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ON RUND’S CONNECTION

S. DRAGOMIR, R. GRIMALDI

Abstract. We show that the holomorphic curvature Kr (associated with a complex Finsler
metric F) in the sense of M. Suzuki, [13], and B. Wong, [15], is (in the smooth case) precisely
the holomorphic curvature of a connection essentially due to H. Rund, [12] (and reproposed
in the bundle-theoretic setting by S. Kobayashi, [8]). We prove a complex analogue of Deike'’s
theorem in real Finsler geometry. The indicatrix in each fibre of a convex complex Finsler
bundle is shown to be an extrinsic sphere.

1. INTRODUCTION

Let M be a complex manifold of complex dimension n and £ — M a holomorphic
vector bundle (with standard fibre C’) over M. Let 0 : M — E be the zero section,
ie. o(x) =0, € E,, x € M, and set E = E — o(M). Let Q C E be an open subset
to that o(M) C Q. A C! function F : Q — R is a complex Finsler metric on E if i)
F € C® (Q—oM)),ii) F(v) > 0and F(v) = 0 <= v = 0, and iii) F(Av) = |A|*F(v) for any
A€ C,ve Q) Apair (E, F) consisting of a holomorphic vector bundle and a complex Finsler
metric is a complex Finsler bundle. When E = T'%(M), with any complex Finsler metric
F : T'O(M) — [0, +00) one may associate a concept of holomorphic curvature Ky (cf. M.
Suzuki, [13], B. Wong, [15]). This coincides with the usual holomorphic sectional curvature
if F is a (smooth) Hermitian metric on M, and several results in Hermitian geometry carry
over to the case of complex Finsler bundles. For instance, if M 1s a complex manifold with a
complex Finslar metric 7 whose holomorphic curvature i1s bounded from above by a negative
constant (K¢(v) < c <O forany v € T%1(M), v # 0) then M is hyperbolic (cf. Corollary 1.5
by M. Abate & G. Patrizio, [1], p. 7). On the other hand, let 7t : E® — M be the natural
projection and 7' E — EV the pullback of E by 7t. Any convex (in the sense of S. Kobayashi,
8], p. 155) complex Finsler metric on E induces a natural Hermitian structure A on nE.
Let then D be the Hermitian connection of (7t~ 'E, h). We show (cf. Theorem 2) that K is
the holomorphic curvature of D. Consequently, in the smooth convex case Corollary 1.5 in
[1], p. 7, is a consequence of Theorem 6.2 in [8], p. 164.

In section 6 we obtain a complex analogue (cf. Theorem 3) of the well known Deicke’s
theorem in real Finsler geometry (ct. A. Deicke, [4]).

Let (E, F) be a complex Finsler bundle. Then each fibre E, 1s a complex Minkowski space,
yet fibres over distinct points of M are not congruent, in general. A complex manifold M
carrying the complex Finsler metric F : TV(M) — [0, +00) is locally Minkowski if there is
an atlas A = {(U, zh ... ,Z")} on M so that F depends on the directional arguments alone
(and consequently 71(M), ~ TI’U(M);.: as complex Minkowski spaces, for any x,y € M).
If (M, F) is locally Minkowski we show that any transition function of A is a complex
affine transformation (cf. Theorem 4). On the other hand, for any convex complex Finsler
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bundle (E, F) each fibre E? carries a natural Kihlerian metric g,. We show that the indicatrix
I(E)y ={v€E,: Fv)= 1} of (E,F)atx € M is an extrinsic sphere in (E,, g,) (cf. Theorem
J).

2. COMPLEX FINSLER METRICS

We proceed by looking at several examples of complex Finsler metrics.

DLletM =C"n>2,and E=TYM) =C"xC" Let Q = {(z,0) : 2 # (} CE
and define F : Q — [0, +o00) by F(z,{) = |PQ|*/|OH|*, where P = (z',...,7"),Q =
'+ ..., 2"+ ") and OHLPQ,H € PQ. Also |PQ| denotes the Euclidean distance
in C" ~ R*'. This is the complex Wrona metric (a complex analogue of the well known
Wrona metric on R?, cf. W. Wrona, [16], and also M. Matsumoto, [9], p. 107). To see
that F is a complex Finsler metric let Z = (Z',...,Z" be the cartesian coordinates on C”"

and (z,w) = z!'w' + ... + Z"W". Note that H is the intersection point of the complex lines

Z =7+ A(,Z = pw, where (w,() = 0 and A,pn € C. Thus H = z — (z,)|¢{|~*C and
consequently:
c*

3 (1)
[2?|]* = [(z, ¢[?

