorms. But in general, it’s not simple to prove such a seminorm to be a
norm or not.

Of course any norm can be constructed as a generalized wordnorm, if we take the generator
E to be the whole group and the map & to be the norm.

There 1s a relation between norms, which allows to compare them and which gives rise to
the well-known equivalence relation of quasiisometry.

Definition 1.2. Let G be a group and | - |, | - |2 seminorms on G. Then | - |; is said to be
coarser than | - |5 (| - |2 is then called finer than | - |1), iff there exists a real number a >0 such
that |g|, < algl, for all g € G. In this case I write | - |} = | - |2

The seminorms are called quasiisometric, if the relation holds in both directions, which is
written | - |} = | - |,.

The relation “<” is easy seen to be a quasiorder, so quasiisometry is an equivalence
relation. Furthermore, any seminorm finer than a norm has to be a norm itself, so if one of
two quasiisometric seminorms is a norm, the other 1s a norm too.

The following theorem gives a nice characterization of wordnorms on finitely generated
groups.

Theorem 1.2. Let G be a finitely generated group. Then all wordnorms related to finite
generating sets of G are quasiisometric. These norms form a complete equivalence class of
quasiisometric norms in the set of all wordnorms.

Any norm on G is furthermore coarser than any element of this equivalence class.

Proof. This theorem is only another formulation of results from Farkas [3] and Gromov [4]
q.e.d.

[ finish this section with a simple lemma, giving a criteria for a seminorm associated to a
map to be a norm.

Lemma 1.1. Ler G be a group, E a generating set of elements of Gand k : G — [0, oo[ a map.
Ifthere is a subgroup H of G, such that H C E, k|y is a norm on H and inf ,c p\ iy k(€) > 0, then
the seminorm | - | is a norm.

Proof. Let g € G be an element with |g|;, = 0. If the seminorm of g is approximated by sums
over representations of g containing elements of E\H, we would have [g|x > inf,c.\y k(e),
contrary to our assumption. So we conclude g € H and |g|y,, = 0. But we already know k|x
to be a norm, so by the triangle-inequality we get k(g) = O and by this g = 1. 4. e.d.

This lemma will be used in the next section for extending norms. From the lemma we know
the topology (defined by the right-invariant or left-invariant metric) of a normed subgroup to
be extendable by the metric of a norm on the whole group, since one can take the defining
map of a generalized wordnorm to be equal to the given norm on the subgroup and equal to 1
elsewhere. But this only leads to a norm on the whole group, which is less or equal than the
given norm on the subgroup. And the topologies of left - and right - invariant metrics do 1n
general not coincide on the whole group, even if they do so on the normal subgroup.
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But continuing these thoughts leads to the result, that the extendability of a norm is
a question on the class of norms quasiisometric to the given one. That 1s, 1f a norm is
extendable, then all norms quasiisometric to it are also extendable.

2. A THEOREM ON EXTENDING NORMS ON NORMAL SUBGROUPS

Starting with some lemmas I’ll now come to the result on the extendability of norms. The
above sketched method for extending norm fails in general to give an extension because
of “short cuts”. These are small products (by the sum defining the generalized wordnorm)
in the whole group which reach large elements of the subgroup (by the given norm on the
subgroup). The 1dea of the proot 1s to reduce the number of those short cuts, which have to
be investigated, in the case of a normal subgroup by showing, that other short cuts can be put
together by those under investigation.

Lemma 2.1. Let G be a group, N <| G a normal subgroup and | - | a norm on N. Additionally,

[ suppose
Vge G: sup|lgxg™'| — |x|| < o0
XEN
Then we have foralln € N, all g,...,2, € G, allxy,...,x, € Nandalls,,...,s, € Z such
that

n
H gix;i €N
i=1

the inequality

L n -1
Hgf"xf < Z x;| 4+ Z |s;] - Slelg |gixgi™'| — |x|| + Hgff |
i=1 i=1 X

=1

Proof. First, we get from the triangle-inequality

—
%,
R
IN

g | x .* Hgf‘xf ' Hg,:;-_j g '+ Hgf*' + [xa].

