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0. INTRODUCTION

In this paper  we continue the study of boundedness in uniform  spaces and topologica1
groups,  as  initiated by Hejcman [13] and Atkin [Il.  In the fìrst  three sections, after  reviewing
and developing  basic  materia1 for background and lata  use, we examine  thoroughly the be-
havior  of boundedness with respect  to subspaces, projective limi&  and suprema in relation
to precompactness.  From Section I we mention in particulur  Example  I .lO of an  unhounded
projective limit of bounded uniform spaces, and 1.13, 1.14, 1.15 on maximality properties
of 1h.e  finest  precompact  compatible  uniformity on a Tychonoff space. 1.16 and 1.17 are
examples  of two bounded uniformities on a set which induce equa1  topologia but have  un-
bounded supremum. Typically, boundedness is more difficult to handle than precompactness
and gives  rise to specific  concepts like “boundedness respecting subspace” Y of a uniform
space X in the sense  that any  bounded set A c Y is bounded in Y. For corresponding  results,
see  2.2,2.3,2.4,3.5,  and Section 6 far “infraboundedness  respecting”.  Theorem  2.6 contains
the known fact  (see  Isbe11 [16], p. 20, no. 21) that every  uniform space has a uniformly
isomorphic embedding into a bounded uniform space. Our  construction has the advantage
of being well compatible with other  strutture on the space, like previously  known analogous
constructions  far  topologica1 vetor  spaces and topological  groups. The third section  deals
with the connections between  boundedness, uniformly  continuous functions,  and pseudo-
metrics.  In 3.13 and 3.14 Hejcman’s characterization (by B-conservativity) of uniform spaces
in which boundedness can be tested  by a single pseudometric is proved  in a new  way,  using  a
version  3.1 of the metrization  lemma. A somewhat expository short fourth section on boun-
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dedness  in topologica1 vector  spaces  mainly illustrata the materia1 of the preceding sections.
In the final  sections  5 and 6 we treat  boundedness in topologica1  groups. By 5.6, every  topo-
logica1  group has  il topologically isornoI-phic  embedding into an  L V R-bounded topologica1
group. In addition  to boundedness with respect  to the four natural  uniformities of the group,
we consider  the notions bibounded, infrabounded, and strongly infrabounded (see  5. I and
6.1) which are natura1  from the roles  they play and strongly interrelated.  In the hierarchy
which these  notions form  (see  6.3), any  two of them are different except possibly for the pair
l V R-bounded and bibounded. In this context the most difficult example  6.4, essentially  due
to Uspenskij, is that  of a (strongly) ini’rabounded,  hut not  C V  R-hounded group. We exhibit
various  situations  in which cwtain of our  notions coincide. E.g., special results  are obtained
for ASIN-groups (see  6.14 througb  6.19) and for groups  with open C-pseudocomponent  (see
6.29.6.30.6.3  1). The general theory is illustrated  by many  examples. A number  of questions
remain open. Little  could  be said  about  L V  R-boundedness.  In o  subsequent  paper  we
will treat  invariant  pseudometrics in elation  to boundedness in topological  gwoups,  extending
Hejcman’s work on abelian  groupc.

In regard to terminology and notation  we remark: A uniformity V on a set X will be
understood as  a set of vicinities. The topology induced  by V will also  be called the V-topology.
ForA C X, VIA  denotes  the restriction  of V to A. A c X is called uniformly  discrete if VIA  is
discrete. A uniformity on a topologica1 space (X,  7) is called (iT-)compatible  if it induca  1.
For 1’ E  V, v’ denotes  the diagonal  of X. We let N denote  the set of non-negative integers
and put  W’  := W \ {O}. For a topologica1 space (X,  7) and CI t X, i&(X,I)  denotes  the
neighborhood fìlter  of li.

1. BOUNDEDNESS AND PRECOMPACTNES

Definition and Remark 1.1. Ler  (X,V)  be o mijorn~  spme  and A c X. A is  cnlled
precompact,  iffhr everv  vicinity  V t V there  uists  F c X.jinite  .such  that  A c V[F].  A is
cnlled  bounded, $%I-  ever~  vicinirv  V E  V there  exit  F c X ,fnite md  n E  W such  thnr
A C V”[Fj’. In both  cmes F C<III  be  c/~os~~~  ns  n  mbser ojA,  see  [ 131, 1.5. [j’A c Y c X, we
coli  A bounded in Y $A is bomded  wirh  vspecr  IO  the un~fom  ,spnc?  (Y, V 1 r).  [fw conside~-
.sewvl  m~fonniries  on  X we use the  fems  “V-bomdedness  ”  md  “V-p~rconyrrctiless  ” jiii-
distblcrim.  Ifrhe whole  .v,,nce  is bomded  OI preco,n,xrct  ,v.  ~1.  o  giwn un$im~it,: we col/  rhe
w~~fimniry  bmozdrd mp.  pecompacr.

Example  1.2. Let X be a seminormed real  or complex wctor  space. (A  seminorm is a function
x ++ /ixiI of X in R such that, fa al1 x,? t X and scalars  h,  one  has 1/x/1 > 0, IlhxIi  = Ihll~xli
and 1 i + -11 5  /Ixj/ + ll~ll.) T h e seminorm induca  the pseudometric (x,~)  c /IS  - j)lI  on X
which in turn generata the “standard” uniformity V of X. A set A i X is V-bounded in X iff
sup{llnll  : ci  E A} is finite.

Boundedness  in the context of topological  vector  spaces  will be discussed  in Section  4.

Remark  1.3. (1) For a subset  A of a uniform space the following implications are obvious:
A is compact + A is precompact  + A is bounded. Subsets  and finite unions of precompact
(resp.  bounded)  sets are precompact  (i-esp.  bounded). Also  the closure  of a precompact  (resp.
bounded)  set in the topology induced  by the uniformity is again  precompacr  (resp.  bounded),
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see  1131,  Theorcm  I .9.
(2) The precompactncss  of a subset  A depends entirely  on the relative uniformity on A, i.e.  A
is precompact iff it is precompnct  with respect  to  (A,  V IA).  This is easily proved  by means  of
the formula (V n (A x A))[F]  = A n VlFI, far  F c A and V E V.
AF a consequence, precompact sets are bounded in themselves.
(3) If A C Y C X and A is bounded in Y, then it is also  bounded in X. In contrast  LO the case
of precompact sets. the converse is generally  not true,  as  the following example by Atkin
shows (cf.  II 1.  Ex. I .8 b))  : Let A be nn inlinite  orthonormal  subset  of a Hilbert  space X.
uniformized  as  in 1.2. Then A is bounded in X, but the relative uniformity on A is discrete, SO
that A is not bounded in itself. As a consequence.  A is  not  precompact. From this example
one obtains a bounded uniform space X’ with a closed  and open bounded subset  A’ that  is
not bounded in itsclf  by putling  X’ := {x  E X : ~~,r~/ < 2 und 11,~  ~ (111  #  4 for al1  ci  E A} and

A’ := {s E  X : 1/x - </li  < ; f»r  some o E A}.
(4) One  easily p~aves  that  finite unions of bounded in themselves subsets  are bounded in
themselves. The next fact,  which is essentially  (2.1) of Il], has a slightly more technical
proof: Far  2 c  Y c X with 2 dense in Y, one has: 2 is bounded in itself iff Y is bounded in
itself.
(5) On every  completely  regular  space X there exists a compatible  precompact uniformity,
cg. the unifonnity induced  by the Stone-iéch-compacti~cation.  This shows that  generally
the topology  does  no1 yield sufiicient  informati«”  cancel-ning  precompactness.
(6) Plainly,  finite sums  of bounded uniform space  are  bounded.

Proposition 1.4. Ler  (X,  V) be  CI  un(fi~rm  space  und  A c X. Then  A k bow~ded  (msp.
preconpm)  rf eveq;  courm6le  discrere B c A is  hounded  (resp.  prmmpact,  01;  equiwler~tl):
j!,iP).

Proof. The condition is necessary  by I .3( 1).  Now let A be unbounded.  Then there exists
a viciniry  V such that far  any finite F c A and, far  any II E W’. A q!  V”[Fj.  Take  any
no t A and choose  inductively  (1. E A with (I,~ $? V”[{ ~0,  , u,,- ,}] (far  II > 0). The”  the
set B := {a. : II t N} is not bounded: Suppose it is. Then there exist  111,~  E W ’ with
B c V”[{oo. , CI,,, }]. We  can assume m = II - 1 (if necessary,  increase  either  1~  or II), SO

that  especially  (,,a E V”[{nu..  , G-,}],  which contrudicts the choice of <,,r.
If A is not precompact, there is a vicinity  V with A $Z  VIFI,  for all finite F c A. Then choose
inductively  CI,, E X, n E N with CI,, @ Vl{ oc,,. _.  ,o.-,}].  Then B := {o.  : II  E N} is not
precompact.
It remains  to  show that  B is uniformly  discrete. Pick  a symmetric W E V with W’ C V. For
i #  k we have  (1,  q? V[rrnj  (in both  casa), and thercfore  Wlo,  1 n W[Q]  = II. 0

We omit the proof of the following known

Corollary 1.5. (u) A ,suhset  A rfn unifi)rt~l  .spnce IS  p’rcompncr  if  ewry  un~iml~  discrere
B C A i.sfinire.
(bj  A cou~m~bl~  compncr  space is precompoct.

More generally than I .5 (b),  every  pseudocompact subset  of a uniform space is precompact,
see  [9],  Problem  8.5.10  or [9],  Chapter  lX,gl, Exercise  21.

Proposition 1.6. Leff’  : X i Y be  CL  u~~~fiinnly  contimror~s  mnpping  beiween  uniform spoces.



192 H. F,ihr:  u! .Qoek*<

lf  A CI X is  hounded  (how&d  in irse(f  or precompacr.  revpecrrvely),  then f(A)  c Y has the
sume pmper)c

Proof. Elementary,  cf. [ 131,  Theorem I. IO. 0

Proposition 1.7. Let  (jJEI he 0 j%nlily of ma,,s  f; : x + X,, let Vi De 0 rrniformi~~ on X, far
i E 1, rrnd  le/ V br rhr  blirird  ~rniformiry  wirh mpccr  f» u;),EI.  A srrhset A C X is  p’rcornpc~
in (X,  V)  ifff;(A)  is  V;-precomprrcrfor errch  i E  1.
Proof. See  141, Chapter Il, $4.2, Proposition 3.

Since  the relative uniformity is the initial  uniformity with respect  to the inclusion map,
we know fi-om  example  1.3 (4). that the analogue  t’or  bounded sets doer  not hold in general.
However. it has been  shown to be true  for product  spaces and certain projective limits:

Proposition 1.8. Ler X he the product  ofrrfrrmil~  (X.)/ ,E, qf lllll~mn  SpcPJ,  endowed  with  Ihe
~mduct  wCj<wmitv  Far i E I, ler q :  X + Xi De the pmjection.  Thm .fb!-  dl A C X: A is
ho~rndcd in X iff Vi E 1 : n,(A) is  bm,~ded  in X,.

Proof. See  1131,  Theorem 1.11. 0

Proposition 1.9. Let  (X,  V)  he rhe  pr@crive  lirnir  ~f 0 /wjective .~ysre,n  (X,, Vi,  JL,  1) of
wl(fbrm  .spaces  (X,,  V,) wi/h  direcred  inda sef 1 in the .sm.w $[4/, Chqmr  lì,  $2.7. ( “imene
u\-ito~r”  in rhe rernkology  of (91, Exer-cise  8.2.8).  A.s.wme  thut,  far euch  i E I, rhe canoniurI
mop j; : X + X, is  surjecrive.  Therr CI  subset  A of X is V-bow~d~d  (re.sp.  homded  in ifself) iff
,f;(A)  is  Vi-bounded  (resp.  homded  in itself),  ,for  eoch  i E 1.

Proof. See  [Il, Lemma 2.3. For the part  concernin~ “bounded in itself” the wjectivity  of
the mapsf, is not needed. 0

That the assumption  of surjectivity of the mapsf, is not superfluous  is shown  by

Example  1.10. of an  unbounded projective limit of a decreasing  sequence  of bounded uniform
spaces.  Let Y be a countable  Hausdorff, dense in itself and bounded unifol-m  space with an
unbounded subspace  X (2.6 and 2.7 (5), (1) and (0)  yield such Y and X). Writing  Y \ X as
{?;!  : II t N}, we obtain 8 decreasing sequence  of dense open subsets  Y \ {)Q,  ,?.}  which
are bounded (in themselves)  by 1.3 (4). Their intersection X is the desired projective limit.

One  could  obtain un example with closed  subspaces if, in the  above,  Y could  be chosen
in addition  locally precompact.  (However  we do not know whether such a Y exists.) The
unbounded in itself subspace  X may be assumed  to be closed  because  of 1.3 (2). Then one
can choose,  far  each  II E  N, an  open precompact  neighborhood  V,, i Y \ X of u,,. SO  the
subspaces Y \ lJ=,,  Vi,  n  E  N, are closed,  and they are bounded in themselves  by 3.7 (which
we anticipate far this construction)  and they have  again  us  their projective limit the unbounded
space x.

The following notion  of V-component,  helpful  in the discussion of boundedness,  hai  already
been  used  by Bourbaki (141.  Chapter 11, 54,  Exercise 7) and Atkin ([ 11, I .3).