F(z,() =

for any z # (.

The real Wrona metric (on R?) is known (cf. also [17]) to possess a number of interesting
features. For instance, its geodesics are either arcs of circles or logarithmic spirals. It 1s an
open problem to study the real (or complex) geodesics of the complex Wrona metric (1) (on
C™"). With the above notations set [PQ] = F(z, {)! /2, If Y : [a,b] — C" is a parametrized
curve, we define the lenght of 'y with respect to (1) by L(y) = lim,_, Z:’;ﬂf [v(t:)yy(tiv1)]
where t; = a + i(b — a) / n. We obtain:

Proposition. Ler0 < « < ¥ andy(1), 0 < t < «, any geodesic of S***' C C"*! parametrized
by arc lenght. Then L(y) = «.

Proof. Let z € $?"*! and write y(f) = zcost+wsint, 0 < r < o, |z| = 1, |w| = 1,
(z,w) = 0. Setr; = 24,0 < i < n. Then (y(tiy1), Y(#)) = cos &, [y(tiy1) — Y@&)|* =
2(1 — cos f—f—) and consequently G(y(¢;), y(ti+1) — v(¢)) = 2tan % where G = F!/2, Finally
limy—o0 Yot GOV(8), Y(tit1)— Y(&)) = lim, o0 2ntan £ = &, QE.D..

2) Let S — §"*1 7 CP", be the Hopf fibration and g any Riemannian metric on $*"*! so
that S' C Isom(S***!,g). Letx € CP" and v € T,(CP"). Choose z € $*"*! with p(z) = x
and let H, be the orthogonal complement of Ker(d.p) in T,(S*"+1), with respect to g,. As p is
a submersion d,p : H, — T,(CP") 1s a R-linear isomorphism. Let u € H, so that (d,p)u = v
and set:

Fo(v) = F(u) (2)

where F is the complex Wrona metric (1) on Q = {(z, ) : z # ¢} C T(C"t"). Note that (z, ()
is tangent to S *! iff Re{z, ) = 0 and consequently T(S*"*!) C Q). Next, the definition of
F,(v) does not depend upon the choice of homogeneous coordinates z of x € CP”". Indeed,

let 77 € %! so that 77 = Az for some A € §' C C. Let R : $#t! — §2+1 pe the
right translation with A. As p o R) = p it follows that (d,R))Ker(d,p) = Ker(d,p). Next,
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as Ry € Isom(S¥ !, 2), we also have (d.R))H, = H,. Finally, let #' = (d,R))u and then
F(u') = F(u) because S' C Isom(F), as a consequence of the complex homogeneity of F.
This construction furnishes a complex Finsler metric F, : T(CP") — [0, +00). Indeed, the
natural map p : C"*! — {0} — CP" is holomorphic so that p = pot(wheret : $2*+! c C"*+1)
1S a CR map. Then the C-linearity of d,p yields the complex homogeneity of F,.

3) Let V be a linear space over C. A complex Minkowski norm on V is a map v — ||v||
so that i) ||[v|| = O and ||v|] = 0 <= v = 0, 1) ||Av|| = |A|||v||, and iii) for any linear basis
{er,...,e,}of Vthemapf(z',... ,7") = ||Ze;|| is at least of class C* at z # 0. A pair (V, ||- )
is a complex Minkowski space. Two complex Minkowski spaces (V, || - ||) and (W, || - ||) are
congruent if there is a C-linear isomorphism ¢ : V — W so that ||@v|| = ||v|| for any v € V.

Let F: T"%(M) — [0, +00) be a complex Finsler metric on M. Each holomorphic tangent
space T1OM), is a complex Minkowski space in a natural way. Then (M, F) 1s modelled on
(V, || - ) if T"°(M), ~ V (congruent complex Minkowski spaces) for any x € M.