The first term on the right side is by the triangle-inequality and by introducing a supremum

n—1

—3
‘Sl‘ * Sup ‘ ‘glxg;l‘ — IX” —~+ ‘I1| + g%ﬂ Xy - Hg?ixf . H gn—j;ﬂ 8;‘;2
e =3 j=1

|\

n—1
< 3 {isisupllemg| - b + bl |

=0 xeN

For the last inequality one has to notice that the last term in the first line has the same shape
as the term we started with, so one can inductively repeat the first step to get the sum. Putting
together these inequalities gives the assertion. q.e.d.
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This lemma shows, as we shall see later, that for the extension of norms only those products
have to be investigated, which only deal with elements of G\N, if G is the whole group and
N the normal subgroup. For this purpose it’s useful to see G as a group extension of N by
H := G /N. A fixed transversal of this extension is noted as ~ : H — G, x — X and H notes
the set of all elements x, for x € H. Similar conventions are used for the factor set, given both
byamap (.,.): Hx H — N, (x,y) — (x,y) = ¥y%y_ | and by the set (H, H) of all elements
of the form (x,y) for x,y € H. For convenience I shall suppose 1 = 1. Now the following
lemma holds.

Lemma 2.2. In the situation described above we have

(H) NN = ((H,H))

and for x € {(H,H)), having a representation

X = t;

=1

Wlfhﬂf_-'N, H],.“,Hn EH&HdEl,iuu}Ene {_111},

H
x| < 81me, - |G uD)l + > sup (v, ).
=2 veH

Proof. By definition “C” is clear for the first assertion. The other inclusion will be proved
together with the inequality by induction on the lenght n of the representation. For n = 1 we
have x € NN (H U H™") = {1}, so the claimed properties are trivial in this case.
Now suppose the assertion to be proved for n — 1,n>1. Let x € (H) N N with a
representation of length n,
X = H u;.
=]

Several cases may now occut.
1. Case e; = €5 = +1.

Then
X = Uil 1U> ] H]nggﬁ . .M_HE" = ((H, H))
S e N e’ |
=(u1 ,u2)€{(H.H)) c{(H.H)) by assumption

Since |(uy, u2)| < sup,cp |(x,u2)| and for the remaining factors by assumption

H
T L <Y sup (),
3 x€H

=

we get the asserted inequality.
2. Casee; = +1land €5 = —1.
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Then 1
X= iy uuy : wu, W3S .. 0, € ((H,H)).
Ner— i — —— ——
=(uwu; )~ E€((H.H)) € ((H,1)by assumption

Because of |(u;u; b u)| < sup, oy |(x, up)| we may procede like in the first case.

3. Case ¢; = —1.

Then
S ey wt —l—e
x= " u : Uy U Uy € ((H,H)).
R e —————r’
=" )~ €{(H H)) €{(H.H)) by the first or second case
Because of |(u;',u;)™!| = |(u7", uy)| and the inequalities proved in the other two cases,

we again get the asserted inequality. g.e.d.
The Kronecker-0 1s only used for simplifying the proof of the lemma. Later I only use the
inequality in its symmetric form

x| < Z sup (v, u;)|.

i=1 veH

In particular this lemma proves {g|(x.m)) = £u.m). Since the relation in the other direction
is trivial by the definition of the factor set, we have indeed {5 | 1)) ~ {w.m)-

After these preparations I now come to the proof of a sufficient condition for the extenda-
bility of norms on normal subgroups.

Theorem 2.1. Let G be a group, N < G a normal subgroup, | -| anormon N and H := G / N.
- For the existence of an extension of | - | to a norm on G it is necessary, that forall g € G

sup |[gxg ™| — |x|| < o0. (Farkas’ condition)
xEN

If there exists in addition to this condition a transversal - . H — G, such that for the factor
set(.,.): HxX H— N defined by this transversal holds

Yu € H : sup |[(x, u)| < oo,
xeH
then there exists an extension of the norm.

