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OSCILLATING SOLUTIONS OF NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS
WITH A DEVIATING ARGUMENT

Lil]
<

D.D. BAINOV, M.B. DIMITROVA, A.B. DISHLI

Abstract. Sufficient conditions for oscillation of the solutions of non-linear differential
equations with a deviating argument and fixed moments of impulse effect are found.

1. INTRODUCTION

The impulsive differential equations with a deviating argument are an adequate mathe-
matical apparatus for simulation of numerous processes which depend on their pre-history
and are subject to short-time perturbations. Such processes occur in the theory of optimal
control, biotechnologies, industrial robotics, economics, etc. In spite of the great possibilities
for application, the theory of these equations is developing rather slowly due to obstacles of
theoretical and technical character. The study of the properties of their solutions arises an
ever growing interest [1, 2, 3].

We shall note that the oscillation theory of the impulsive differential equations has not been
yet elaborated. The first work devoted to this theory is [4].

In the present work sufficient conditions for oscillation of the solutions of a class of
nonlinear differential equations with a deviating argument and fixed moments of impulse
effect are found.

2. PRELIMINARY NOTES

Let & be a positive constant, {1 }z>, be a monotone increasing, unbounded sequence of
positive numbers, {by } 2, be a sequence of real numbers.
Consider the impulsive differential equation with a deviating argument

X'(0) + pO)f (x(t — b)) = 0,t # T,

Ax(ty) = 2(Tk + 0) — x(Te)v = Dpx(Ty) (1)

and initial function
x(t) = @), te[-h0l]. (2)

Introduce the following conditions:

Hl. p € CR4,Ry), Ry = (0,0), R, = [0, 00).

H2. f € CR,R), uf(u)>0 for u # 0 and f(u) is an increasing function in R.
H3. For any k € N the inequalities b; > —1 are valid.

H4. There exists a constant 7 > 0 such that T4.; — Tx > T >h foreachk € N.

HS5. There exists a constant M > 0 such that |f(x)| > %
H6. ¢ € C([—A,0],R),h> 0.
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Let us construct the sequence
{62 = {2 U {Tan }iZ,

where 1, = T;+ hand t; <ty fori € N.

Definition 1. By a solution of equation (1) with initial function (2) we mean any function
x : [—h,00) — R for which the following conditions are valid:

1. If —h <t <0, then x(¥) = ().

2. It 0 <t <t =71y, then x coincides with the solution of the equation

x'(t) + p(O)f (x(t — h)) = 0.
3.1t <t < tigy, 8 € {12 \{Tin } 2, then x coincides with the solution of the problem

i=1

X' (1) + p(Of (x(t — b)) = 0

x(t; + 0) = (1 + by, )x(t:)

where the number k; 1s determined from the equality ¢; = 1.
4. Ift; <t < tig1, t; € {Tin} 2, \{T1:}2,, then x coincides with the solution of the equation

X () + p(Of (x(t — h + 0)) = 0.

5. Ift; <t < tiyy, 1; € {1} 2, N{Tin }2,, then x coincides with the solution of the problem

i=1°
(@) +pOf(xt—h+0) =0

x(t; + 0) = (1 + by, )x(¢;).

Definition 2. The nonzero solution x of equation (1) is said to be nonoscillating if there
exists a point fp > 0 such that x(¢) has a constant sign for ¢t > 7y. Otherwise the solution x is
said to oscillate.

3. MAIN RESULTS

Theorem 1. Let the following conditions hold:
1. Conditions H1 - H6 are met.

. T +h
2. limsupy o, 155 [ P(s)ds>M.

Then all solutions of problem (1), (2) oscillate.

Proof. Let x be a nonoscillating solution of problem (1), (2). Without loss of generality we
may assume that x(¢) > 0 for t > 1 for some 79 > 0. Then x(t — #) > 0 and f(x(t — h)) > 0 for
t >ty + h.

From (1) and conditions H1 and H2 it follows that x is a decreasing function in the set
(to + h,T5) U [UE::S(T]!, 'T,'_|_1)] where T,_ <ty + h < T;.
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Integrate (1) from T, to T + & (k > s) and obtain that
T.+h
x(ty + h) — x(tp, + 0) + f p(s)f(x(s — h))ds = 0. (3)
From (3) and the fact that x(t; + 0) = (1 + by)x(Tx) we get to the inequality
Ty +h
(T +h) — (1 + bp)x(te) +  mf h]f (x(s — h)) - ] p(s)ds < 0. (4)

sel[m, 7+

On the other hand, we have

inf h]f(X(s — h)) = f(x(ty)).

selTe, T+

Then from (4) it follows that

Ti+h
X(Tx +h) — (1 + b)x(Ti) '*}“f(x(’fk))_/ p(s)ds < 0.

From the above inequality we obtain that

I AL x(Tx)
M. 5
1 + by fq p(s)dﬁf(x(’rk)) = )

Inequality (5) contradicts condition 2 of Theorem 1.