Definition and Remark 1.11. Let  X he CI  unfiwm  .space und  V ci symerric  vi~iniry.  Thm

+ := U,,m V’I  dQine.s  m  erpiwlence  relntion  011 X. The cqrrivalence  clu.sse.s  modulo  v ore
crrlled  rlw  V-components. Th-,; are ape,,  md  therefim  clrmd.
The pseudocomponent of’,t E X is rlej?nerl  us the intrn-ection  of oI/ V-componenr.~  corrrainiq
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L The  ~~.se~~fl~~locnt~~~~o~~e,,r  ~fr is n  sq~er.xer  ofits ~r~rr.~iro~nl/~o~~rnr  (defined  us  the intemxtion
of rrll clop~  sec5  contuiniq  3)  which  in rum  contrtb7.s  ifv comccted  coyxnrmr.  f’lninl,:  the
p.s’l’dr>~ornl>o,~~~~~/.\ ore  clo.wd. <iild  theI.jiml  0 prrrtirio,7 of x.

The equivalente “(n)  w (6)” of the following lemma has  been  show  by Atkin

Lemma 1.12. Let (X,  V) he  CI  u~(fim~  .sprtce.  Fo,-  A C  X the,fi~llowir~y  UIY equiwienr:
(n)  A is bomded
(h)  Fo,-  nll  .swmetric  ~+cirziries  V, A meer.s  on/vJi~rirely  mr!~)’  V-componerm; rntdjiw evey~

V-cm~~po~~et~f  W md  ererv x E  W there  exisrs  II E  W  wirh  A f’ W c V’r[r].
(c)  Fu  a/l  ,~wrrmerric  viciniiirs  V. A meei.v  oir/~finire/y  mude  V-cornpunenr.~;  und,  ,f»i-  evcq

V-co~,~/x~n”n’  W, W n A is hnund~d  in  W.

Proof. FOI-  “(CI)  ti  (0)” see  [Il. Lemma 1.4
“(n)  + (C)“Y  Let A be a bounded set  and W be a V-component.  Becauie  of (a)  w (h),  it
remains to show that A n W is bounded in W. Let Li be a symmetric  vicinity,  U c V. Then
we have  A n W C U”[F].  with suitable  II t IY and finite F i 4 f’ W. Since  U i V and W is  a
V-cot~~ponent,wel~ave(U~(WxW))“=  U”fl(Wx  W),sothatArlWc  (C/n(WxW))“[F].
Thus A n W is  bounded in W.
“(c)  + (n)“:  (c)  itnplies that  A is the finite union of bounded sets and hence  bounded. 0

Proposition I .9 applies in particular  to the supremutn  of a directed  set of uniformities on
a given  set X. (Here the directedness  of the set of unifotmities  is crucial, see  examples
1.16 through  1.18.) In particulal; by Zorn’s  lemma, far  any  set A of subsets  of a set X
there  cxist  uniformities V which are maximal  with respect  to the property  %~ch  A E A is
V-bounded”.  We cr?ll thcse  uniformities A-maximal.  If there  exist  two distinct A-maximal
uniformities V and W far the same set A then  some A E  A is not  bounded for the supremum
V V W.  This remark  applies in particular  to the case A = {X}. (Conversely,  if V and
W are two uniformities on X far  which each  A t A is bounded, but not  evety  A E A is
V V  W-bounded,  then nny  A-~naximal  uniformity V’ 3  V ic distinct fi-om  any  d-maximal
uniformity W’  3  )nj.)

We now  give  some results  conceming the maximality  of the linest  precompact  compatible
uniformity on  Tychonoff spaces.

Proposition 1.13. The.fimst  pecompnct  un$i)mii).  W on  o  ser  X is  n  marirnrtl  clemmt  in
thr  sef  of’oll  hor~mled  rmifomitie.~  on  X. In par-rirulot;  W is  moxinml in the set  of dl bou~led
cowpntihle  un~fiwmitie.s  on  X o~rlouverl  with rhe  discrete  iopology.

Proof. Suppose there  is il bounded uniftxmity  V $ W on X. Then V is not  precompact.
Hence,  by 1.5 (n),  X has an  infinite V-discrete subset  A. On the other hand N := (A  x A) U
((X  \ A) x (X  \ A))  generates  a precompact  unifol-mity  2 on X; SO  N E  2 c W c V, and A
is an  N-component.  But then,  by 1.12, ((1)  3  (c). A is V-bounded  in itself, which contradicts
the V-discreteness. 0

The following is atl  example  that the proposition does not  hold fot-  urbitrary  Tychonoff
SpVXS.

Example  1.14. of a Tychonoff space X whose  finest  compatible precompact  uniformity W
is not  maximal  in the set of all compatible bounded uniformities on X. In a Hilbert space
with norm  11 Ij and infinite orthonormal  system (e,),E,,  let X := lJ,t,[O,  I]e, be equipped



194 H.  Fd,r:  w RoekL

with the usual topology induced by 11 11. The usual compatible uniformity V on X is  clearly
bounded. V is not comparable with the fìnest  precompact compatible uniformity W: V is
not  coarser  than  W since  the set {e,  : L E  I} is not  precompact: it is not  finer  than W sita
it is easy  to exhibit bounded continuous real  functions that  are not  V-uniformly  continuous,
but these  fuunctions  are W-uniformly continuous. W is the initial uniformity with respect  to
al1 bounded continuous functions X -IW,see[llj,lSlandJ.LetUtVVW.  Fortbe
boundedness of V v W we prove that  X = U”[O]  far  some II E  W’.  Putting,fi(s)  := IIxIi
(.x E  X),  there  are some more bounded ~~eal  functionsf?, ,./;.  on X and an  E > 0. such that

Li 3  {(.x,!.)  t X x X : 11x ?‘iI  < E and V;,(x)  -.f;,(?‘)l < E for I 5  p < J-}

We cover J := ul,=,.f,,(X> by finitely many  open intewals  II,.  , l,,, of Icngths  at  most  E.
Let L E  1. Since  the 111’  products  l,,\ x.,.x1,,, withp,  ,... ,prt{l ,... nt}coverJ’,thern’
open sets

{x t IO,  Ile, : (fi(A).  ,fi(.r))  t f,,,  x x I,,,}

cover [O,  Ile,.  Therefore, and since [O,  l]e, is connected,  we can index  thcse  sets  as  X,., , ,
X,.,,,. in such u  way  that 0 t X, , and such  that  each  non-empty X, ,j with  2 < 7 < 111’ intersects
some X,., with 1 5 CI<  T. New,  fol-  T  > 2, onc  has far  all s.~ E  X,,,,  V;,(.r) -,f;,(-)l  CE
fol-  all 1 < p  5  I’.  und Ijx ~ !./l  = I/;(.Y) -f;(y)1  < E, whence (x, Y) t Li. It follows that
X,,  c  U[X,  .,l  far  some m < 7, and we obtain  X = U’“‘[Ol

Remarks  1.15. (1)  V V W i) complete since  it is compatible and V is complete.
(2) The dense subspace  X0 := X\ {0} of (X,  VV W)  is locally compact (in fact.  the topologica1
sum  of the spaces  IO,  Ile,)  and it is bounded. but not  precompact. Thwefore. by I .20 below.
it is not  uniformly  locally precompact. Further,  a slight adaptation of the arguments  from
the example  shows for the locally compact space X0: The uniformity VC,  := VIX,,  is not
comparable with the finest  precompact compatible uniformity W,, on X,,, and VC>  V W,, is
again  bounded. Indeed,  instead  of considering  U”[O]  with U E  V, one  shows that, far every
CI,, E  VuVWCI,thet-eisp  E  Wsuchthatforall  L t 1,  U:;[e,l =lO, I le,. SinceUCI  = Un(X,,xX,,)
far  some U E  V, and (1101 is LL  neighborhood of 0 in X. it follows that  X0 c U{ii;“[e,  1, far  any
L E  1.
(3) We do not  know whether  V V W is maximal  OI-  even  the finest  uniformity in the set of all
bounded compatible uniformities  on  X.
(4) Perhaps  every  bounded, non-precompact  compatible 17, on X is the supremum  of V and the
finest  precompact uniformity P c R.  (Pi\ the initial uniformity with rapect  to all bounded
R-uniformly  continuous functions X + R.) Thiq  would imply that V is the smallest  of all
bounded, non-precompact compatible uniformities, and that V V W is the finest  bounded
compatible uniformity (cf.  (3)).

Example 1.16. of two bounded metrizable  uniformitics  V and W on a set X which induce
equal  topologies  and have  unbounded  supremum. In the Banach  space /$  with  I 5 ,I 5 x
consider  the  unit  vectors  ei  := (bl,);EH,  k  E  Z,  and  deline  X := &,([O, i[Ulf,  11)  ei
with its usual topology. Let V be the metrizable  uniformity on X induced b;  the standard
uniformity of /$. V is easily seen  to be bounded. Let CI>  : X - X be the bijection that
leaves  the points of UnEn[O,  $[.PL tixed and sends  (s,&  into (.x,-,),~~,  far  IlxlI > $. Let
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W be the unilòrmity  on X fol-  which <I>  : (X, V) - (X,  W)  is a unifot-m  equivalente;  SO  W
is also  hounded. Clearly,  V and W are compatihle. TO show that V V W is not bounded
consider  the wctmttes  M := {(.r,y)  e X x X : 1i.r ~11 < i} t V and N := (tb  x b)(M)  E W,
S« M n N t V v W.  It suffices  to  show that the M n N component  of ei  is equal  to
IA, II EL, sincc  this implies that  X has inlinitely many  M n N-components  and hence cannot
he hounded, by Lemma 1.12.  In fact  we  will show (*)(M”N)“[e,] =]f, I 1.  et.  far  all I, $  1.

By definition one has  M[P~]  = N[enl  =]i,  I j PI, which pn,ves  (*) fol-  II = 1.  The induction
step a~no~nts  to  proving  (M n N)[hei]  c] 4,  I 1PI. for i < h 5  1.  Suppose that  there exists

y E (M f’N)[henl  \ (Ii,  I ] el).  Then  y E M[het] implies thut

(*1:) !‘t10,  ;l-ca

since  points in 10,  II. c’i  are at  distante  > i from  bei  fol-,j #  h. Therefore~  t N[hetl implies
that y = <II-’ E M[(b-‘(hei)l  = M[hekli  1.  It follows  thati  EIO, I[.et-,, in contwdiction
to  (aa:).

Remcmbering  that the supremum  of two precompact unifot-mities  is precompact. the fol-
lowing  example is of interest.

Example 1.17. of two  unifotmitia  V and W on a set X. inducing equal  topolo+s,  such
that V is hounded and W is precompact and such  that  V v W is unhounded. Lct (X, V) be a
bounded unifonn  space which has  an  open and closed  suhset  A that  is not V-hounded  in itself
(cf.  end of 1.3 (31,  where  V is metrizahle). Let W~I be the precompact uniformity on X with
basi.?  {N}, where  N := (A x A)  U ((X \ A)  x (X  \ A)).  The MI,,-topology  {ll.X.A,  X \ A} is
coarser  than  the V-topology 7.  Hence  W,v,i is coarser  than  the finest  I-compatihle  precompact
uniformity W (the precompact uniformity W V  W,, is I-compatihle,  hence qual  to  W). TO

prove that  VVW  is unbounded we  show that.4  is V V W-unbounded.  AsA  is not V-bounded
in itself, it is also  not V V W,,-hounded  in itself. But  A is an N-component.  hence, hy 1.12.
“(n)  + (c)“,  A is not V V I+bounded  in X.

An example with metrizahle V and W can he ohtained similarly  if U is metrizable  (cf.  end
of I .3 (4)) and if, in addition  to  A as  above,  there exists  a metrizahle precompact uniformity
W’ inducing the V-topology on X:  One  may  then  take  W := W’ V  WA. E.:., if the
metrizable  V-topology has u countable  basis a  consisting  of closed  and open sets, then the
sets (B  x R) U ((X \ R) x (X \ R))  with B E B generate such a uniformity W’.

In hoth examplei  X is not connected:  we  do not know  il connected  counterexample.  But
we  mention  that we  wel-e  uhle to construct  a connected Tychonoff space X, two  compatihle
metrizahle uniformities  V and W and u subset  A i X which is V- as  well  as  W-bounded, but
not V V W-bounded.

Example 1.18. of two bounded uniformities  V and W on a set  X such that the W-topoloyy
is compact and V V W is unhounded. Let (X, V) he any bounded uniform  space with an
unbounded suhspace  (A,  VIA),  and let W he any unifotmity  for which A and X \ A are
compact. Then an  argument  very  similar  to  that of the preceding  example  yields that  V V  W
is unbounded.

Definition 1.19. A uff(fiwf~ .s,~nce  (X,  V)  is colled  uniformly locally  compact (uniformly
locally  precompact rq~. uniformly locally  bounded) ifrlwr esi.srs  V E V .such  rlm,fiw al/
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x E  X,  V[x]  is compact (precon~pocr  resp.  Immded). A vrctnity  V E  V is  cnlled  B-conserving
(f V[AI  is boundedfor  mach  bounded A C X,  ot:  equivcde~ztl~,  [f V”[x]  is  bomdedfor  ench
x t X und  II t W.  The rrnifonnity  V und  ihe .T~LKC (X, V) are  called  B-conservative if there
is n  B-conserving  V E  V.

