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GENERALIZED CARDINAL INTERPOLATION BY REFINABLE FUNCTIONS: SOME NU-
MERICAL RESULTS

M.L. LO CASCIO, F. PITOLLI

Abstract. We present a particular class of refinable functions, that are solutions of a
refinement equation when the mask satisfies suitable conditions. Some general properties of
these functions, such as symmetry and monotonicity, are proved. We extend an interpolation
problem, already considered in the context of the cardinal splines, to the refinable functions.
Some numerical results and graphs are displavyed.

1. INTRODUCTION

A refinement equation (RE) 1s a functional equation of the type

©(x) = Z“j P(2x —j) (1. 1)

jeZ

where the "mask” a = {¢,};ez,a; € R, is a given sequence satisfying suitable conditions.
We shall refer to ¢ as a refinable function.

A well known example of such functions is provided by the set of B-splines of a given
order.

The refinable functions play a crucial role 1n the study of stationary subdivision schemes
[1,3.6,7] as well in the construction of basts of orthonormal wavelets [2,4,10].

The interest in analysing how the behaviour of a refinable function depends on the mask 1s
suggested not only by the involvement of refinable functions in the mentioned subjects, but
also by some recent researches |5], where it 1s just examined how an alteration even slight on
the mask affects the corresponding refinable function.

In this paper we shall consider the case of finitely supported refinable functions whose
mask a satisfies the following conditions:

a, >0, hk=0,...,n+1 ap =0, k<0, k>n+1 (1.2)

Y ap=1 VkeLZ. (1.3)
JEZ
These conditions ensure [12] that there exists a unique continuous function ¢ satisfying
(1.1) and such that
ex)=0, x&O,n+1) (1.4)
ex) >0, xeO,n+1) (1.4")

and such that

Y pu—jH=1 VxeR (1.5)
JE
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Moreover we suppose that the associated polynomial

n=+1

pld)=>» a2 (1.6)

J=0

is left-plane stable, that is a Hurwitz polynomial, so that the refinable function ¢ 1s also a
ripplet [8], that is it satisfies:

f det @x—1i)=>0 Vx <...<x, n<...<i,, eR, ;€% (1.7)
J=1 o '

which, in particular, joined to (1.5), implies that
0< o) < 1. (1.8)

Moreover, the functions @(- — k), k € Z, are linearly independent so they can be used in
interpolation problems. In Section 2 we shall introduce the generalized Cardinal Interpolation
Problem and we shall give some procedure to construct the interpolating function belonging
to span{@(- — k)}. In Section 3 we shall study the behaviour of a particular class of refinable
functions and their performances with respect to the interpolation problem,; this will be done
mostly from a computational perspective, providing some graphs and numerical tables.

2. CARDINAL INTERPOLATION BY REFINABLE FUNCTIONS

[n relation with the cardinal splines, M, (x), of degree n, Schoenberg proposed [13,14] the
Cardinal Interpolation Problem (CIP) consisting in the search of a functionf € span{M,(-—k}:

fO) = biM,(x — k) 2.1)

keZ

satistying the interpolation conditions
fG+o)=y;, JEL

where y = {y;};ez,y; € R, is a given sequence and 0 < < |.
Micchelli treated the same problem in the wider context of the cardinal L-splines [11],
which are determined by operators of the type:

n—+1

L(D)y = Z a;iD*y.

k=0

This problem was solved under various conditions on y; in particular in both cases it was
proved that, if y € ['(Z), the CIP has a unique solution for each « € [0, 1) different from an
exceptional value «g. The value of «y depends on the particular class of L-splines.

On the other hand the cardinal splines satisfy a refinement equation.

Thus, a generalized CIP can be set up as follows.



Generalized cardinal interpolation by refinable functions: some numerical results 193

Given a sequence y = {y;} € ['(Z) of data y; € R, and a refinable function ¢ whose mask
a satisfies the conditions specified in Section 1, one finds a function F € span{@(- — k}, i.e.

Fx) =) cxolx = k), (2.2)
kEZ
such that the conditions
Flao+))=y;, JjeEZ (2.3)

are fulfilled, with « fixed in [0, 1).

Following a line of reasoning basically developed by Schoenberg [15], it 1s possible to
show that the solution to this problem exists and 1s unique providing that the Euler-Frobenius
polynomial

Ma;z) = Z(p(fx+j) 7 (2.4)

j=0

does not vanish on the unit circle |z] = .

Since under the present assumptions  is aripplet [see (1.7)], the sequence of the coetficients
in (2.4) 1s totally positive. Therefore, for any fixed & > 0, the polynomial (2.4) has only real
negative zeros, and it has only real non positive zeros for o = 0 [9]; thus we are interested to
avold only the values of « such that

Mx; —1)=0. (2.5)

Now let us assume that at most a value « exists such that (2.5) does not hold, so that, for
any set of data y, the conditions (2.3) identify the unique interpolating function (2.2). It s
worth noting that such a value of « depends only on the refinable function .