Proof. Farkas’ condition 1s by the triangle-inequality easy seen to be necessary. So we only
have to show that all these conditions together are sufficient for the existence of an extension

of the norm. Set E := N U H and

lg| ifg €N,

1 + sup(|gxg™"| — |x|) + sup|(x,g)| ifg € E\N"
xeN x&H

k:EﬁRJ?gr—:v
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By lemma 1.1 | - [ is a norm on G and of course we have for x € N always |x|; < |x|. The
other inequality remains to be shown. Let x € N and

a representation of x with elements of E and the conventions of lemma 2.1, that 1s in particular
gi € E\N fori = 1,...,n. This kind of representation can always be reached without en-
larging the defining sum for the generalized wordnorm by multiplying together neighbouring
elements in any other representation and filling in some identity elements.

Then one gets by lemma 2.1 and lemma 2.2

1 n—1
x| < Z lx:| + Z |s;| - Slelg ||g,;xgi_1| — \x” + Hg? <
i=1 i=1 *
< Zk(«’i:‘) + Z |si] - k(g:) + ( Hgf” — Z R sup|(x,gf)|) <
i=1 i=1 i=] =1

xeH
< Zk(ﬁff) + Z |si] - k(g:)-
i—1 =1

On the right side one recognizes the defining sum for the generalized wordnorm and so gets
the assertion by transition to the infimum. g.e.d.

It’s easy to see that the norm constructed above gives G the structure of a topological group,
if N 1s a topological group and the automorphisms on N induced by G are continuos.

The following examples illustrate that the conditions in the theorem cannot be left out.

Example 2.1. Consider the group N = 7" as a normal subgroup of a group G. Ifa g € G
induces by conjugation an automorphism of N, described ba a matrix A € Gl,(4), which does
not permute the canonical basis and its inverses, then there is an element e; of the canonical
basis and an a > 1 such that |Ae;| = ale;|, where | - | is the euclidean norm. So we get for any
ke N

|(ke;)?| = |A(ke;)| = ka.

Subtracting |ke;| we see, that Farkas’ condition is not satisfied, so no extension of the euclidean
norm on N to a norm on G exists.

That’s why Farkas condition cannot be left out. But there remains the question whether
this condition is sufficient for the existence of extensions or not. The next example gives the
answer.

Example 2.2, Let
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the discrete Heisenberg group. Consider the center of H,

[ 1 0 ZY
C(H) = 1 0O
\ 1)

and provide it with the usual absolut value as norm. Of course we now have for all h € H

[12
N

sup ||| = |2]| =0,
z€C(H)

so Farkas’ condition is satisfied. Suppose there exists an extension of | - | to a norm on H and
denote it also by | - |. Farkas shows in [3, Theorem 7 etc.], that the map

N:H — RT
I x y)

1
1 =z — max{]x,|z,\/ly~§xz

1)

This is a contradiction to the supposed existence of an extension. So Farkas’ condition alone
is not sufficient for the extendability of a norm.

The final section of this paper is now dedicated to corollaries and conclusions from the last
theorem and to results on products of normed groups.

h\
7

3. COROLLARIES TO THE THEOREM AND SIMPLE CASES

I now take a closer look at those special cases, where the conditions of theorem 2.1 simplify
significantly.

At first we start with splitting extensions of groups. In this case the factor set can be
chosen to be identically 1, so our main theorem gives the equivalence of Farkas’ condition
and the extendability of a norm on the normal subgroup. That’s why I now address a more
far reaching question, that of extending simultaneously norms on N and H, both of which are
subgroups of G = N X H. One gets the following result.

Theorem 3.1. Let H, N be groups, o« € Hom(H, Aut (N)) and G the semidirect product of H
and N defined by «. Furthermore let |- |y and |- |y be norms on H and N respectively. H and
N are identified with their isomorphic images in G.

For the existence of anorm |-| on G suchthat |- ||y = |- |g and |- ||y = |- |n, it is necessary,
that

Ve € H :sup ||a(x)(n)|y — [nly| < 2- |x|g.
neN

On the other hand there is the sufficient condition

Vxe H: Sug\\m(x)(n)\w — |nly| < |x|g.
S
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Proof. The necessity of the first condition is nothing else but the triangle inequality.

Now return to the proof theorem 2.1 to construct the extended norm by supposing the
second condition. The transversal is in this case given by the identification of H with a
subgroup of G, so the factor set is constantly 1.