The concept  B-conserving  ha  been  introduced  and studied  by Hejcman in [14], Def. 3, und
in [15]. That B-conservative is strictly stronger  than  uniformly locally bounded is shown  in
[14], Example.  In particular,  B-conservative is used  to characterize uniform spaces in which
boundedness can be tested  by a single  pseudometric, see  [15], Theorem 1 and our  Theorem
3.13.

The next proposition giva  some easily found  classes  of uniform space  in which boun-
dedness and precompactness  are the same.  See  2.4 fora chxactel-isation of this property.

Proposition 1.20. Ler  (X.  V) be  CI  un#iwm  .q~ocefidfilliq  one  of the following  cmditions:
(nj  x is llllifii1711~~  /ocn//~  ,mcom,,ucr.
(bj  V hm CI  Dosi.\ comisting  oftmmsitive  wlotiom.

Then  eve,y bormded  subset  qf  X is  ,mco,,r,>acr.  ,fX is eve,,  ~m~fimn/y  locoll~ com,>m’, tkw
n’erg bo~o~led  srtbser  is  rrlruiwly conrprrcr.

Proof. For case (u),  see  [ 131, Theorem 1.18. Case (b)  is clew, since transitivity  of V means
V”  = V. for all II $  1, and because  it suffices  to consider  a basis  of V. The last  statement
follows easily fiom  case (0). 0

Remarks  1.21. (1)  Condition  (b)  of the previous  proposition is equivalent  to
(b’) V has a basis consisting of equivalente relations,

since, far any  transitive retlexive  relation  V, V n V-’  is an  equivalencc  relation.
(2) There are locally compact (even  discrete) Tychonoff spaces  which have  computible uni-
formities  which are not  uniformly locally precompact.  Far instance,  take an  infinite set X
and a sequence  of subsets  (li,,),,,~  with U,, 3  U,,-,  and such that U,, \ li,,+,  is infinite for
evel-y  n  E  W.  Suppose fùrthel-  tbat  n,,Ew U,, = (0. Then the sequence  (V,,),rt~,  defined  by
V,, := A, u (UT,  x  li,,) is the basis of a uniformity V which induca  the discrete topology on
X. But  V is not  uniformly locully precompact:  TO  sec this, it ih suflicient  to observe  that  for
every  II E  N and evel-y  F c X finite we have  V,,+,lF]  c U ,,+, U  F,  in particular  for every
x t un  \ hl we have  V!,iXl  = u,,  é  vn+1rlìl.

Since  V has  a basis  consisting  of equivalenze relations, we see  (by (1)) that  V is not  even
uniformly locally bounded.
(3) Fora further  example  of non-locally bounded compatible uniformities  on a discrete space
let X be an  uncountablc  set. Wc equip X with the inilial uniformity V with respect  to al1
functions  X - R (witb  R tal-rying  the usuul  uniformity); che  V-topology is discrete. We
show: All  bounded subsets  of X are finite and (X,  V) is not  uniformly locally bounded. If
A c X is inlinite, any  function  X + R which is unbounded  on A shows that  A is unbounded,
by 1.6. TO prove the second  assertion  note that the sets of the form

V = {(x,y)  E  X x X : sup{  V;(x)  -.f;(?)l  : i = 1,.  ,n} c 1)

where .f,, ,J, are arbitrary real  functions  on X, form a basis of V. For any  such basic
vicinity  V there  is an  uncountable  set Y c X such that

vi E  { 1,. , n}3k E  zzvy E  Y :.f;(y)  E  [k,  k  + I [
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Hence  Y x Y c V, SO that, far each  y  E  Y, VLy]  is infinite, i.e.  unbounded.
(4) There exist bounded, non-precompact uniform spaces  with discrete topology,  see  3.9.
Because  of 1.20, they cannot  be uniformly  locally precompact. Note that a locally compact
space is uniformly locally compact for some compatible uniformity iff it is paracompact, see
[IS], Chap. 6, Problem T (e).

The last proposition of this section concerns  the behavior  of boundednesi  wilh respect  LO
special quotients.

Su~qme dl  equivnlence  classrs  modulo  R n?-e  how&d  (I-e.sp /~mm/mf).  If we aldon
X/  R wifh the quotient  unlfonnily  thenjiv  rhe  porient  mop  q and my .suhet  A of  X we have
the  equivalerzcc:
A is bounded in X (res/~.  /mcom~aci)  fff q(A) i.r  bounded in X / R (ws/‘.  /mcom/>ocrj.

Proof. We shall only prove the statement for bounded sets, since  the proof  foI-  precompact
sets is completely analogous  (aee  also  [25], 12.15). The  “only if” part is clear  by the uniform
continuity  of q.  Now let  A be a subset  of X with q(A) bounded and let  V be any  vicinily
on X. By the assumption on R there  exists a vicinity  Li with R o  U c V o  R. We have
Cq x q)(U)  t Vll2  by L25],4.10,  wbence

cl(A)  c ((4 x q)(W LFI

with II E  W and finite F C  q(A). Choose u  finite F i A with q(F) = f;. Then one  verifies
easily

q(A)  c ((ii x ilKU))“ldF)l  = ((9 x q)(U”)ldF)I  c ii(C”’ 0  RIFI),

which entails

A c y-‘(q(A))  c q-‘q((V  o R)[fl)  = (Ro U”  o  R)[fl  C (V” o R)IF],

due the choice of li (and to R’ = R).  By the assumption on R, R[Fl  is bounded, so  that
R[FJ  c V”‘[G],  with a finik  set G and rn E  W.  ThusA  i V”‘+“[G]. 0

2. BOUNDEDNESS IN SUBSPACES

As was  noted  in 1.3(l),  precompacmess  of a subsa  IS a property  of its relative uniformity,
whereas  boundedness in Y C X may depend on the subspace  Y. In this section  we will discuss
this point in greater  detail. For this purpose,  we give  the following definition:

Trivially, a bounded subset  of X respects  boundedness iff it is bounded in itself.  If Y is a
b.r.  subspace  of X and Z is a b.r.  subspace  of Y, Z is a b.r.  subspace  of X.
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Regarding  b.r.  subspaces we  prove now:

Proposition 2.2. Ler  (X,  V) be  0 wl(fom  .spre.
(ij  A suh.spncr  Y c X wpecr.s hou~&dws.s  ij  ii jidj21.~  one  oj rlwjiillowing  condirions
(aj Y is  ‘,  lrniofi  of  V-Co,lq>““L’“rr,  jiw  .so,nr  .sw7imer~ic  v E  v.
(bJ  Y is  defise  in X.

(ii) Al/ .shpuw.s  of’X  re.sp~f bo~~lednr.s.s  $~ITI:~  bo~rnded  subset  is  pmamprrcr.
(iii)  lf  YI  und  Y? ow b.t: .xrh.spoce.s of’X, so is  Y,  U  Y?.

Proof. TO (i).  Case (CI)  is cleur  by Lemma 1.12 (c)  e+  (0).  osing  the fact that far two
symmetric vicinities U,  V t V, li  c V, every  U-component  is contained  in a  V-component.
For case (h),  see  [ 13  1,  Theorcm  1.20.
TO (ii). The hypothesis and I .3(2)  imply that  every  bounded subset  ofX is bounded in itself.
Hence  I .3(3)  yields the result.
TO (iii).  Let A c Y, U Y, be botmded  in X. Then A n Y; is  bounded in X far i = I,Z,  hence
bounded in Y, U Y?,  by 1.3 (2). ThereforeA = (A  n Y,) U  (A  n Y?)  is bounded in Y, U  Yz by
1.3(l). 0

Proposition 2.3. Let  (X,  V) be  o un~jim~  vpom,  Z c Y c X, Z dmse  bl  Y. (f Y mpecr.~
horr,l~l~~rli7r.s.s. rh SO  dors  z. [f VlZ  is />.s”‘~ll~lr,,llrr~ir<rhle.  ihe  ConI’C’ITe  nlro holds.
Proof. The iil-st  statement is  a  consequence  of Proposition 2.2(i)(b) and the transitivity of
the b.r.-property. Far  the  converx  in case  that  VIZ is pseudometrizable. we  observe  that
also  VIY  is  pseudometrizable, sine  the closure  of a countable  baiis  of VIZ in Y x Y is  a
basi5  of Vi  Y. We  must show: If A c Y is  V-bounded. it is  V/Y-bounded.  By 1.4. we  may
assume without Ioss  of generality  that  A is countable, A = (u,,  : II  t N}. Choose a  basis
(Wr,),!E?:  of Vi Y  with W,, = W,;’  and CV:+, c w,, far all  II. Choose h,, t W,,[a,,l n z, for
it.t  N. Let V t V. Therc  are E c A finite and /I E  N such  that  A c VJ’JE],  and there  is
111  E  M such that M’,,,  c V n (Y x Y). Consequently  {b,,  : II > ~71)  c W,,,[A]  c W+‘[E].
Hence {b,, : II t N} is V-bounded  and therefore,  by assumption,  VIZ-bounded.  SO there
are  F CL  Z finite and q E  N wch thnt {h,, : II E N} c (V n (Z x Z))4[F].  New  we obtain
{cl,,  : u > III]  C W,,,[{b,,  : I?  2  !u}]  C (Vf’(Y  x Y))“+‘[F].  This shows thatA is VlY-bound-
ed. 0

We  would  not be surprised  to see  a counterexumple  far non-pseudometrizable  Z.
The following proposition yields the converse ofproposition  2.2 (ii)  :

Proposition 2.4. FOI-  ci wz(jkrin  .sp~’  X the,%ilon:i~~g  we equiwler~t:
(nj Ews  .suh/me  ,u.s,,rcrs  bou~~edness.
(6) Ew~:v  hound~4  suhrr  of X i.r bounderl  in ir.w(f:
(c)  Every  boundd  ~ffifom/~  di.scfr/e SII~W~  0fX is  jinite.
id) Ewr:s bour~ded  ,subset  Q’X  is  ,,recom,mf.
(ej  Eve,:y  bomded  counroble,  un;fiinnl,y  discr-etc  subset  oi’X  is  ,>wco,~,,>o”

Proof. “(n)  + (b)“:  Obvious.
“01)  =+  (cr’:  Every uniformly discrete subset  which is  bounded in itself is  fintre.
“(cl  + (0’:  ITA  is bounded and B c A is  tmifot-mly  discrete. then B is  bounded and therefore
finite. hy (c).  By 1 .S (ci),  this implies that A is precompact.



“(d)  e. (e)“:  Obvious.
“(P)  =S (a)“:  Suppose. (n) does not hold, i.e.  there i) A c Y c X whith A bounded in X
but not in Y. Then,  by 1.3 (2) and (4). A is  mt precompact  and hence  contains  a countable
uniformly  discrete rubset  B which ih not precompact,  by I .4.  AF u subset  of a bounded set, B
is bounded, which contradicts  (c). 0

Prouf. Let (X,  V) be a uniform  space. Let B(X) be the set of all mapsf : [O, I [- X which are
continuous  on the Tight and pieccwisc constant  in the xnse  that,  far  some  f,), 0, i,, E [0, I ]
with 0 = f,, < f, < <t,,  = I.~l[ri~,, I,[ is cwxtilnt  far  1 < i < II.

For.f,g  E B(X) let (f,<y)  :  IO,  I l - X x X. (f’,<q)(‘)  := (f’(r),  g(r)). Let h be the Lebeigue
measure  on [O, I I. Far  any open  V c X x X and.f,g  E  B(X) the set (f,~)~‘(V) is clearly  a
Bore1  set. Thus we  can define,  foi- uny open V E lj  and nny E > 0,

N(V,c)  : =  (Cf,,q)~B(x)  x B<X>:h((f,g)m’(V))>l  -c}.

We will show tbat  the set C := {N(V,  f) : V t V open,  E > 0) is il basis ofa uniformity  W on
B(X). sucb  tbat  (B(X), W)  is bounded and the canonica1  embedding  41  : X - B(X). defìned
by @(-r)(r)  := .v far  0 < I < 1.  is a uniform isomol-phism  onto its  image.
For CI, V t lj open and E, P > 0 we  haveN(Un  V, min(e,  b)) c  N(U,  c)nN(V,  6). Thel-efore
C is a filter  basis.
Now let V t V be open and E > 0. Far  any,f E B(X) we have  (f’,.f)(r)  = V(r),f(t))  E V, fot
all f t 10,  l[. Therefore  h((i’,,f’)-‘(V))  = I and V’,,f’) E N(V, E).
Now letf; ,$,f:, E B(X) with (j; ,J;) E N(V. E) 3 @,.f;).  We bave

h(Ui&-‘(V’))  2 Q(fi,.f2)m’(Wn  (f2h)m’CV))
2 h((fiJir’w))  + h((fi,f;)m’w))  - 1 2 1 - 2c
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From this we obtain  N(V, E) o N(V, E)  C N(V o V,~E). Finally,  N(V, CI-’  = N(V-‘,  E)  is
easily checked. Since  Iì ha  a basis consisting  of open vicinities we conclude that  C is a basis
of a uniform  structut’e  W on  B(X).
Next we show that the space (B(X), W)  is bounded. Le1  U E  I, be open and E > 0. Take  any
8 t B(X) and choose  n  t N’ with  I /II  < E. For anyf  E  B(X) definef”,  ,,f;,  t B(X) as
follows:  fo  := g,  and far  i between  1 and 11 let

{

.f(t) : 0 < r 5  i / II
.f,(O  :=

g(t) : otherwise

For 0 5  i < II the maps  .f; and .f&i  agree  on the set [O,  1 [\[i/ II, (i + 1) / n[.  whence
NCfi,,fi+~)-‘(U))  2  1 - 1 /II>  I ~ E. Since.f  =.f,,, we have.f E  N(U, e)“Lg],  and since  fi
and II were chosen indepently  of,f, this implies X = N(U, .z)“[g].
4 is uniformly  isomorphic onta  its image due to the equetion

NiU.  Ei n (b(X)  x @CX,i = (@  x cJ>)(Ui.