Let(V,||-])and {ey, ... ,e,} afixed basis of V. Let G = {(g}) € GL(n,C): f(g; 7, ... ,g!
)= f(', ... ,7")}. Then G is a closed subgroup of GL(n, C). Let H C G be a Lie subgroup
and B — M a H-substructure of the complex structure of M. A pair (M, B) is referred to as
a complex {V, H}-manifold (in analogy with Y. Ichijyo, [6]). Letv € T"°(M), and U C M
an open neighborhood of x. Let {X;, JX;} be a (local) frame on U adapted to the H-structure
B. Here J denotes the complex structure of M. Set Z; = X; — v/—1JX;. Then v = VZ;(x) for
some vV € C. We set:

Fv) = |[Vej? (3)

Let (U,z!,...,7" be local complex coordinates at x. Then Z; = P\jf 0/ 97", for some
Aj‘ € C°°(U), and (3) may be written:

F(z,0) = f(W T, ..., W@T) (4)

where o = A7 A = (?\i,)* Therefore, any complex {V, H}-manifold carries the natural
complex Finsler metric (4) and (M, F) is modelled on (V, || - |]).

Let (E, F) be acomplex Finsler bundle. Let (U, z%) be a local system of complex coordinates
onMandf = (0y,...,0,), 0; € OE), 1 <j < r,alocal holomorphic frame in £ on U. Let
(= Y(U), z%, ) be the naturally induced complex coordinates on EV (i.e. if v € 7t~ !(U) then
¢ (v) =V, where v = V 0;(x), x = 7i(v)). As usual, we set:

Ff:aF/a(’f*F}:aF/an}FszazF/aCiaZj

etc. Then F is convex if (F3) >0, 1.e. (Fj) 1s positive definite. If F 1s convex then the
indicatrix /(E), 1s a strictly pseudoconvex CR hypersurface in E? for any x € M.

3. RUND’S CONNECTION

As E — M is a holomorphic vector bundle, the pullback bundle n='E — E? is holomorphic,
as well. Also s; € O(nt~'E) where sj 18 the natural lift of 0}, 1.e. s;(v) = (v, 0;(71(v))), for any
v e mi(U), 1 <j<r. Thus(sy,...,s,) isaholomorphic frame of 7w~'E on m~!(U). The
Cauchy-Riemann operator of E' induces a differential operator:

0: (™ 'E) = I ((T""E°)* @ n”'E)
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in a natural manner. Any complex Finsler metric F on E induces a Hermitian metric 2 on
ni—lE, as follows. Letv € E? and Z, W € (n~'E),. Let x = 7(v) and choose cmmplex_
coordinates (U, z%) at x and a holomorphic frame f of E on U. Set h,(Z,W) = F ,5(1J)Z*W"
where Z = Z's;(v) and W = Wis;(v). The definition of h,(Z, W) does not depend upon the
choice of (z%) and f. Let then:

D :T°(n'E) - I'°(CT*E’ ® n" 'E)

be the canonical Hermitian connection of the Hermitian bundle (7w~ 'E, k). Cf. [14], p. 79, D
1S given by:

D'Z=Q0RZ+wZ)®s (5)
Du —_ 5 (6)
wi = F*3 Fy (7)

for any Z = Z's; € I'>®°(nt~'E). Here (Ff} = (F,:;)_' and D = D' + D" corresponding to the
decomposition CTE? = TVOE? @ 701 EO. Set:

i | x i k

Then (7) yields:

- (8)

_:;E — FhEc J (9)

Then D is referred to as the Rund connection (of the convex complex Finsler bundle (E, F)).
H. Rund (cf. [12]) was the first to find (8)-(9) (when E = T!°(M)) though complex Finsler
metrics were first studied by G.B. Rizza (cf. [11]). S. Kobayashi (cf. [8]) observed (in
.conenction with the geometry of ample vector bundles) that F induces a Hermitian structure
F in the pullback bundle £E — P(E)of E — M by the map P(E) — M (cf. the notations
in [8], and that (8)-(9) are the connection coefficients of the Hermitian connection of (£, F).
Our treatment of the Rund connection of (E, F) follows the ideas in [8]. However we replace
P(E) — M by E° — M (and therefore E — P(E) by n~'E — E°) with the advantage that
the “correct” complex analogues of real Finsler geometry notions are more apparent. For
instance, we may produce complex analogues of nonlinear connections (in the sense of A.
Kawaguchi, [7]) and of the Liouville vector field (which turns out to be a global holomorphic
section in T~ ' E).