So the generator of G defined there is given by E = N U H. I now give a new definition for
the map k,

ri

xlg 1fx € H,

k:E— RT xm— { ‘
X|N lfIEN\{l};

L8

By repeating the former arguments we get | - |, to be an extension of | - |y, but not having a
fixed distance to 0 on H\{1}, we only know | - | to be a seminorm.

Let ix with & € H and x € N be any element of G. For any other representation of this
element given by

hxz]:[h;x.g withh; e Hox;, e N (1 <i<n)
=1

we have

ﬁhiX;‘ = (f:[ hf) (ﬁx?humh") )
=1 =1

i=1

so h = [[_, h: and hereby

k() = |hlw <) |l = > k(hy).
i=1 i=1

Setting x = 1 we get by this inequality ||z = |h|g, so | - |z also extends | - | 4.

It remains to show | - | to be a norm. Let again x be any element of N and |Ax|; = 0. The
inequalities above imply k(h) = |h|y = 0, so h = 1. But then |x[; = |x|y = 0, so x = 1 too,
which implies the assertion. g.e.d.

Another example of simple group extensions leads to interesting results, that are the cyclic
extensions. This time we have a corollary to theorem 2.1.

Corollary 3.1. Let G be a group and N a normal subgroup of G such that G /N is a cyclic
group. Then any norm on N can be extended to a norm on G, if and only if it satisfies Farkas’
condition.

Proof. If H = G /N is finite, then the supremum in the second condition of theorem 2.1 is
that of a finite number of reals an so finite. So, applying this theorem, we get the extendability
of the norm.

Now suppose |G / N| = oc. Then, by chosing the group generated by an arbitrary element
in the coset representing a generator of G / N as transversal, the extension is seen to split, and
so the norm 1s extendable, again. g.e.d.

The last corollary 1nvites one to try the tool of induction. But in general Farkas’ condition
1s lost, when we ascend to a larger subgroup. However, in the case of abelian groups this
method 1s successful.
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Theorem 3.2. Let G be an abelian group, H a subgroup of G and | - | a norm on H. Then | - |
is extendable to a norm on G.

Proof. If G/ H is generated by the coset of x € G then by corollary 3.1 the norm is indeed
extendable - Farkas’ condition 1s satisfied for any abelian group. So we can always add
another element of a generating set of G to the normed subgroup. Formally I apply the tool
of transfinite induction.

Let £ be a subset of G\ H such that (HNE") = G. Further let “<” be a well-ordering on E'.
I suppose the existence of a compatible extension of the normon H, := (HU{e' € E'le’ < e})
for all e < x € E'. Compatible means that on any H, an extension | - |, is marked such that for
all f < e <x the norm | - |, is an extension of | - | too.

Consider the group
H:= U H..

e < X

Putting n(h) := |h|, for h € H, C H and e < x, we get a norm »n on H. So by our preparations
we find an extension of n on
({x} UH) = H,,

which is also a compatible extension of any | - |, for e <x. q.e.d.

Finally I wish to address the extension problem for products of groups. The case of the
semidirect product is already done, so I concentrate on those products with a possibly infinite
number of factors.

Let (g:)ics be a family of groups indexed by the set / and | - |; a norm on G; for any i € I.
Then there 1s the following table of conditions for the existence of a simultaneous extension
of all | - |; to the product of the groups.

Type of Product Sufficient Condition Necessary Condition
direct (restricted) always extendable no condition |
product |
cartesian (unre- either all groups are abelian or no condition known, but there
stricted) product there is a finite set I, < I such are examples of not extendable
| that sup._,, sup,_g, Ixl, < norms
amalgamated pro- for all i, j € I we have v =1 | for all {, j € I we have |llv = |
duct along a sub- | jlvand U 1s closed in G, in the jlv and U 1s closed in G, in the
group U < G, for | topology of the right-invariant topology of the right-invariant
any i € [ -~ metric or the left-invariant me- metric or the left-invariant me-
tric, both defined in theorem 1.1 tric, both defined in theorem 1.1
for any [ € [ for all but one i € [
| frc-;é_pmduct always extendable no condition

The - more or less - simple proof of these facts can be found in [2].
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