Remarks  2.7. (Using  the notation  of the preceding  proof:)
(0) If X has at  least  two points, B(X) is dense in itself.
(1) If X is Hausdorff,  B(X) is easily seen  to be Hausdorff as  well. Moreover,  in this case
ti(X) is closed  in B(X): Let f E  B(X) \ b(X). We exhibit a neighborhood of,f  which is
disjoint to <i>(X).  Thwe are i’,  7 E  [O.  l[ and a symmetric  V t V such that (f(,-),,f(s)) $ V’.
E := min{h(f-‘v({r})))  : r E  [O,  l[} is positive. We show that  N(V, E) n @J(X)  = @.  Let
g t a(X)  and puti := g(O).  Then (A-J(~))  ‘$  V “1.  (.r,f(s))  @  v, say (x,f(s))  $!  v. SO
If,g)-‘(XxX\V)3,f’-‘~(.r)),whenceh(V,~)~’(XxX\V))  > ~ancig$Z/V(V,~).
(2) B(X) ib  pseudometrizable iff X is: If B(X) is pseudomelrizuble, then also  its “subspace”
X. On the other band,  X is pseudometrizable iff U 1x1s  a countable  base B, in which case
{N<U,  1 /il)  : U t L?,  \ E  FY}  is il countahle  base  of V.
(3) B(X) is pathwise connected  and locally pathwise connected: Forf,  g t B(X) and s E  [O,  11
let,fs  : (0,  l[- x,

/i(1) :=
1

f(r)  : O<,<.s

s(t)  : othwwise

Thenf<  E  B(X), and s ~,f;  is a continuous  path connecting,f and g,  due to  h((fi.,ji.)m’(U))  >
1  s + r far  0 < r< s < 1. U t U. By a similar argument,  we conclude (f,,fi)  E  N(U, E)
from v,  R) E  N(U, E),  whence B(X) is locally pathwise connected.
(4) A Inuch  higger  bounded uniform space containing  B(X) as  a subspace  is obtained  very
similarly  by putti@ on  Y := X’O,‘r  (the <iet  of ali maps,f  : 10, Il->  X) the uniformity W^
with the basis {IY(V,E)  : V E V,E>O}  where N*(V,  E)  := {(i,g) t B(X)” x B-(X)  :
AS((f,g)-‘(X  x X \ V))  < E}. h^  denoting  outer  Lebes_ooe  measure.  W’ may  he called  the
unifol-mity  of convei-gence  in Lehcsgue  measu~-e,  cf. 181, p. 104,  Def. 6 (where X is a Banach
space and maps.f, fi which are equal  almost  everywhere are identified).
(5) If X is countahle,  we can constwct  a countable  dense subspace  Y wilh @(X)  c Y i B(X)
hy admitting  only the functions  with rational  points of discontinuity.  This suhspuce  is again



bounded in itself, by 2.2, (i)(D).  Using similar arguments,  it is easy to show that B(X) is
separable  ifX  is.

Excluding  the case of a trivial  V we prove

Proof. For the first  assertion,  let  V = V-’  E  V, V open, be such that V?  # X x X, and
let F C B(X) be finite. We show that N(V, f)[fl  # B(X). There are fO,  ti,.  , t,,  E  10, 11,
0  =  ro<rl  <. <t,,  =  1,  suchthateach.f  t Fisconstanton  [t,+,,t,[,for  I < i < II.  Choose
(a, I>)  t (X  x X)  \ V’.  Then,  far allf  t F and 0 < I < 1, V’(t), a)  6 V or (f(r), h)  +Z V. Putting
sg  := i<fi-~ + ti) far 1 < i 5 n  and defining  8 t B(X) by g(r) := u far  f t &[t,-,,.s,[
and g(f)  := b  far  t t lJ:i,[.s,,r,[,  one  obta ins  h((f,g)-l(V))  < 4 far  allf’  E  F, hence

&r e  wv,  $Fl.
For non-completeness choose  CI, b t X, (CI,  b) @  n V, and a sequence ti>  < il < fz  < in

[0, I[, and define.f;,  t B(X)  far n  t W  by

(0  : otherwise

It is not  hard to show (indirectly) that (f;,) is a Cauchy sequence without a limit in H(X). 0

3.  ROUNDED SETS, UNIFORMLY CONTINUOUS FUNCTIONS AND PSEUDOMETRICS

In this section we study the relations between  boundedness and uniformly  continuous
functions  and pseudometrics. We start with a metriration  lemma. It differs from  the standard
formulation in that il allows the construction  of unbounded pseudometrics, which is very
useful  far OUT  purposes.  This additional feature has already  been  realized in the case of
topological  groups  (in [27]. Theorem 6.2). Also  the inclusion (c) is sharper than usual.

Theorem 3.1. (Metrization  Lemma) Ler X be n ser  nnd (U ,, ) ,,E~  n sequence ojsubseis  of
x  x x  snri~j.i?r?g  UIIEZ U,, = X x X and, jor nll n E Z, A,  := {(.x,x> : x E  X} c U,,.
Furthennore  assume  rhnr  the sequence hns  me  of the following  fw properries:

(i) vn t z : I/j c u,,+,//
(ii) WI,  m E Z : U,, o U,,, = U,,, o CJ,,  nnd  LIi  c U,,+,

Then  d : X x X + R,  defined  by

db-,$  := inf c 2”’  : k t N’, (x,y,  t u,,,  o u,,?  o o li,,,
/=,

(n)  ~~,v~X:d(x,y)>Oandd(x,x)=O
Cb)  ttx,g, z t X : d(x, c) 5 d(x, y) + d(y, z)
(ci VnEz:  {(x,~~)EXxX:d(x,)~)<2”}Cu,,C{(X,)’)EXXX:d(x,~~‘2”)
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/fa/1 U,, me  .symnetric,  d is .xynmerric,  wizich  implies  (rogether  with  (nj  and  (hj)  thnr  d is
n  pseudomerric.  In rhis  case.  (c)  OnpIies  rhnr  d is  n  merric  ;fln,,,, LI,,  = A,. lj; nwirova;  X
is  n  u~zIform  s,,nce  nnd  (U ,, ) r,EE  co~~sisrs  ~fsynnwtric  l~iciriitkr,  rhe  secomi inchrion of(c)
inzpiies  thaf  d is 0 un~fornz/y  co~~finuous  psadometric.

Prool:  d is well-defined because  of X x X = U,,EM Cl,,, SO  that d(A-,y)  is  the infimum of u
nonempty  set of non-negative reals.  Propel-ties  (n) and (6) are ensily  checked, as  well as
the symmetry of ~1 in case the CI,, are symmetric. The only critica1  point  in the proof of
the remaining assertions  is Ihe  first  inclusion  in (c),  far  which we first  prove the  following
auxiliary  statement

(Ad th,li  ,,...,  r,~Ez: c 2”~~2”~U,,,a...oU,,,Cu,,,
l<,<i

far  dl k  E  PV.  (Ai)  1s  pl-oved  wa mduction  over k:
First, suppose (i)  holds. (Ai)  means that the sequence  (U,,),,tz  increases  witb II,  which it
does:  U?, C  U;  i U,,+,  Now suppose that (A,) holds t’or  al1  ; 5  k. Let (I~J,<,~~+, E  Z’+’
and ii := C,<,<i+, 2”. Let II t Z with CI < 2”. Puttiq

,j := max h t N’  : il < k + 1,

I
,<-&‘“f  5 Cl/2

1

we have  X,x,,,-, 2”, < n/2<2”-’  and &‘,‘i+, 2”~ <n / 2 < 2”-‘,  whcncc by indu-
ct ion hypothesls:  U,,,  o  o  U ,,,_, c U,,-,  and U,,],,  o  o  U,rL+,  i CI,,-,, where the  product
of the empty sequence  of vicinities means  n,.  From 2”~ < 2” follows ~1, < II ~ 1,  and thus
U,,l  c U,,-,  Summariring,  we obtain

(CA,,  0  ... 0  uzl-,)  0  Uri,,,  0  (u,,,,,  0. .. 0  U,,,,~,) c u,,-1 0  u,,-1 0  U,,?  c ur,

as  desixd.  Now let  (ii) hold:
Again,  (AI) is  clear.  Let (A,)  hold,  far  every  , 5  k. Let (n,),<,<i+,  E  Z’+‘,  and  dcfine
n as  above.  Take n E  Z with n < 2”. Since  the U,, commute we can further  assume
n < n2  5  < IZ~+,. In  case  that  12; = II,+,  (for some i) we pu t  ,,,, := 11, (for,j<  i),
m, = II,  + 1 and n?,  := x.1,  (for i<,j  < k). Obviously  C,<  <i 24  = CI, and by (ii)  we  get
u,,, ” u,,,,, c  cl{,,,,  whence

un  0 0  unL+, c ut,,, 0  0  un,,  c un,

with the last  inclusion due fo  the induction hypothesis.  In the case oin,  <ill  < < nifi  we
havex,<,<i  2”,<2.2””  < 2”“~1, SO tbat  the induction  hypothesis (tosether  with Q+,  + I 5  n)
yields

ut,, 0  0  uu,  0  ui,,,-,  c un.

We can now  finish the proof  of the first  inclusion of(c): Let (~Y,  s)  E  X x X with d(x,y) < 2”.
By the definition of d,  this means that there  are s = x0,x,, , q  = y and n,, , n1  t Z
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satutying (-vi-, ,xi) E  Uji,,,  and C,,,,,  2”,  < 2”. SO we  have  (x,x) E U,,, o o U,,, i CJ,,, by

(AL). [3

Remarks  3.2. (Il If we  are given  a scquence  (li ),/ ,,t71  of equivalente  relations, U,, C U,,+,
clearly  implies  (i) and the resulting  pseudometric is ultrametric.  On the other band.  Sor every
ultrapscudomctric  d, the sets {(x,).) : d(s,y)  5  c}  and {(x,).) : d(x,~) < c}  are equivalente
relations, far  any  L’ > 0.
(2) The pseudometric rl constructed in the metrization  lemma is the greatest  pseudometric
satisfying the second  inclusion in (c),  as  can easily  be seen.
(3) Il’a group  G ilcts  on X on the left  and the sequence  (U,,),aEx  satislies

‘~J,IE~W~~EGV(A,J)E  U,,:(g.s,g.y)~U,,,

“U,,  is G-invariant”,  then also  rl is invariant  under the action of G. which means  d(g.  x. g. y) =
&v,~)  for all g E G nnd .v,~ E X. The same  can be stated  f«r  Iright  group  action, with the
obvious  changes.

The f~llowing  theorem  was  show by Hejcman  ((131,  Theorem 1.12 and 1.14) and also
by Atkin (1 I 1,  Thcorcm 2.4). Probably the earliest  referente  far  (h) %+ (c) is [2],  where
Atsulji  proved  the equivalente  far  metric spaces (Theorem 2). His proof of the equivalente
for uniform  spaces can be found  in 131.  Theorem 7.

Theorem 3.3. Ler  X be  CI  un~finm  ,spwc’  md  A c X. Tlwfi~llo~~i~~,~  me  equivalent:
(rrj  A i.s hounded.
(h)  Ewy  m#iml~  conr;nuou.s  ,rrrl,fio~rio,~  CI,,  X is  horo~led  on  A.
(ci A hn.s.fi~~ire  dion~ercr  wirh  ,r,~p~wr  fo mesas  w~~forml~  cor~rimrou.s  pseudon~erric  on  X.

Proof. See  [ 131,  Theorems  1.12  and 1.14. 0

Remarks  3.4. (1)  If a pseudometric d induces  the uniform  strutture  of X and d’  is a uniformly
continuous  pseudometric such that  a subset  A does not have  a finite d’-diameter,  then d + d’
is a pseudometric which induces  the uniformity  of X, and A has no finite d + d’-diameter.
Hence,  if X is pseudometrizable,  (c)  can be repluced  by
(c,) A has finite diameter  with respect  to  cvery  pseudometric inducing  the uniform  strutture

of x.
By an  analogous  argument  (c)  can be replaced  by
(~2)  A has finite diameter  with  respect  to evel-y  unifol-mly  continuous  metric on X. if there

exists  a uniformly  continuous  metric on X, and by
(~3)  A ha\  linite  diameter  with respcct  to cvcry  metric inducin: the uniform  strutture  of X, if

X is metrizable.
(2) The previooc:  theorem allows  us to _oenel-alire  proposition 2.2: lf Y c  X is dense or the
union of V-components  (far  a symmetric  viciniry V),  it is possible  to extend every uniformly
continuous  function  Y - R to a uniformly  continuous  function on X. For dense subsets,  this
is well-known,  cf. 141,  Chapter  Il, $3.6, Section  6, Theorem 2 (R  being  complete): if Y is the
union of V-components,  any  extension  which is constant  outside Y is u uniformly  continuous
function  on X. Now we  can show the more general result:
If Y is a subspace  of X such that  every uniformly  continuous  real  function on Y has a
uniformly continuous  extension  over  X then Y respects  boundedness.  Indeed  if A c Y is



2 0 4 H.  FiihK W Roelcke

not  bounded in Y there  is a uniformly continuousf  : Y + R which is unbounded on A. f
has un  extension over  X, SO  that A is not  bounded in X. More generally,  a slight  elaboration
of this argument  shows: A subspace  Y of X respects boundedness if each  unbounded, non-
negative, uniformly continuous function on Y is dominated by (the restriction  to  Y 00  some
non-negative, uniformly continuous function on X.
It should  be noted that  the converse does not  hold,  i.e.  there  exist b.r.  subspaces Y c X and
uniformly continuous functions on Y which do not  extend to X. As an  example,  take Z c Iw
and the function II  H n’.
The extendability of uniformly continuous real  functions from  a subspace  of a uniform space
over the whole space is studied  in [21]. Uniform spaces X with the property  that,  far every
Y i X, every uniformly continuous function Y - Iw  has a uniformly continuous extension
overX have  been studied  under the name of RE spaces in 171,  The class  of RE spaces includes
the fine spaces and it is closed under completion and projective limits.