4. NONLINEAR CONNECTIONS

A nonlinear connection N on E° is a complex subbundle N of T'°E? so that:

T'"EY = N & Ker(d ) (10)
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(direct sum of complex vector bundles) where 9 7t is the map T'°E® — CTE® " CTM —
T''°M. The Liouville vector field is the cross section £ in 7t~ E defined by:

L) = (v,v)

for any v € E'. Note that 0L =0,i.e. L € O 1E). We have:

Theorem 1. Let (E, F) be a convex complex Finsler bundle and D its Rund connection. The
solutions X € T(T"° E?) of:
DxL =0 (11)

determine a nonlinear connection N on E° given by the complex Pfaffian system:
dt/ + N,(z, dz* = 0

where: | |
N =1 (12)

Proof. As a consequence of the complex homogeneity property of ¥ we have:

F=F(=FC (13)
F = F,-}C;Z,j (14)
Fi5(Av) = Fi(v) (15)

forany A € C,A # 0, and v € ! (U). Differentiate (15) with respect to A and A and set
A = 1 in the resulting identity so that to get:

Fl =Fglt =0 (16)

Next (9), (16) yield: |
Wt =0 (17)

Using (17) and 0L = 0 we obtain:
DL = (dJ + T} (*dz*) ® s,
Let X =A%9/0z%+ B 9 /3. The natural contraction of X ® DL brings (11) to the form:
B = T *A*
so that N = {X € T'"EY : DxL = 0} is locally spanned by:

d 0 :
= v
oz  09z° ko

9
od

Finally, it is easy to see that (12) must hold.
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The functions N!, are referred to as the coefficients of the nonlinear connection N. In
analogy with the treatment of real Finsler metrics we may set:

=l (52 )

e =T, — CiN«

joa

Then:

with N!_ given by (12). By (17) we also get:
N = Tid

We shall need the bundle morphism L : T'PE? — nt~! given by L,Z = (v, (3 7),Z) for any
Z € (T'"YE®), and any v € E°. The vertical lift is the bundle morphism vy : m™'E — T'OE"
given by vs; = 9/9,1 < i < r. The definition of 'y does not depend upon the choice
of holomorphic frame f = (0y,...,0,) in E. The following short sequence (of bundles and
bundle morphisms):

Om-pﬂ_lEYT]*“(E{])Lﬁ_'E—}D (18)

— —

is exact. Consequently, for any nonlinear connection N on E, the restriction L o t (where
L, : N, C (TYPE®),,v € E?) is a bundle isomoprhism. The horizontal lift (associated with the
nonlinear connection N) is the bundle isomoprhism 3 : m~'E — N givenby 3 = (Lo )™,
We shall also need the bundle morphism K : THWEY — = 'E defined by K = v~ o Q where
Q : T'"OE® — Ker(9 ) is the natural projection associated with the direct sum decomposition
(10). Then K 1s referred to as the Dombrowski map (in analogy with its real countempart in
P. Dombrowski, [5]). There 1s a short exact sequence:

3

—

0—->n'E Tl*”(Eo)iﬂ‘*E—rO (19)
Let E=T'""Mand F : T"°M — [0, +00) a convex complex Finsler structure. Let D be the
Rund connection of (T!:°M, F). Two concepts of torsion may be associated with D, namely
IL(Z, W) =DzILW — DyLZ — L[Z, W] and Tx(Z, W) = DzKW — DywKZ — K[Z, W], for any
Z, W e Ir>(T"OE%), where E° = T''9M — o(M). Here K is the Dombrowski map associated
with the nonlinear connection N given by (11), cf. Theorem 1. Several fragments of 7; and
Tx may be defined in terms of the vertical lift and horizontal lift (associated with ), that is we
set T(X,Y) = T,(BX, BY),C(X,Y) = T (yX,BY) and R'(X,Y) = Tx(BX,BY),P'(X,Y) =
Tx(yX, BY), for any X, Y € T°(n~!'T'OM). Then T (respectively C) is referred to as the
horizontal component (respectively as the mixed component) of Ty, etc. There is no ’vertical’
component of 7 (respectively of Tx) because T;(yX,vY) = 0 by the exactness of (18)
(respectively because:

TK('}’X,YD = 0

as a consequence of (9)). Note that the horizontal and mixed components of T; determine 77,
ie. Tp(Z, W) = T(LZ,LW) + C(KZ,LW) — C(KW, LZ) (and similarly R', P! determine Tx).
As to local coordinates computations, one may set:

T(sj, sk) = Tisi, C(sj, sx) = Cigs;
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R'(sj, sx) = Risi, P'(sj, 5x) = Piisi

5 8] _ E_% 2
5z’ §CB |\ 878 o U

[a 6]__81\% d [a a]zo
o’ 878 oG 9l |od’ ok

The commutation formulae:

lead to:
A aLJ *f
Tcxﬁ =T o r{:tﬁ

R Ny SN, . ONj
af Sz 62!8 ' HjB T o Cj JB

while C’k are given by (9). Note that R o 18 the obstruction for the complete integrability of

the complex Pfaffian system d& + N, dz* = 0 (i.e. R' = 0 if and only if N is involutive). M.

Abate & G. Patrizio consider the functmns Tjﬂ,k e C®(n~ (1)) defined by:

Tiok = Fig(Th: i = Tt o) (20)

Jc

(cf. (3.5)in [1], p. 14) where l}f;n are given by:

aFg
0z¢

r\ FIEBF

— FXpsp, 2L
I 9 z° 7

(21)

We show that T kF*’k = T' , that is (20) is nothing byt the horizontal component of T7.

jo?

Indeed, by (8)- (9) and (21) we have:

0 Fy

. , 1 . -0 F
i __ i i aff __ ik Jk
rjn—r}aijEth_P

Fﬁf rf Ci‘ _
d 2 ot

5. THE CURVATURE THEORY

Let (E, F) be a convex complex Finsler bundle and D its Rund connection. Let:
Q: " 'E) - I AMEY) @ 7 1E)
be its curvature form. Cf. [We], p. 79, ) 1s locally given by:
Qs; = Q} ® S

i _ A,
Q); = ow;
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Therefore (taking into account (8)-(9)) we get:

I __ pi Cx =03

+H. o dz® Nl + Hi 5d 0 A dZ’ + 0 pd Tt A dl

where we have set:

f 0 o

jaB — T o 7P (22)

jaf__azf’ ﬁ:kf]__azﬁ (

, o C,
i JK

Qie = ~ 57 (24)

Let B! = {z: |z| < 1} be the unit disk in C. Letx € M and v € T""°(M),, v # 0. Set:
Kr(v) = sup K(¢™F)(0) (25)

where the supremum is taken over all holomorphic maps ¢ : B! — M so that ¢(0) = x and
@'(0) =Avforsome A € C, A # 0. Also ¢*F = fdz ® dz, f(z) = F(9(2), ¢’(z)), and:

]
K(¢™F) = *“2?5 log f

while:
az
02072

Theorem 2. Let E = T'"’M and F a convex complex Finsler metric on E. Then:

Kp(RL) = 2F 2Ky, 5000 (26)
where:
Kjap = FiiKio3

while K;ﬂ 3 is given by (22) and #t : m~'E — E is the natural projection.
Proof. We start from (2.18) in [1], p. 13, that is:

Ke(fiL) = —2R‘2F&F§jcff (27)
where:
re. — poit 9Lk _ pavppr0Lpr 30
U 0707 o7 07
Using (22) we obtain:

[ 7] rox 7 aNgs o 7
Kiaa( UCTP = —Fi—5 ¢ i (28)
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On the other hand, by (9):

N, = p* a—E (29)
02

Finally (28)-(29) and the identity:

aF”E = 'aFk-'
— _FUF*E J
0zF 07P

lead to:
KiapCdC® P =

s 450 F; 0 F; ; 07 F; _
= F, F:;ka ] E__ka ¢ ) o 73 30
( 07P 9z 07207 e (30)

At this point (26) follows from (27) and (30).