Corollary 1. Let the conditions of Theorem 1 hold. Then:

1. The inequality
X'(1) + p)f (x(t — ) < 0,1 # (6)

Ax(Ti) = brx(Ty)

with initial condition (2) has no positive solution.
2. The inequality
X' () + pO)f (x(t — h)) > 0,1 # 11 (7)

Ax(Ty) = Dpx(Tg)

with initial condition (2) has no negative solution.

Theorem 2. Let the following conditions hold:
1. Conditions H1 - H6 are met.

2. imsup,_, by = N, N is a positive constant.
3. liminf,_ o [, p(s)ds > M o — oxp,
Then all solutions of problem (1), (2) oscillate.

Proof. Let x be a nonoscillating solution of problem (1), (2). Without loss of generality we
may assume that x(r) > 0 for ¢z > ty > 0. Then x(t — ) >0 and f(x(t — h)) >0 fort > 1, + h.
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Introduce the function w(f) = *=2 ¢ > 15 + 3h. From (1), H1 and H2 it follows that x is

x(n)
a descreasing function in the set (fy + 3A, T5) U[Uf;(’rf, Tit+1)], where T, <ty + 3h < T;.
Fix t,t > ty + 3h. The following cases are possible:
1. In the interval (¢ — A, t) there is a point of jump T¢. Then

x(t, + 0) S x(?)
1 + by | +N’

1

2. In the interval (¢ — h, ¢) there is no point of jump. Then x(t — &) > x(¢), 1.€.

1.e.

x(t — h) > x(1) =

— h 1

We shall prove that the function w 1s bounded above for r > £y + 3h. Let r* be an arbitrary
point such that t* >y + 3h. Choose a point ¢ so that t — h < t* <t and

™ t
/ p(s)ds > (1 +MM and / p(s)ds > (1 + N)M.
!—h 28 r* 2€

Such a choice of the pont ¢ is possible by virtue of condition 3 of Theorem 2.
We shall consider the following cases:

1. Letty € (7, 1).

1.1. Ts—1 € (" — h,t — h).

Integrate equation (1) from #* to ¢ and obtain that

f
x(1) — x(t*) — byx(ty) + f p(s)f (x(s — h))ds = 0. (10)
From (10) there follows the inequality
inf fa(s =) [ plo)ds < x(6) + bux(z) = 500, (1)

On the other hand, we have

. x(t — h)
o= w1 (557 12

From (11) and (12) we obtain that

f<(r—~h)) (1 + N)M

| +N Qe < X(I*) -+ bk.I(Tk) < _Jc(f*)(] + M

From the last inequality we find

(13)

—h M
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Integrate equation (1) from ¢ — A to t*. Since in the interval (¢ — A, ¢*) there is no point of
jump, then

|

x(tY—x(t —h) -+ EIin}ft ]f(.x(.s — h)) p(s)ds < 0. (14)
s€|t—h,t* t—h

Since 1n the interval (t — 2h, t* — h) neither is there a point of jump, then

inf f(x(s — h)) = f(x(r" — h)). (15)

selt—h,t*]

From (14) and (15) it follows that

Xt — h) > fOt* — h) / p(s)ds >
1—h

> f&x(r™ — h))(l J;N)M. (16)
From (13) and (16) we obtain that
x(t* — h) < x(t*—h)
T () &
_ =k R fae R 2
fx(* =) ¢ (__%; ) x(t — h) M
< M? (§)2 = 4¢* < 00. (17)
M

1.2 Tx—1 € (t — 2h,t* — h). Then in the interval (t* — h,t — h) there 1s no point of jump.
Hence

inf f(x(s — h)) = f(x(t — h)). (18)

sE[1*,1]

From (11) and (18) 1t follows that

fx(t — h)) f p(s)ds < x(t") + Nx(t™)
from which we find Y
x(t™) = fx(r — h))z—g- (19)

Integrate equation (1) from ¢ — A to ¢* and obtain

*

x(t*) — x(t — h) + / p(s)f (x(s — h))ds = 0. (20)
t—h
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In this case we have

x(t — 2h) > x(Ty—y) = X(Tg—1 +0) S x(t” — h)

Then

, x(t* — h)
se{}ﬂ,r*]ﬂx(x —m)2f ( 1+ N ) '

From (20) and (21) we get to the inequality

(x(r* — h)) (1 + NM
y 1+ N 2e

< x(t — h).