We use the last remark  to show

Proposition 3.5. In every unifonn  space,  rlze complement  ojnny precornpacr  subset  is a b.r:
subspace.

Proof. In view  of (2) of the last remark  it is enough to prove the following lemma which
in case of a metrizable  X is due to Levy  and Rice, see  the remark  after  Proposition 4.4. of
Pll. 0

Lemma 3.6. Let (X, V) be n uniform  ~pacr und Y c X with X \ Y precumpocr.  Then every
unijormly  continuous junction  j : Y + Ps hm a uniformly continuous e.riension  over X.

Proof. The general case is easily reduced  to the case that  X is Hausdorff and complete and
Y is closed. The Y f’  X \ Y = Fr (X \ n (the boundary  of X \ Y). As X \ Y is compact the
continuous resuictionfl  Fr(X \ Y) has a continuous extension g over X \ Y. Since  X is the
union of the two closed sets Y and X \ Y, the functionsf  and g define  a continuous extension
h off over X. We linish  by showing that  h is uniformly continuous. Supposing the contrary,
there  exist f > 0 and, for each  V E  V, a pair (CZ,,,  bv)  E  V such that

(*) IKW)  ~ mv)l  > E

Since  f is uniformly continuous thcrr:  exists a Vo t V such that r(n)  - f (b)l 5  E far al1
(0.b)  E  Vo n (Y x Q. SO (av,bv)  +Z  Y x Y far al1 V from Vo := {V E  V : V i Vo}, We
may  assume thut  nv  t X \ Y far al1 V t Vo.  The net  (av)vt~,, has an  accumulation point  c
in the compact set X \ Y. For every V E  Vo we choose  W(V) E  V with W(v)  c V such that
(aw<,,>, c) t V and

(**) l~w/<v>)  - Nd i ;.

As (nw,v>,Dw<vJ)  t W(V) c V we obtain (bwcv,,c)  E  Vo Vm’, hence  the net (bwCvl)VFVo
converges  to c. Because  of the continuity  of h,  h(b wcn)  converges  to h(c). Because  of (**),
this implies  a contradiction to (a). 0

Because  of a remark  before 2.2, Proposition 3.5 implies
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Corollary 3.7. In every  hounded  un$orm  space  the complement  of rrny  pmmnpact  subset  is
bounded in irseif

We are now  able to construct  bounded, non-precompact compatible uniformities on locally
compact, in particular  on discrete spaces,  see  3.9 through 3.11. The first step is the following
simple observation  whose proof  we omit.

Lemma 3.8. Let IC be an  infinire  cardinal  and  (e,),  <  ~ m orthonormnl  set in n  Hilberf  space.
The.~,mcesX,  := U, < .[O, I]P,  and  Y, := U,,, ([0, I ] n Qc, havr  cnr-dirdiries  max( K,  2”)
and  K,  respecrively.  Equipped wifh  their usunl  mefrizoble  unifbmities  (induced  b,y  the HilbeJ-t
s,>me  nonn),  X,,  Y, and X,  \ {0} are  bounded and now,mcompacr.  The topolo@&  s,mce
x, \ {O}  is localiy  compact, infact, the  SLmZ  clf  the  locully  compncr  spaces  IO, l]e,.

In the following theorem, far il locally compact space X, let  P denote  the coarsest  precom-
pact  compatible uniformity on X. P is also  the coarsest compatible uniformity and the initial
uniformity with respect to al1 continuous  rea1  functions on X with compact support,  see  151,
Chap. 1X,  $1, Exercise 15.

Theorem 3.9. Let (X, I) be LI locully  com,,‘~cr  space  and  V n bounded, no,,-precor,,,~oct
unifomdy  on  the srr  X wirh V-ropology  co~mer rhan  1.  Then  V V P i.>  bounder/,  MC
precompacr  and comparible.

Proof. Obviously, V V P is non-precompact and compatible. Its boundedness is provea,  m
view  of the description of P before the theorem and in view  of I .9, when we show: Far every
finite set F of continuous real  functions on X with compact supports,  denoting  by Q the initial
uniformity with respect to F, V V  Q is bounded. Let S be the compact union of the supports
of the functions f E  F. Since  X is V-bounded, X \ S is V-bounded in itself,  by Corollary 3.7.
Since  Ql(X \ S) is the coarsest uniformity, X \ S is also bounded far  (V  V Q)l(X\  S) and hence
V V &-bounded.  Since  S is also  V V Q-bounded,  it follows that (X,  V V  Q> is bounded. 0

Corollary 3.10. For every  infinite crwdiml K, the locnlly  comprrct  .spuce  X,  \ { O}f,om  Lermno
3.8 admirs  a  bounded, non-p~compnct  rrnifonni~.

Proof. Apply the theorem to the locally compact space X, \ {0} and the usual  uniformity on
it. q

Corollary 3.11. Every  injinife  discrete topologica1 space admits  n  bounded, norz-pwcompoct
unifonniry,  which, for counrable  X may moreover be tcrken  merrizable.

Proof. Let K := /X1.  For the first part,  apply 3.9 to the discretely  topologized  set Y, from 3.8
and the usual  uniformity on it. If IC is countable  note that the usual  uniformity on Y, as  well
as  P are now  metrizable. q

Theorem 3.3 together  with the metrization lemma 3. I giva  us  the following characterization
of boundedness :

Theorem 3.12. Let X be a un@rm space and A c X. Then  A is bounded ifl .for  di  fnmilies
(V,,),xE~  of symrnerric  vicinities  sntisfying  V,:  i V,,+I  (far  dl  n  E  N)  and  U,,,n  V,, = X x X,
there  exisrs  nn  n  E  W with  A x A c V,,.

Proof. By 3.3, if A is bounded, it has finite diameter with respect to the uniformly  continuous
pseudometric constructed from  the family  (U,,),,En, defined by U,, := V?,,  (n  E  W) and
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(U,,),,  < o  chosen inductively according  to condition (i) of the metrization lemma. By (c)  of
3.1,wegetAxACU,,=V?,,,forsomenEW.
If A is not  bounded, 3.3 yields  a uniformly  continuous pseudometric d on X such that A
does “ot  have  finite d-diameter. Then (V,,)prtn, defined by V,,  := {(x,).)  E  X : d(x,y)  < 2”)
(n E  N),  is the desired  family  of vicinities. 0

The metrization lemma can also be applied to the question, when boundedness  can be
tested  by a single  pseudometric. Such spaces  vere  named “B-simple”  in 1151. Theol-em  I
of IlSI contains the equivalences  of(n) through (d)  of the following theorem. Nonetheless
we give  a full proof since  we believe  that the enhanced metrization lemma allows far a more
transparent  proof, which is already contained  in the thesis [IO] of one  of the authors.

Theorem 3.13. Fov n urz$ur-nz  space (X,  V), tkfollowing  ure  eyrrident:
(a) Therc  exisfs  o unijkrmly  conri~zuous~~.seudotnet~-ic  d oi?  X .such thot  ‘dA  i X (A  is  horo~ded

i$fA  hasfinite  d-dinrneter).
(b) There  exists  CI  un$o~-ml~  co~~tinuous  rerrlfimction f on  X .such  thor  ‘dA  c X (A  is borv~l~d

;ff,f is  ho~wled  on  A j,
(c)  X is B-con.rervntive  md  IS-  bounded, i.e.  X is  the counrnble  union qf hounded  SEI.Y.
(dj There  exisfs  n synmetric B-consrrvii~y V t V srrch fhrtt X hm onl~  cumtr~hl~  mori?;

V-‘0,?7[‘““““‘“.
(e)  There  a-ists  n family  (.!/,i)nEx ofspmerric  viciniries  .snri.$kg  U,,EK  U,, = X x X nrzd

7U;  c U,,+  I,  .srrch  thot  VA  i X (A  i.7  hounded  iffA x A c U,, ,fo!- .some  II E  N).

Proof. “(a)  *  (b)“:  Choose  any  J t X and letf(x)  := d(s,y).
“(0) =s (CZ)“:  Letd(x,~)  := If(x) -fC\31.
“(b)  i (c)“: X = &J’([- n,  n 1)’ IS ‘1 countable  union of bounded sets, by the nssumption
onf.  Let v := {(x,y) : F(r)  -f(y)1 < 1). v IS a \(:y mmetric)  vicinity,  sincef is uniformly
continuous. We have  V”  c {(x,y)  : If(x)  p.f(y)l  <n}, hw ente V”[s]  is bounded, by the
assumption  on f (far al1 x E  X and n E  N).
“(c)  + (d)“:  If X is the union of countably many  bounded sets, each  of the bounded sets
meets only  fmitely many  V-components  (by 1.12). therefore X can have  only countably ~many
V-co”lpo”e”ts.
“(dl  + (cl”:  For any  x E  X, the V-component  of x equals lJIIEW V”[x],  hence  it is u-bounded.
Then X ia the countable  union of o-bounded  sets, thus it is u-bounded.
“(cl  + (el”: By assumption  we have  X = l& B,,, with B,, bounded. We ca”  assume
B,, C B,,+I  far al1 n.  Let Uo = U;’  t V be B-conserving,  and far II > 0 define  inductively
u n+, := U; U  (6, x 4,). The”  &K Ur,  3  i&N B,, x B,, = X x X. Moreover,  each  Il,, is a
symmetric vicinity  satisfying, by definition,  Cl:  i Li,,+, The “only if” part of the equivalente
is true  by 3.12, SO it rema&  to show the “if” part.  For this,  we first prove

(*) VR E  W,V&  E  N’ : VA-  E  X : U::‘[s]  is bounded.

For n = 0 (*)  holds  (far al1 n?)  by the assumption  on Uo.  Now let II  > 0 and suppose, thar I*,
holds  far n  and alI,?,  E  N’. Far ,n = I we have  U;:;,  [x] = (U;  U (B,, x &))[x] c U;[.r]  u B,,.
whence  U,,+,  [r] is bounded by assumption on n and B,,. If (*)  holds far n  + 1 and rn > 1, we
have

q$rxl=  u,,+Iru~~+,l~ll c u~i,,+ilu;lFII



is bounded by assumption on il, which ends the induction.
Now from  A x A c U,, far  some II t W follows  A c U,,[n]  far  any (1  E A, which implies  by
(*)  that  A is bounded.
“(e)  3 (u)“:  Appiy the nxtriuition  lemma  to  the family (Ul,i),,Ep:,  with a suitable  choice of
vicinitics  far  negative indica. 0

Remarks  3.14. (1)  If the space  X is unifonnly locally pxcompact  the statements in the
preceding  thewem  al-e equivalent  to
(f) X is 0.precompact.

Indeed.  there is a vicinity  V such that  for all .r t X and all II > 1,  V”[r]  is precompact (by
1131,  Lemma 1.17). Hence  u) implie\  3.13 (c).  On the other  band,  since  in every unifoi-mly
locally  prccompact  space bounded sets ai-e  precompact by Proposition 1.20, 3.13  (c)  clearly
implies v).

A similar  result has been obtained  by Potter,  see  j241.
(2) Every  space X fulfilling  the equivalem  conditions of theorem  3.13 has a fundamental
sequence (B,,)  of bounded sets in the sense  that the sets B,, are bounded und each  bounded
set is contained  in some B,,. Simply lix x E X and let B,, := {y t X : r/(.r,)a)  < H},  where  d is
the pseudometric  from  3.13  (u).
(3) H‘(X, V) is il uniform  spnce  and r/ is il pseudometric  as  in 3.13  (a),  then  V and the uniformity
V,,  induced  by CI  yield equal  collections  of bounded sets, even  though they do not necesswily
coincide. (Clexly,  every V-bounded set is VC,-bounded  since V,,  is coarser.  On the other  band,
every V,,-bounded  subse  has  finite  &diameter,  hence  il is li-bounded,  by the assumption  on
d.) Fora further  instante,  let VI  be the initial  uniformity  on X with respect  to  illI V-uniformly
continuow iraI  functions. Plainly  VI  c VAC. where  C is the initinl  uniformity  with  respect  to
all continuous  reul  functions  on X. Clearly  VI  #  C iff there is a continuous,  but not uniformly
continuous  real  function  on X. We  do ,not have  an  example  for V,  # V A C. VI  induca the
san,e topology  on X as  V,  by 191.  8.5.7 (a).  TO produce an  example  fo,-  V,  # V, let V be
discrete. Then  V,  = C. Further,  C = V iff 1x1  5  Ko, by [I Il, 15.23 (b).  SO II = C # V fbt
uncountable  discrete (X, V).