Let (E, F) be a convex complex Finsler bundle and B the curvature tensor field of its Rund
connection, 1.e. B(Z,W)s; = ([Dz,Dw] — Dz w))s;. As in the case of the torsions of D,
we may define horizontal components of B as follows. Set B(d/8z%,6 / 6z° )s; = Rjﬂﬁs,-,

B(d/6z%, 6/ 52ﬁ)sj = Rjﬂﬁsj, etc. Here:

0 0
0z 9z° “od

where }'\f’ﬂ = ;"; Then:

+ I DY + o .
i _ B Jx * K ki *] VK] I
08 = o~ 5op T 18 ke — Falkp + RapCi (31)

Next, we may use:

so that to yield:

i« o i
Riag = 558 578 (32)
Note that, by (31), we have: |
RiapC = Rop

Similarly, we consider mixed components of B, i.e. B /0, 6/67° )sj = P}kﬁ s; and
B /ak 6/67°)s; = ijﬁs,-, etc. Then:

jkB — o (K o 528 i Gg ;R_FSI;’C}?R_I_ d Ck

Cis (34)
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Next, by the commutation formula:

[a 6]:_51\”};3

9k’ 678 0C 30
we obtain: .
,- G 35
Pikg 570 (33)
, orx N4 .
B, 5
.;Tcﬁ d E.{ | 0 Ek ng (36)
Pis = 37)
Finally, the identity:
Dy /ocil =5
and (34) yield: |
PixgC = Pig

As to the vertical components of B, wesetB(d /9 ¢*,0 /9 %) Sj = S}HS; and B(d/0C%,0/9d
b s; = S;kf‘gf’ etc., and derive the indentities:

ke = aa(éf aa(éf; F GieCor = CiCi (58)
W= -2p 39
Sz =0 (40)
Note that: o
}ke’@ =0
Also, by comparing (24) and (39):
Q_;:kf = S;kf

Let M be a real n-dimensional, n > 2, C° manifold. By a result of F. Brickell, [2], any
homogeneous real Finsler metric on M with vanishing vertical curvature must be a Riemannian
metric. Let (E, F) be a convex complex Finsler bundle and set S(X, Y)Z = B(yX,vY)Z, for

any X,Y,Z € T (n~'E). Clearly, if F is a Hermitian metric in E then S = Q. The converse
1S an open problem, as yet.

6. DEIKE’S THEOREM
The purpose of this section 1s to establish the following:

Theorem 1. Let F : C"*' — [0, +00) be a convex complex Finsler metric. If det(F ") =
const. on C"+*' — {0} then |Fit| = const. on C"*! — {0}.
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Remarks.
I. This is a obvious complex analogue of Deicke’s theorem in real Finsler geometry (cf.
[4]). Let:

F(z,0) = fG)( ... "0 .../ (41)
Then:
1 F
JK T n2 Cj&k

and consequently det(Fj;) = O (yet |F;z| depends of &). Therefore the assumption F(v) =
0 <= v = 0 1s necessary (for Theorem 3 to be true).
2. As F 1s convex the hypothesis in Theorem 3 1s equivalent to:

Ci=0 (42)

where C; = Cji and C!, is given by (9). Indeed, if H = det(F ) then C; = 9 (logH) /0 .
The proof of Theorem 3 is organized in several steps, as follows. First, we show that
Fk () F x (W) >n+1forany z,w € C'+! — {0}. Indeed, as F is convex (F*(z)F,;(w)) has
positive eigenvalues. Thus:

FY@QFz(w) > (n + 1) det(FX@)F (W) /"D = n + 1

(by the inequality between the arithmetic and geometric means). We shall need the differential
operator L given by:

32
07 07k

Next, we show that (LFy) is positive semidefinite. Indeed, let f; : C"*! — {0} — (0, +00)
be given by f.(w) = Ifj”‘(z)ﬂ;(w). Then £,(z) = n+ 1 hence f, has a minumum at w = z. Thus
(3% f. / 9w 9 wh) is positive semidefinite at w = z. Finally, one may check that:

L= F*

0% f,

3w 3k

(LF)(2) =

Note that LF; > 0. Next F; is complex homogeneous of degree zero and F5 > 0. In particular
F;; is positive homogeneous of degree zero, so that Fj; attains a maximum on c! — {0}.
But L is elliptic, so that Fj; = const. Define @(z,w) = (LF i) Zwk. But @ satisfies the
Cauchy-Schwarz inequality, so that LFj; = 0 yields LF; = 0. But L 1s a real operator, so

that:

as well. Finally |Fj| is positive homogeneous of degree zero and thus (again by the Hopf
maximum principle) |Fz| = const., Q.E.D..