From (19) and (22) we obtain that

x(1*—=h)

x(t* — h) < x(t* — h) 2e TN

() T ft—m)2 T M 7 (,ﬂ:*_m)'

I+N

(™ —h)
x(t — h) f (II—PN

. : ) 1 <
fx(t—=h))  x(t—h) (1+M =

2e 2e
< —M M- | — 42 _
Ny (1+N)M( + N) e” < oo

1.3. Let 74— <t — 2h. Then

inf f(x(s — h)) = fx(™ — h)).

sE[t—h,t*]

1 4+ by_; 1+N

(21)

(22)

(23)

(24)

Integrate equation (1) from ¢ — Ak to t* and obtain (20). From (20) and (24) it follows that

flate* — ) =S < xe— ),

From (19) and (25) we obtain that

x(* —h) _ x(" —h) 2e _
x(*) T f&x@—-h) M

x(t* — h) x(t—hn) fx( —h)) | 2e

St —h) faG—h) xt—h M-

<2 26 2e  4e’ -
="M aX¥NM M T 1T+N

Q.

(25)

(26)

From (17) and (26) 1t follows that if T, € (¢*, ¢), then the function w 1s bounded above for

t > to + 3h.

2. Let 1, € (t — h,t*). The considerations 1n this case are analogous to those in Case 1.
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3. Let {t}g2, N(t— h,t) = 0. In this case as well, without any particular difficulties,
analogously to Case 1 it is shown that the function w 1s bounded above.
Divide (1) by x(¢) >0, > ty + 3h and obtain

X0 fOt— h))

0 - p(1) oS = 0. 27)
Let 1, € (t — h,t]. Integrate (27) fromt — htot (t > ty + 3h) and obtain
1 x(0 [ LX)
= (. 28
[”[l+bmr—h)]+ " )

Introduce the notation
wo = lim inf w(?).

[— OO

It is clear that 0 < wg < 00. Then from (28) it follows that

f LS =) XS =R e i1+ bywo)

PTG =R T X

/ p(s )f(x((s_— :))) w(s)ds < In[(1 + N)wy]

| f s —h) ]
[_ p(s) o h) —Bt'ﬂ[(1 + N)wo]

1 /[ 1
— [ p@)ds < —In[(1 + N)wol. (29)
M 1—h Wy
Using the inequality Inx < % for x > 1, where x = (1 + N)wp > 1, from (29) we get to the
inequality
’ 1 M
lim inf / p(s)ds < ( +€N) :
1—h

[— OO

The last inequality contradicts condition 3 of Theorem 2. H
Consider the nonhomogeneous impulsive differential equation

X' (1) + p(O)f (x(z — h)) = b(t),t # Ti

Ax(Ti) = brx(Tk) (30)

with 1nitial condition (2).

Introduce the following conditions:

H7. b € ¢(R+,R).

HS8. There exist two sequences {£;}2,, {#;}3°, C R, and two constants ¢g,g> € R such
that

(1) lim; o0 1) = lim; oo £} = 00;

(1) w(r)) = q; < w(t) < g2 = w(t})
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where w/(t) = b(1),t € ﬁ+,f € N.

Theorem 3. Let the following conditions hold:

1. Conditions H1, H2, HS - H8 are satisfied.

2. -1<b, <0,keN.

3. limsup,_, ., 725 f,r:"_l_h p(s)ds > M.

Then all solutions of problem (30), (2) oscillate.
Proof. Let x(¢) be a positive solution of probliem (30), (2) for ¢t > 1, >0. Then x(t — h) >0
and f(x(t — h)) >0fort >ty + h.

Set

2(t) = gy — w(t) + x(8),t > to + h. 31)

From (31) it follows that x(¢) > z(¢) for t > ty + h.
From this fact and from condition H2 it follows that

fx(®) = f(z(2),t = 1o + h.
From (30), (31) and H8 we find that
0 = X'(t) — b(®) + p(O)f (x(t — h)) > Z' (1) + p()f (z(t — h))

Az(Tk) = bra(Ti) + bilw(ti) — g1,

1.e. we obtain the impulsive inequality
Z(t) +pOf(z(t — h) < 0,t # (32)

AzZ(ty) = brz(Ty) + Ax

where
Ar = b[w(t) — 1] < 0.

1. Let z(#) > 0 be a solution of inequality (32) for ¢ > t; > t;. Integrate (32) from T, to
Tx + h(Ty >t + h) and obtain

Ti+h
(Tt +h) — z(t +0) + f p($)f(z(s — h))ds <0

Tk

T +h
! —h ds < z(t + 0
sE[*riI}fk-l-f;]f(z(S ) [ﬁ; p(s) s < z(Tk )

T +h
f(Z(Tk))/ p(s)ds < (1 + bp)z(t) + Ax < (1 + br)z(Ti)

1 Tith 2(Tx)
1 + b / PiMs < sy =M
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The last inequality is valid for each k for which T, > ¢; + h, and it contradicts condition 3
of Theorem 3.
2. Let z(t) < 0 be a solution of (32) fort > ¢, > t3. From (31) it follows that

x(t)) = z(t]) + w(t) — q1 = 2(t)) + q1 — q1 = z(1)).

Hence for ¢! > t; we get to the contradiction 0 < x(#})) = z(#}) < 0. &
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