A second  cxample  far  Vi  # V is any bounded but no1 precompact space (X,  V)  since in
this situation  every V-unifonnly  continuous,~  : X - R is bounded SO  that VI  is precompact,
hence  diffel-ent  fi-or  V. In order to give a sufficient  condition far  VI  = V AC, denote  by V,,
the initial  uniformity  on X with respect  to  all bounded V-uniformly continuous  real  functions.
Vo  is the fnest  precompact uniformity  on X that  is coarser  than  V,  see [9],  X.5.7  for the case
that  V is Hausdol-ff.  We  have  V,,  c VI  c V  A  C  generally,  <io if V A  C  is precompact thcn
VA C c V,,,  hence  we  obtuin  equality.

For a fùrther  discussion of Theorem 3.13  in the context  of topological  vectw spaces,  the
reader  is referred  to  4.5
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4. BOUNDEDNESS IN TOPOLOGICAL VECTOR SPACES

In the context of topologica1 vector  spaces the concept  of boundedness (defìned somewhat
differently,  see below) plays  an important  role.  Before  we proceed to general topologica1
groups,  we take it closer  look at what some of the results  of the first three sections mean in
the context  of topologica1 vector  spaces.

We recall  some of the basic  definitions and facts. Let (X,  7) denote  a rea1  topologica1
vector  space (TVS,  far short), which far  simplicity will always be assumed  to be Hausdorff.
“The” uniformity V of (X,  I) is defined  by the basis  of vicini&%

Nu:=((x,?.):x-JEU]

where  U ranges  over  a neighborhood base at zero. V induca 1. In the following, uniform
concepts  in (X,  I) like  boundedness or precompactness,  will refer  to V. The topology of il
TVS is metrizable  iff its uniformity is metrizable.  In the theory of TVS, I-boundedness  is
defined as follows:  A i X is 7.bounded iff far  every  neighborhood Li of 0 there exists p  > 0
such that A i pU.  Clearly, every  I-bounded subset  is bounded. For locally  convex  TVS the
converse wus  show by Atkin:

Lemma 4.1. 117  fvfry  locrtlly cmwa .syce  rlx  bounder  sefs coincide ~,ifh  the  I-bounded
sers.

Proof. See  111, 1.7. 0
However,  for general TVS this is not Rue: There  exist non-trivial bounded TVS (see 4.7

below),  but a 7.bounded TVS is easily  seen to be trivial.
In the beginning of our discussion we will deal  mainly  with locally  convex  spaces. There

is the following positive result  about  the behavior  of boundedness with respect  to initial
uniformities.

Proposition 4.2. Let,f;  : X + (X,, ‘iJ,  i t 1,  be  cr,fornily  of lincrrr  nmps  qfrr  vectol’  spnce  X
(over R OI’  @J  into  loccrll~  convex  .spces  (X,, 3;).  Le? V,  be the un@rnzity  of (Xi, x), i E  1,
und  lei  V be  the initirtl  anifomzit,  01, X wiih rqx'cr  10 the mo/n~ : X -j (X,, U,). Then  ci  set
A c X is V-bmnded  #f;(A) is V,-boro&d,for  en& i E  1.

Proof. One verifies  that V is the uniformity for the (locally  convex)  initial  topology 7 on
X with respect  to the mapsf,  : X - (X,,  z). For the non-trivial  direction of the proposition
consider  A i X such thatf;(A)  is Vi-bounded,  for each  i E  1,  i.e.. Z-bounded.  This implies
that A is 7.bounded,  see [ 171, 2.4.3. Hence  A is V-bounded,  by 4.1.

The next  result  concerns  the b.r.  subsets. It is a slight generalization  of [ 11 (1.8). The proof
giva there works also  for this case.

Proposition 4.3. Ler  (X,  I) De  LI  locnlly  conwv TVS.  lf  Y c X IS comperi  (or  on/!  star-like
in the seme  thnt,  jiir some c E  Y ow  hm c + h(  Y - c)  C Y far- 0 5 h 5 IJ, rhm  ir re.specf.s
bomdedness.  In pnrriculnr  Y is bounded  i#it  is boundcd  in itself

We now turn to the relation  between  boundedness and uniformly  continuous  real functions
(resp.  pseudometrics),  as it was exhibited in the Theorems 3.3 and 3.13. As might be hoped,
in the context of locally  convex  TVS one needs  only consider  continuous  linea functionals
and seminorms:
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Theorem 4.4. Ler  (X,  7) De  rr  locall~  convc~  TVS. Far  n  subserA thefollowin~  me equivalent:
(n)  A is  honndrd.
(0)  Ever:~  conti~zuous  seminonn  on  X is boui&?d  CII,  A.
IC)  Far  some se1  S of snninorms  which  induca  7, eve,:~  p t S is bowzded  on  A.
(d)  E\w:y un~rb~unus  Ib~en~fi~,~crionaI  on  X is bomded  on  A.

Proof. ((1)  i  (6). since every continuous seminorm is uniformly  continuous far  the unifor--
mity oi”X.  (h)  + (c)  is clear.  For (c)  + (d),  we may assume  the family  of seminorms to be
directed (including  sums does not affect condition (c)), hence  a linearfunctional is continuous
iff it is continuous w.r.t.  some p,. whence  (d)  follows. For (d)  + (n)  see  [19], 520, Il .( 1). 0

As  u  consequrnce  we see  that il subset  is bounded iff its closed  cowex  hull  is bounded
in itself. (This is all-eady  clear from  the well-known  fact  that the I-bounded  sets have  the
analogous  property  and that they coincide with the bounded sets.) Note also  that two different
locally convex topologia on a vector  space X have  the same bounded sets, if their topologica1
duals coincide. In palticular, ifA c X is bounded, it is S-bounded fol- the weak  topology S of
X. In (X,  S) evel-y  bounded set is precompact,  see  [ 191.Q20.9.3.  Therefore, by 2.4, (d)  w  (a),
every subspace  of (X,  S) respects  boundedness, cf. 4.3. Further,  2.4, (d)  is satisfied  in every
Schwartz  space as  well as  in every semi-Monte1 space, where every bounded subset  is even
I-elatively  compact by definition, see  [l7], 10.4.3 and 11.5.

Far  locally convex  TVS, an  analogue  of Theorem 3.13 can be formulated us  follows:

Theorem 4.5. Let  (X, 7) De n locnll~~  conwx TVS. The,following  are  equivalent:
(oj  3.13 (0)  holds.
(b)  3.13 (nJ  holds,  wirh the pseudometvic  ori.+  from  o nonn.
(cj  There  exi.m CI  Dounded  neighborhood  Li ~f0.
(d) 7 is  r~~nnohle.
(ej  7 is  metrizrrble  and  X hm njìmdan~rntul  sepence  of bomded  sets.

Proof. (d)  + (0) was  stated  in 1.2. (0) + (n)  + (c)  is  obvious.  (c)  e+  (d)  is  due  to
Kolmogoroff, see  [19], $15, 10.(4). (d)  + (e)  is again obvious, whereas  (e) + (d) follows
from  [l9],  $29. l.(2). 0

Remark  4.6. The equivalente of (u)  and (c)  holds in every TVS as  is clear from  3.13,
(n)  .s (d),  see  Hejcman 1151, Corollary 2 of Theorem 3.

The condition of metrizability  in 4.5 (e)  cannot  be dropped pince  there  exist non-metrirable
locally cowex  TVS with fundamental  sequences  of bounded sets:
(a)  Let Xbe aTVS  of countably infinite dimension,  carrying the finest  locally convex  topology.
X has a fundamental  sequence  of bounded sets sine  its bounded sets are finite dimensiona1
and  relatively compact by [l9], 518, 5.(6). X is not  metriruble  by 4.5 and because  it is not
normable. Tbis example  is a special case of 1191,  529, l.(8).
(b)  Consider a normed  infinite dimensiona1 vector  space  (X,  /I  11). Its weak  topology S is
locally convex and strictly coarser  than the norm  topology R sine  every S-neighborhood
of 0 contains  an  infinite-dimensional subspace. Let ‘T be any  locally convex topology such
that  S c TSR.  Then 7 is not  metrizable  since  otlwwise  R and I would coincide with the
Mackey topology, see  [l9], 521, 5.(3). Since  the duals of al1 topologia involved  coincide,
and since there  exists a fundamental  sequence  of bounded sets far R,  we have  found  a
fundamental  sequence  of bounded sets for the nonmetrizable  topology ‘T. This shows again
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that  the metrizability  conditi”” un  4.5(e) cannot  be dropped.  - Also  the strong  duals ot
metrizuble, non-normable locally convex  spaces are non-metriable  locally convex  spaces
with a fundamentel  seqoence  of bounded sets, see  [ 191, $29, l.(S).

We turn now  f” non-locally convex  TVS and some pathologies  occuuing in connection
with them.

Theorem 4.7. Eveg  i7f.S (X, I)  hrts LI  tq>olo~icr/ll~ isomor/~h;c  e,nhedd;,~s  inro  o homded
Tvs  B(X).

Proof.  We embed the uniform space (X,  V) int” the bounded uniform  space (B(X), W) as  in
the proof of 2.6 and observe  that  B(X) has  il natul-al  vector space strutture.  The proof that  the
W-topology  is a vector space topol»gy  can  be tòund  in 1221,  ij 1. Note that  B(X) is a linea
subspace  of the vect”r  space considered there,  and that  lhe  bigger  space is easily shown t” be
bounded ab  well. Clearly  W is the uniform stmcture belonging  t« the W-topology. 0

Theorem 4.1 will be used  far the construction of Example  6.3 1.

Remarks  4.8. (1) This example shows that  4.3 does  n”t  hold far non-locally convex  spaces:
If we embed un unbounded TVS X int” B(X), X is also  bounded in B(X) but not  in itself
(observing  that  the restriction of the uniformity of B(X) t”  X is the  game  as  the uniformity on
m.
(2) The construction of B(X) has  been  used in [23] for the c”nstructi”r of dual-less  vector
spaces.  Indeed  ewxy  bounded vector space has  trivial  dual,  since  nontrivial  continuous linea
functionals are unifol-mly  continuous  and unbounded. However  not  every  dual-less  vectol
space is bounded, as  the example of the spaces /<, for 0  < II< I shows: By j 191, $15, 9.(9)
they have  tl-ivial  dual.  However,  the quasinoI-m  11 11 :;,j arrociated t” /gJ  is unilòrmly  continuous
and unbounded. This also serves  as  a counterexample  far  4.4 for non-locally convex  TVS.

We end  thi\ secti”n  with an  example showing  that  the supremun~  of finitely many  bounded
vector  space topologies  need  not  be bounded. It is due t” Peck and Porta, see  1231, Theorem
8.2).

Theorem 4.9. Lei  E he  ci  wcw  ,q~oce  of d;memwn  2 2”‘>.  Thr,/i~~esr  vemw  ,S~MP top,og?
on  E CUI  be  ohincd  UJ  the  .supremrm  c$ut  mmf  the ropoiogicall~  ismrwphic  md  homded
vecfor  space  top0logie.s.

Proof. [231,  Theorem 8.2) is stated for dualLless  instead  of uniformly  bounded TVS, but the
proof uses  the construction of B(X) and thui  yields  in fact  bounded uniformities. 0

A closer  inspection of the proof of [23], Theorem B.2) shows that  of the three  bounded
topologie? T,, ~2,  ~3  constructed  there,  already ‘~1  V ~3  is anot  bounded.

Quile diffwenr propertie?  of bounded sets in t»p»l”gical  vec~r  space\  are invtxigated  in
a recenf  papa  [6]  of  Burke and Todorcevic.

5. BOUNDEDNESS IN TOPOLOGICAL CROUPS

In this section  we consider  the natura1  uniformities  on topologicaI  gr»ups  and discuss
boundedness  with respect  t”  these  uniformities. We let C denote  the left uniformity and R
denote  the right  uniformity, LAI?  and CVR are called  the lower  respectively  uppel-uniformity;
e denotes  generally the neutra1  element of a group,  and Ll, the tilter  of neighborhoods  of e.
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Recall that  the hnsic  elements of the standard basa  of L, R,  L v R.  L A  R are, respectively,
gkm  by

uc  := {(*,y)  : y  E  XU}, UR  := {(x,y) : y  E  Uh}

UL”R  := {(XJ)  : )’  E  ru n Ux}, UCAR  := {(x,?;)  : y E  UXU},

with 0 running  lbrough  U<,.  Far a SUI-vey  of these  uniformities the reader  ih referred t o [25],
Chapter  2.

Remark  and Definition 5.1. Far n  qoiogicol  groui>  X rn~d ci  subserA we lww  the  following
~</LliV&M~.~:

A C-bounded  (r  vll  E  L&31i  E  W3,finite  F i A : A c FU”

A R-bounded @ ‘dU  E  UC,3n  t W3 finite  F i A : A c U”F

A L A R-bounded e VU t Ll<Jn  E  Mfinire  F i A : A c U”FU”

A is C-bounded  ifl A ’ i.r  R-bounded,  thus  far syrnfnefric  subser.s  C-  ruxl  R-borrndedness  aly
the  snme.  A is C  A R-  res/>ec’ivr/\  C ” R-hounded (PA-’  is.
We culi A bibounded, (f il is  hot/?  C-  rrnd  R-bounded  Bibounded  tqologicrrl gwxrys  are
.siw@y  ~~11led  bounded.