In the next Section we shall consider a case in which F exists for any o« € [0, 1) different
from an exceptional value o; now we get a procedure for obtaining the interpolating function
F.

Let us denote by £,(x) € span{@(- — k)} the function which solves the generalized CIP
wheny = {d;}, that 1s

N _ < _J1b it j=0
lf:;(ﬂi-l-j)—éj—{o if i £0 (2.6)
where o 1s such that TT(x; — 1) # 0.
One can write
F(x) =Y yyLyx—). (2.7)

e f

[t follows immediately that F € span{@(- — k)} and satisfies (2.3), due to (2.6).
Let us consider the Laurent series of the reciprocal of the Euler-Frobenius polynomial (2.4):

l
oo = Y W, (2.8)

veEL

which converges in an open set r < |z] < {,r > 0, including the unit circle |z] = 1.
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From (2.4) and (2.8), multiplying the two sums, one gets

j—n
IEZH Zwu(ﬂ(ﬂi‘l'j—"-’)
JEZ v=j

and, recalling that ¢ 1s finitely supported, this 1s equivalent to

Zw,ftp(ix +Jj—v)=d;. (2.9
veEd
Thus one obtains
L,x) = Z W, @Ex —v). (2. 10)
=y

Remark. The finite support of ¢ implies that the sum in (2.10) contains only a finite number
of terms for fixed x, just n + 1. Moreover if also y reduces to a finite number of data different
from zero, then the interpolant F in (2.7) 1s expressed by a finite sum.

The problem to express the interpolating function F 1s so reduced to find the coetficients in
the Laurent series (2.8).

3. A CASE STUDY

Some 1nverse problems related to the construction of interpolating functions belonging to
the space span{ (- — k)} leads to consider the finitely supported mask

w a2 w2+
dp = d3 _(2f:+1)2’ a4 =dy = (2fz_|_])2‘

he NU{0}. 3. 1)

For any A this mask has the properties (1.2), (1.3) with n = 2 and the associated polynomial

1

‘ 1) _Kk 1 1 2 1 !
pl2) =) a7 = Z I)E(Z - DR 4+ 2" - )Pz + 2"

k=0

1s a Hurwitz polynomual.
So it 1s possible to ensure [8, 12] that, for any fixed A, there exists a unique function
@n € CY(—00, 0), supported on (0, 3), satisfiying the RE

3
on0) =) aei2x~k), WxeR (3.2)
k=0

and (1.4), (1.4°), (1.5).
Because of the symmetry of @/, also @ is symmetric with respect to 2 [12], that is

©n(3 —x) = p(x), VxeR (3.3)
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Theorem 3.1. The refinable function @y, h >0, defined in (3.2) is increasing in [0, %]*

Proof. Given a function f € C’[«, 3], we consider the transformation

Tf(x) =Y kxj)f(), J=2Z

where k(x,j) = @;(2x — j).
The properties (1.5), (1.7) assure [9, §3.6] that 7 maps increasing functions in increasing
functions.
Then assuming f(1) = a\ + (@'” — a\\")t, which is increasing for r € [0, 1] and & >0, it
follows that
Tf(-rJ — ff:;”([)h(z«f) + {i{|m(-ph(2x — I)

is increasing on RR.
In particular, when x € [0, 1], by (3.1) 1t follows

Tf(x) = @p(x)

which implies the monotonicity of ¢y, in the same interval.
Assuming now x € [, 2], the expression (3.2) reduces to

(/1)

iP;;(I) = A (PJ;(Z-‘J) + “T”@h(lr "' l) T ff{lhjﬁph(zf — 2) — Tf(r) T H[IMQP!:(ZX - 2)

By the proof above, ¢,(2x — 2) 1s increasing when x € [1, %], then the thesis follows.
By the symmetry of o, it follows immediatly

Corollary. The refinable function @y, h >0, is decreasing in [%, 3].

In the following we shall consider only the case & >0 and, for short notation, we shall
suppress the index 4.
Moreover, it 1s useful to recall that the set of the dyadic rationals of level r 1s defined to be

zxz{g;kez}rez

and the set of dyadic rationals 1s defined by

D:UQH

re &

From (3.1), (3.2) one obtains the values of ¢ on Dy

|
$W=ME=5 (3.4)

Then the values of ¢ on a set D, produce the values of ¢ on the next set D,,; by means of
the RE (3.2).
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Taking into account the symmetry property (3.3), the computation can be confined to the
interval [0, 3 / 2].
Then by means of (3.1), (3.2) one gets

l 0 3 -
@(5) = aop(l) = =, Lp(5> = 2a,0(1) = a, (3.5)
and, by induction,
l _
o(L) = agort). > a6
3 ] X
(,D(E) = 3.-:1“ a,o(l), r>1. (3.7)

Several numerical cases have been checked corresponding to different values ot /i, which
correspond to different choises of the mask, and some examples are quoted in the following
Fig. 1. Here graphs corresponding to 7 = 0, 1, 2, 3, 5,9 are shown and the cardinal B-spline
of order 3, N, is also given.