7. LOCALLY MINKOWSKI MANIFOLDS

We establish the following:
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Theorem 4. Let (M, F) be a locally Minkowski manifold and A the corresponding atlas of
adapted local coordinate systems (i.e. (U,z2*) € A= 0 F /9> = 0). Then any transition

function of A is of the form:
7" =A3" +C° (43)

with A3, C* € C, det(A3) # 0. Conversely, any local coordinate system obtained from an
adapted one by a complex affine transformation (43) is again adapted.

Proof. Let (U, z%), (U’, /%) be complex local coordinate neighborhoods on M, U N U’ # 0.
Under a transformation:

Zh:x — ZIE(Z], ,Z”)
07 ,, (44)
det(azﬁ);&{} on UnNU

the (induced) local coordinates on 7'M change as:

Zfr::u — Z.-'-::u(Z[ L ,Z”)
[l — 0z G
Vs

Consequently:

oF 9377 aF 8 0’2y QF
0z  9z%07P% T 9z°3zP 3V
If (U, z%) is adapted and z/“ are given by (43) then d F / 9 z/? = 0, Q.E.D.. Viceversa, assume

that both (z%), (%) are adapted. The transformation law of the coefficients of the nonlinear
connection of the Rund connection (under a transformation (44)) reads:

P P 0’7" 97
N, = — ——N}+° . 45
> 9z P ‘ 02%02° 3V )
By (8),if 9 F /92> = 0 then N, = 0, N} = 0 and (45) yields:
0% 2Y
- 46
029 2F 0

It is an elementary consequence of (46) that z/ must be given by (43) (indeed, if fé =
327/ 92P then £} are holomorphic; thus f; = A}; = const., by (46). This may be written as
0(zY —ALz*)/ 97’ = 0and z¥ — A/ z* are holomorphic, etc.).

8. INDICATRICES
We may state the following:

Theorem 5. Let (E, F) be a convex Finsler bundle. Let x € M. Then E;.) is a Kdhler manifold
and I(E), = {v € E, : F(v) = 1} is an extrinsic sphere of E°.
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We recall that given a submanifold M of a Riemannian manifold X, M is an extrinsic sphere
in X if M 1s totally umbilical with a nonzero parallel (in the normal bundle of M C X)
mean curvature vector. Let (E, F) be a convex complex Finsler bundle. The map F, given
by EC — E ' [0,400) is a Hermitian metric on E? and the coefficients of the Hermitian
connection of (EY, F,) are C. By (9), C}k — Cj; = 0 so that (E), F,) is Kihlerian. Set

G=F'"% Let(u',... u?~") be local coordinates on I(E), and let:
Cj — Cj(H] o }HZ."—I)

be the equations of I(E), < E. Set {; = Fyz{* where ¥ = G~'J ¥ = ¥. Then §; = G™'F;
and F(z, ((u)) = 1 yields: _
AL (47)
I a U

J

3 oG

o u“

where {; = {;. Let h be the Hermitian from on T"-°(E})) associated with Fy, i.e. h,(Z, W) =

Fi(z, 0)Z/Wk, for any Z, W € (T'PE%),,ve E%, Z =2/ /0 &),, W = W/(3d /3 &),. Here,
the arguments z, ¢ of Fj; are respectively the coordinates of the (fixed) point x, and the

components of v (with respect to {g((x),...,0,(x)}). As customary in Hermitian geometry,
we extend /& to a complex bilinear form H on CTE? by H(Z,W) = WZ,W), HZ,W) =

HZ,W)=0,H(Z,W)=H(Z,W)forany Z,W € T'° (E)). Set:

0 o

Then H(X,,N) = 0 by (47), where X, = 1. 9/0u® (and  : I(E), C Ef,). Consequently
N € TU(E),)". Also H(N,N) = 2. At this point we may prove Theorem 5. Let Ay be the
shape operator of I(E), 1n E? Taking into account the identity:

0

Dy/ogN = G™(8; - chf)ac,-

the Weingarten formula (cf. e.g. [3], p. 40):
Dx N = —AnX,

may be written:
AnX, = -G X,

Yet G = 1 on I(E),, so that I(E), is a totally umbilical real hypersurtace of constant mean
curvature (in E?).
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