Remarks  5.2. (1)  If X is a hounded topologica1 group, every  open subgroup has finite index.
(2) Plainly evel-y  C V  R-hounded set is hihounded, but we do not know whether  the converse
holds. We do not even  know a hounded topologica1 group that  is not  L V R-bounded.  In
contrast,  L V  R-pxcompactness  is equivalent  to L- and R-precompactness, hecause  of 1.7.
(3) Every L- (or R-)  bounded open submonoid of u  topological  group is L- (or R-)  bounded
in itself. This is clear  from  the definitions and Remark  1. I

Example  5.3. Let The an  infinite set and X the group of hiJecllons  T - T, cndoweci  wth  the
topology of pointwise  convergente  w.r.l.  the  discrete  topology on T. Then X is a topologica1
group. It has a neighhorhood basz  at  unity consisting of suhgroups, hence  each  of the live
kinds of houndedness in X coincide with the corresponding  kind of precompactness.  It in
C A  R-precompact  (hy [25], example  9.14), but not  L-precompact, since  the open subgroup
consisting  of al1 the elements leaving  a given  f t T fixed has no finite index in .X Also,  X
has an  infinite L-uniformly  discrete suhgroup, namely the cyclic groups of al1 shifts  on an
injective  sequence  (t,,)l,t~.  Furthermore  Ihere  exists an  C-precompact  subcet  of X which is
not  R-precompact  and thus not  R-bounded and SO not  hihounded (Cf. [25], Exercise 8.1).

Remark  5.4. For every  LI = U-’  E  U, the corresponding  basic  vicinities V with respect  to
C,R,  L AR yield, far  a pointx E  X, the V-componente  .x(U). (U)x,  (U)n-(U),  respectively,
as  one  verifies easily.  Hence  the pseudocomponents of e for these  uniformities al-e al1 equal
to the intersection of all open subgroups of X, which is a closed  norma1 suhgroup  P; and the
pseudocomponents  of the elements of X are the cos.%  of P. The pseudocomponent of e is
open iff it is the smallest  open subgroup of X. We doubt that  any  of this extends to L V R.

Remark  5.5. On the analogy  of Section  2 we can raise  the question, far  wbich  subgroups
H of a topologica1  group and subsets  A c H, A bounded in some sense  in X, A is already
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bounded in H in the same seme. (Note that the converse is always  true.)  For U-boundedness
(LI E  {C, R,  l A  R,  1: V R}),  there  is an  ambiguity conceming “boundedness  in H”:  We can
consider  the relative uniformity UIH or the corresponding canonica1 uniformity UH of the
topologica1 group H. If U = C A  R,  these  uniformities may differ, even  far closed  norma1
subgroups (Cf. [25], 3.25). However,  if we restrict  ourselves  to open or  dense subgroups, then
the uniformities coincide, by [25], 3.24, which enables us  to transfer  2.2 to topologica1 groups:
Let Ll be any of the canonica1 uniformities. If H is an  open subgroup, it is a V-component,  V
being the vicinity  associated  to the e-neighborhood  H (cf. [25], Chapter 2, formula (2). (3),
(lo),  (14)). Hence  every  subset  of H that  is bounded in X is also bounded in H, by 2.2. If H
is dense, this implication is immediate from  2.2.
Generally  the implication is false, BS Theorem 5.6 below  shows. Far a further  example  let
X be a Hilbert space (more precisely,  its additive group) and A c X an  infinite orthonormal
set. In X all canonica1 uniformities coincide with the uniformity induced  by the metric on
X, whence A is bounded in X. The subgroup H generated  by A is discrete, whence A is not
bounded in H.

The Following  is the analogue  tc~  2.6 far  topologica1 groups. The construction is due to
Hartman and Mycielski ([ 12]), and, independently,  to S. Dierolf (orai  communication from
the seventies).

Theorem 5.6. Ewry  ropological  group  hm u ropologically  isomorphic  mbedding  imo an
L V R-bomded  ropologicnl  group.

Proof.  Let X be a topologica1 group and Iet,  as  in the case of uniform spaces,  B(X) be the
set of al1 mapsf : [O,  l[+ X which are continuous  on the right  and piecewise constant.  B(X)
carries the canonica1 pointwise group strutture.  For E > 0 and U i X an  open neighborhood
of e,  we delìne

N(U, E) := {f E  B(X) : h(f-‘(U)) > 1 E},

h being the Lebesgue measure on [O,  I [.  Then the set C := {N(U, E) : U E  Z&  open, E > 0}
is a neighborhood base of a group topology on X. Due tc~  [25], Proposition 1.21, the proof
amounts  to verifying the following four  statements:
(n)  C is a filter base.
(b)  VP  e C3Q  E  C : Q’ i P.
(c)  VP  E  C3Q  E  C : Q-’  c P.
(d)  VP  E  Cvg  t B(X)3Q  t C : gQg-’  c P.

(n)  through (c) can be shown  in quite  the same way  as  in the proof  of 2.6. Far the proof
of (dl,  let  U E  Z&  and E > 0. For g E  B(X) choose  W E  LI, such that, far all f E  [O,  l[,
g(f)Wglf)m’  c U.  This is possible  due to the finiteness of g([O,  IC).  Then far any.f E  N(W,  E)
we havef-‘(w  c (gfg-l)-‘(U),  which implies ,gjg-’ t N(U, E).
For the proof  of the 1: V R-boundedness  of B(X), let  U t m, be open and e > 0. Choose
n E  W with 1 / II < E. It suffices to show that  B(X) c V”[e],  with e the neutra1  element of
B(X) and V the C  V R-vicinity  defined  by V := {(j,g)  : g l fl(U, E) n N(U, ~)f}. This can
be done  in exactly the same way  as  in the proof  of 2.6. For any.f  E  B(X) define.fo(t)  := e
(rE[O,1[),fori=l,_.., nlet

itr);=
’ I

f(O : 05 t<ilfl
R(r)  : otherwise
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ThenJ; t B(X), and,/-1  and,i;  agree  on [0, l[\[(i  - l)/rz,i/n[,  whence we obtain h(V;-,
fi-‘)-’  (U)) > 1 - 1 /n>  1 -~andh(~-‘~~,)~‘((i))  > I -E. Butthisimplies~~~,,f,)  E  V,
and thusf  =f;,  E  V”[e].
X embeds in B(X) via the map @  sending x E  X to the constant  function  I +- x. @ is a
topologica1 embedding because  of the equation

w, E) n 4xX) = wc

Reca11  that a topologica1 group X is called an  SIN-group (resp.  an  ASIN-group)  if C and
R agree  (resp.  agree  on some neighborhood of c),  cf. 1251.

Remarks  5.7. (1) Remarks  2.1 conceming metrizability, connectedness  and separability of
X are easily transferred  to the case of topologica1 groups.
(2) lt is easy  to check that the left uniformity of the topologica1 group B(X) is equal to the
uniformity obtained by embedding (X,  C) as  in 2.6; and similarly for R and CV 77,.  For C A  R
this is also  true,  although the proof is somewhat more complicated and is omitted.
(3) It is easy to check that <I>(X)  is a norma1  subgroup of B(X) iff X is abelian and that  B(X) is
an  SIN-group iff X is SIN.

As a last  property of the group constructed in 5.6, we note

Proof. Let U = U-’  t IA,  with U4 #  X. Let F c B(X) finite. We will show that
N(U, ~)FN(U,  $) #  B(X). There exist 0 = t0 i f,  i < r,, = 1 such that eacb  f E  F is
constanton  [rj-,,fi[for  1 5  i 5  II.  Choosen E  X\UJandput.r,  := :(r,-,  +t;)for  1 5 i 5  II.
Then CI’  n li<rU  = v1, whence, for eachf  t F, e 6 C/f(t)U oro  2 Uf(r)U  for 0 5 f< 1.
Defining g E  B(X) by g(r) := e for t E  Uy=,  Ir,-,  , .c,[  and g(t)  := u for f t UF=,  [si,  r,[,  it
follows that

(*) w{f:  g(t) t Uf(W})  i ;.

We finish by showing that 8 $Z N(U, {)FN(U,  a).  Otherwise g = hl.&  with hl, hl  E  N(U, i)
andf  E  F. Then  h(h;‘(U))>  i for i = 1,2,  whence h(h;‘(U)  n h;‘(U))> 4. But far
f E h;‘(U)  C’/$(U)  one has g(t) E Uf(t)U.  This contradicts  (*). 0

In contrast  to C V  R-precompactness, C V  R-boundedness  of B  group does  not imply the
SIN-property,  as  the following examples  show.

Examples  5.9. on C  V R-boundedness  and SIN.
(a)  The topologica1 group B(X) from  5.6, although C v R-bounded,  is not  SlN for any
non-SIN-group X, sine  SIN is inherited by subgroups.
(b) Another C V R-bounded group that is not SIN is the group  X of al1 orientation-preserving
self-homeomorphisms  of the compact interval  [0, 11, X provided  with the topology  of uniform
convergente.  By Atkin [Il, (6.8) (b), X is bounded and non-SIN. We show now  that  it is
L V R-bounded.  The sets U, := {x t X : max{  1x(t) - rl : 0 5  i 5  l} 5  e}  with E > 0
form a basis of Uj  (X),  and the sets V,  := {(x, j~)  E  X x X : y E  xU, n U,x}  with E > 0 form
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a basis  of L ” ‘R.  The C  V R-boundedneas results  from  (V, ,,J”[e]  = X for ali n  E  N’,  the
latter  following obviouly  from

(*) vc,c5>0:  V,[U,I  3 u,+o,

V,[c]  = U,, and ci, = X. TO  prove (*).  let  ?’  E  U,,,.  It is easy  LO see  tbat  an  x E  Li, is
defined by .x(t) := !;(I)  if Iy(t)  ~ fl 5  E. .x(f) := I + E if y(f)  > I + E, and x(t) := f ~ E
if !.(f)  5  I - E, and tbat  max{~s(t)  ~ x(t)1  : 0 < r 5  l} < 6, hence  ,’  o  x-’ t Uh.  Sine
the gt-aphs  of x-’ and ~9~’  arise  from  those of x and y by reflection  about  the diagonal  of
X x X, also  max{ iy-‘(t)  - F’(t)1 : 0 < I < 1) < 6, which means  that  x-’ D v E  Uh.  SO

y t xl/h il Uh.r  c V,[U,].  This pl-oves  (a). n
In this example,  X is not  a Banach Lie group, since  every  bounded Banach Lie group is

SIN by [Il.  (6.8) (b);  far  instante  the unitay  group  of I’ is such  a group  by Ioc.  cit.. (3.5).

6. INFRABOUNDEDNESS

In this section  we introduce yet another  rather  weak  notion  of boundedness. It is not
derived  from  a uniform  strutture.  We then  compare the different notions.

Definition 6.1. Lrr  X De CI  ro~xhgicol  grorq~.  We  col/  o ~Dset A c X infrabounded
(,u.T~I.  strongly infrabounded) $fiw n// U t L4<,  thm exiut II t N nnr/,firiire  F i X (,ui[~.
F C A) wirh  A C (FU)>‘. A s~h,~r~~r~~  Y of’X  respects infraboundedness $O  .~uh.wr C$  Y is
ii7jkborrirded  in Y ~f(<it~d  0~1ly  if) ir is  iiqk~boufzded  in  X (confer 2.1).

We do not  know whether there  is alway\ a uniform  stsucture  on X such that the bounded setb
with respect  to the uniformity are exactly the infiabounded  subscts.  Plainly,  Y < X is strongly
infrabounded. if il is infrabounded in itself. We shall  not discuss  stn-ong  infraboundedness
systematicnlly,  it will appeal- in 6.2. 6.4, 6.14, 6.15, 6.16, 6.19 and 6.31.

Proposition 6.2. LL’I X hr CI  topologicnl group  in which  evep infiiibounded .rubser  is  .srrong/~
ir~frrrbomded.  Thcnfor  al/  A c X: A is  i~~fiubowuled  i/f ewr-s  corrntable  unifomly  L A R-
discx~tr  .sub.w~r  of A i.s i,!f~‘lhoi,,r~l~,~l.