Indeed the mask a = {Jl', g,, %},, :I{} of the cardinal B-spline is obtained from (3.1) assumig
h = log(3 + 2:/(2))/ log2 ~ 2.5431: we can observe that when A varies 1n [0, 4+oc¢), the
shape of the refinable functions under consideration is quite similar to the shape of N3 when
h = 2,3, and tends to the graph of the non continuous function

r

l<x<?2
x=1lx=2

]
(p*}:(l) = X ﬁl
L0 otherwise

when A — +o0.

The refinable functions (3.2) were also considered in the generalized cardinal interpolation
problem.

The Euler-Frobenius polynomial

Mz %) = @(ax + 2)72° + ©(a + Dz + @), x € [0, 1) (3. 8)

has only non negative zeros (see Section 2).
When o = 0, the zeros of (3.8) are

— (1
A =0, A= 20
P(2)
and so the polynomial T1(z; 0) vanishes on the unit circle iff @(2) = @(1). The following
proposition 1s stated.

Theorem 3.2. In the generalized CIP the value &« = 0 is an exceptional value for any refinable
function @, supported on (0, 3) iff
©(2) = @(1). (3.9)

Theorem 3.3. If the refinable functions (3.2) are strictly monotone, then the unique exce-
ptional value with respect to CIP is o« = 0.
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Proof. The refinable functions (3.2) satisty (3.9) due to the symmetry; thus ¢ = 0 1s
exceptional according to the previous theorem.

Suppose now that an exceptional value & # 0 exists. Then, from (3.8) and (2.5), 1t follows
that

R(x) = o(x)+@(&+2)—p(x+1) =0, R(x) given by TT(z; &) = (z+ 1)Q(x; 7))+ R(x).

Taking (1.5) into account, this would 1imply

1
1) = o
p(x+ 1) >

which 1s impossible because, from (3.4) and the hypothesis, it follows that

|
(p(l) > 5 Vx € (] \ 2)

Remark. The hypothesis that the functions ¢ are strictly monotone 1s probably redundant,
as numerical tests seem to imply that this 1s always the case.

Experiments have been carried out with finitely supported data sets, namely

yi =0, j<0,7>m,

. ! : :
and using the values «x = j—l L S that are not exceptional values, as can be checked directly

using (3.8).
In Figs. 2. 3, 4 the graphs of the interpolant (2.7) are quoted when the data set {y;} is

obtained by the functions:
~ x 0<x<4.5
hilx) = { 0  otherwise
. —4.<x <4
S0 = {0 otherwise

corresponding to equidistributed nodes with step h. Of course the cardinal interpolation
condition (2.3) 1s obtained homothetically.
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Refinable function: h=0 Refinable function: h=l
1 1
0.6 0.6
0.4 0.4
0.2 0.2
O 0.5 1 1.5 2 2.5 3 O 0.5 1 1.5 2 2.5 3
Refinable function: h=2 B-spline of order 3
1 1
0.8
0.6
0.4
0,2
0 0.5 1 1.5 2 2.5 3 o 0.5 1" 1.5 2 2.5 3
Refinable function: h=3 Refinable function: h=5
1 1
0.8 0.8 m
0.6 0.6
0.4 0.4
0.2 0.2 f/ \\
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Refinable function: h=9 Refinable functions and B-spline
1 — — 1 _ —_
0.8 0.8 /—\
0.6 0.6 @
0.4 0.4
0.2 0.2 /-/ \
O 0.5 1 1.5 2 2.5 3 o 0.5 1 1.% 2 2.5 3

Fi1c. 1. Graphs of the refinable functions for different values of A.
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B-spline Refinable function: h=5
5
4
3
2 yd
| /

R U 1 —
2 3 4 @

Refinable function: h=9

Fic. 2. Graphs of the interpolants (2.7) to f, for a = = and m = 20

2
B-spline Refinable function: h=5
. i | u/‘ll fat 1 Fa
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
-6 -4 *2_0.2 2 6 -6 -4 —-2__0_2 2 4 6
Refinable function: h=9
. A
;
= 0.8}
0.8
0.6
0.6
0.4}
0.4
0.9 0.2 &
;. _‘ _f | 4 -6 4 -2 2 57
6 4 2_0_2 2 4 6 —0.2\

Fic. 3. Graphs of the interpolants (2.7) to f, for a = % and m = 15
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h=9,alfa=3/4 h=9,alfa=1/4
. 1 —~ 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
-6 -4 =2 2 4 3} -6 =4 =2 2 4
h=5,alfa=3/4 h=5,alfa=1/4
F T 1 ;ﬂ 1 1\
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
gt L o -
-6 -4 -2 2 4 6 -6 -4 -2 2 y
F1G. 4. Graphs of the interpolants (2.7) to f; for a = -}I-, -i- and m = 15
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