Proof. The necessity  is obvious.  Far  every A c X which is not infrabounded there  exist
V  E  Zn,  and un  inductively constructed  set B = (~0, ut,  } satisfying CQ = e and

(2:) CI,,  E  A  \  ({ai,, ,n,,-,}V)“’ 0,  2  1)

We have  m part~cular  ur,  $2  V”{qi,  , q-  ,}V” (note no  = c).  hence  the  C A  R-discreteness
of the seqence.  From  the construction  and the aswmption  on X it is clear  that  the set B\ {q,}
is a countable  subset  of A which is not  infi-abounded. 0

The following proposition stata  the obvious  implications between  the vurious  notions  of
boundedness

Proposition 6.3. Foro topnlo~~icnl  sroup  X nnd  A c X rhe,foliowin~ implicarions  hold  : A
CV 77.bmrmled  =s  A bibou~ided  + A L-borrnded  (or R-bounded)  + A LA ‘R-bounded  + A
.stranyly  infrnbou/&d  =s  A infr<rboiu&d



Proof  o f  Lemma  I :  Conceming  “C”:  If s = vlfh, w i t h  I; E V ,  thm  rl(g(a,~,a,) =
d(l~,fi?(Ci,),  Ili)  = d(fi’~(<l,),  1, F’(o,)) = r/(flrr,),  CI,). with  the last  equality  due to  the fact
that ,‘, , 1’;  lave the o, lixed.
Conceming  “3”: Let g E X be such that  for all i,j : ~/(g(o,),a~)  = d(j’(o,),~,).  Then
there is an  isometry  between  A U  y(A) and A uf(A), defined  by CI, + (li and ~((1,)  +- f(ni)
(1 5 i < u). This is well-delined  because  if R(G) = q, then  d(i’(o,), ~1,)  = Q(q),  uj) = 0,
ilnplying .f(q)  = cl,; therefore  u, +- q and S(Q) H J(rr,)  ue  consi\tenf.  Let Il E X be
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any  extension of this isometry, by (h),  h  exists. Then we have  h  E  V andf-‘hg  t V:
f-‘hg(ni)  =f-‘f(q) = ~1,. This yields 6 = hr’,jj-‘&  t vfl.
Lemma 2: Let A c U be finite and fdiam.4  < c 5  1. Then there  is g E  X with Va,  h t A :
d(g(n),  0) = c.
Proof of Lemma 2: Define a metric  don Y := A x {0, I}, by setting

&(a,  0. (O,j))  :=
{

d(n,b)  : i=j

c : i#j

By (u)  there  exists an  isometric embedding J, : Y + X. Fori = 0, 1, let B; := +(A x {i}).
Then Bi is isometric to A, with d(61,02)  = c,  for 0, t B,. Let s,  , gz  E  X with g,(A) = LI,,  they
existby(b).  The”8 = K;‘SI  isasdesired: d(g(n),b) = d(&‘g,(n),b)  = d(gi(n),g2(6))  = C,
since  s,(u)  E  B, and g?(b)  E  Bi.
Proof of  (i): We can assume V = {s t X : ‘$1  < ; 5 ,I : g(o;) = o,},  f”r  some A =
{ai,.  ,a.}.  Pickf E  X with d(f(ni),u,)  =  1 for al1 1 < i,,j < II, us  provided  by Lemma 2.
Applying Lemma 1,  we compute  P := V’as

(+) P = {g E x : VI 5  i,.j 5 li : d(,y(&J,  Cl,, = l}.

Since  V’ = V, we have  t” show P’ = X. Let y t X. Applying Lemma 2 t” A U  g(A).  we
obtain un  isometry h E  X satisfying d(h(a,),  0,) = d(h(a,),  g(ni))  = 1, far  all 1 < i,.j < n. Let
p E  X be an  extension of the isometry h(A) U g(A) + /z(A) U  A, defined by h(n;) Y  a, resp.
g(ni)  H h(rr,).  By definition  “fp: (T-‘(Q) = h(ni)  = />g(ni),  whence d(p-‘(~,),cI,)  = I =
d(pg(a,),aj).  Then (+) implies,>r’,/>g  E  P, whence g = ,I~‘I>s E  P’.
Proof of (ii): Let u l U and V := {g t X : g(a) = 0).  Then we have  V E U,. Far any  finite
F c X and any  s E  X we have  the following equivalences:

s E F V F V F  w 3f, ,f? E F :f,-‘ti;’  E VFV

Q $5 >.fi,.fi  E F : dfj-‘~f~-‘(n).  01 = d(fXo).  n)

* 35 .h>.fi t F : d(&‘(4,.fi(4)  = d(f?W,  ~1).

Applying Lemma 2 t” the finite set u(a)  : ,f E  F} u {f-‘(u)  : ,f E  F}, we obtain that
d(&‘(o),f,  (CI))  takes any  value  between  1 / 2 and 1,  as  fi  runs  through  X. On  the other  band,
d(i?(n),  a) can take only finitely many  values,  whence X # FVFVF. 0

Conceming the fifth  implication in 6.3 and the property  »f  respecting  infi-aboundedness  far
open subgroups, and also  for the succeeding  Remark  6.6 we present

ExampIe  6.5. of a topologica1 group  X with an  infrabounded open subgroup G which is ““t
strongly infrabounded. Because  of the “penness  of G this means  that  G is not  infrabounded
in itself. In particular,  G is an  open subgroup which does  not  respect  infraboundedness.
Moreover, X contains  an  open norma1  subgroup which does not  respect  infraboundedness.

Let Y be an  infinite group  and S the subgroup of Yz consisting  of all (?,,),,Ez far  which
{n E  22 : .y,, #  eY} is finite. The nonna1  subgroups

Hk := { (y,,),,En  t s : Jji = ey  far il <k} (k  E ZL)



of S form  a basis of U,(S) for a Hausdorff SIN-group topology S on S, with which we equip
S. For each  i?z  t Z,  LT,,,  : S i  S, (.\l,,),ltz b  (?;,+,,z).t~, is a topologica1 automorphism  of
S (note that D,,,(H~) = HA-,,,);  and ,v - LT,,, defìnes  il homomorphism IS  : Z  - Aut(  We
form  the topological  wnidirect  product  X := Sx,ZZ,  with Z carrying  the discrete topology.
The subgroups  Gi := HL  x {0} (I; t Z) of X form u  basis of neighborhoods of (Q, 0) in X;
and l’or  ,,,. k  E  Z.

(e\,,,r)Gl+,,,(er,,,1)-’  = “m(H~+m)  x iO}  = G

Therefore each  GA  is infrabounded.
But  Ci ih no1  strongly  inlrabounded:  Far  every / > k and finite F c CI, one  has (FG,)” =

F”G,  (sine  H,/S),  which is a propel-  subset  of Ci since  H, has infinite index  in HL. With a
view  to 6.24 (ii) below  we note also  that the open norma1 subgroup S x {0} contains  110 open
subgroup  G that respects  botmdedness.  Otherwise, for k t Z with Gn c G, Gn would be
infrabounded in G and hence  in S x {0} which leads  to a contradiction  similar to the lpreceding
One. 0

Remark  6.6. V. UspensklJ  has communicated to us  in aletta  ot  26 Apnl, IYYZ the sul-prising
result  and its interesting  proof  that u  topologica1 group  X is precompact  if far every  Cl t Ll<,
there  is a finite F c X such that  X = FUF. By contmst,  the open subgroups GA  <X of
Enample  6.5 are not  even  strongly infrabounded although  for every k E  Z and IJ F Li, there
is s E  X such  that GA  c x(ixr’.

We now  give  a table  of the basic  pl-operties  of the various  notions  of boundedness:

C R bihmnded  C AR L V R ir!fia
CCA  + + + + + +
A U B  +f + + + +
A + + + + + +
xA  U  Ai + + + + + +
AB + + + ? +
A-1 + + + +



Now far  the fourth  row:  translatmns  al-e umtorm automorphlsms ofthe canomcal  unifol-mitw
(see  1251,  2.241,  which implies a “+” for these  cases  as  well as  far biboundedness.  For
infiaboundedness  it is a corollary of the fifth row.
For the fifth IDW  let A,B  c X be C-bounded.  Let  U E  Z& Since  B  is L-bounded,  there  enist
finite F c B  and n t N with B c FU”. Pick  W E  li<,  witb  wf  c,fl,  far all,i’ in the linite  set
F. By L-boundedness  of A we have  finite H c A and !n E  W satisfying A c HW”‘. Hence
AB c HW’“FU”  c HFU”‘+“,  with finite HF. The proof for R-bounded A, B is  analogouc.
implying the  bibounded case. The counterexample for L A  R-boundedness  cuti  not  be givai
in this papa,  as  it would quire  tao  much  space.  The infi-abounded  case is obvious.
Far  the counterexamples in the last  row.  confer  Example  5.3. For the bibounded cime  the
“+“ is clex. The inversion is a uniform  automorphism  of the uniform spaces  (X,  C  A  77.)
and (X,  L V R).  which implies a “+” in the corresponding  places.  The proof fol-  the  case of
infraboundedness  is agin  easy: IfA c (FU)“. then  A-’  i ((F-l U  {e})Um’)““.
If we wbstitute  “bounded” by “precompact”, most  of the above  ar~ument  can easily be
adapted; only  the fifth row  requires a different tlratment. Far CAR,  the same counterexample
mentioned pieviously also  works far  this case. As to L V R,  upply I .7 to the caxs R and
C. For the remainin,o  casa,  it suffices to deal  with the left unifonnity.  Let Li E  l&  choow
V E  Z,/<,  with  V’ c li. Sine  B  is L-PI-ecompact.  there  exists finite F i B with B i FV. Pick
W E  2, with  M!f  CP, fol-  allf  in F. There existh  H c A finite satisfying A c HW. Hence
AB c HW”‘FV”  c HFV’ i HFU, with finite HF. 0

For the proof of the partial  result  6.9 on products of C V R-  (rerp.  C A  R-)  bounded sets
we need

Proof. By [25], 10.17. since  X is an  ASIN-group,

(w:) 3U’ E  UC~VV  E  7lJW E u,.vx  E  ci’ : wn c SV.

With U’ E  M,  from  (*w)  we have  A i (FU’)” with finite  F c X and II E  W.  Fol- .x E  A write
x = ~,rr, .?;,rr,, with ?; t F and u,  t U’. Now let  U t Z&.  Putting  VI := li.  (e) yields a
W, t L/<, sucht  that  W,u c i,V, for al1 II t CI’.  Hence

iu=qu,  . ..T.,Ll,,V,  >y,u . ..y.,w,1,,,.

There i\ i,  Vz  E  Li,  such that~-‘V?y  c W, f«l-ally  E  F. ThusxU  > y,u, .?;,-,u,,-,  VZ!.,,~,,.
Procecding  inductively,  the result  follava 0



are CV R-bounded in themselves there  are finite sets E c A and F c B and n E  W’  such that,
far each  n  E  A and 0 E  B, there  are u,~,(~1,.  , o,,  E  A and O”,  b,, , b,,  E  B with rrO  t E,
(1.  = n,  hl,  t F, b,, = b, and CL,+,  t <r,V n Vu,, b,,  , t b,V  n Vbi  far 0 < i < n.  Consequently,
<robo  t EF, u,,b,, = rrb,  n,b,  l AB, and “,+,b,+,  E  rr,Vb,Vn  !+Vb,  c a,b,UVn  VUn,b;  c
oib,U’ n iJ’n,b,  far  0 < i<“.  This shows thut AB is L V  R-bounded in itself. If A,B
are 1: A  R-bounded in themselves one  argues  similarly, considering  q,  rr,, , u,~  t A and
bo,  bl,  , b,, t B with u,+u E  Vrr,V  and b,+, E  Vb,V.-  The proof of (ii) is similar.

In regard to the hypothesis of L A  R-boundedness  in itself. confer  Proposition 6.18. Every
open subgroup  of a topologica1 group  X respects  V-boundedness  far  each  V E {C, R, C A
R,C V R}, becwse of 5.1. The following result  on i”frabounded”e\\-respecti”C open
subgroups  will help to  establish casa  in which infraboundedness coincida with  other kinds
of boundedness.

Proof. The proof of the implications between  (i) through  (iv)  is simple (far (ii) + (iii) use

n -’,i,(  )_ !h wlth V open from  (*)).  Now let  (iv)  hold,  let A c G be infrabounded and U E  ZL,
0  C  G. TO prove A C (EU)” for some finite E c G and II E  W,  choose  V t U, according  to
iivl.  One  Iris

(1) A c (FV)“’ with some finite F c X and n,  e N.

An easy inductio”,  using  (iv),  shows

vi e FU finite E, i G3 finite Fi c X3pi  E  W : (FV)’ c (E,Uj”‘F,

Corollary  6.12. LE?  X be  un  in@rrborrnderl  topologico/  gmup.  Then  eveqy  open  .suhg,uup  G
of X thot  cormins nn  open  nomnl  subgmrp  N is infiobounded  in if.w(f

Proof.  With some finite F C X and II E  W one  has X = (FN)” = F”N. Hence  G has finite
index and 6.10 (i) shows that  G respects infraboundedness. Sine  G is also  infrabounded, the
result follows. 0
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Corollary 6.13. An open  .subgrou/>  G qfn topologicnl  ,~roup  X reqmts  iilfrnhour?rledflesu  if
the group  GZ,  where  Z denotrs  the cenfer qfX.  hosjnite  index.

Proof. This is immediate from 6. IO  (ii). 0
We doubt whether every  open subgroup  of an  ASIN-group  respects  infraboundedness,

which is plainly true  far SIN-groups.
We now  look far circumstances  under which some of the notions  of boundedness coincide.

Some results  hold  far  all ubsets  of the groups  of a certain class,  in other results  we put
conditions on the subsets.  Our  fìrst  result also  concerns  ASIN-groups.

Proposition 6.14. Ler X br  n  mpologicrrl  gmrp  nnd  le!  A c X be  .srrmgl~  i$,irbounded.  A
is C-bounded  under  mq of  thejiokwing  rhree  conditims.

fi)  Zn,  hm  CI  basis  B srrch  fhot  tII/  t K?vx  t A : /1x  C xU.
(ii)  A is  n semigmup and

(*) VU t U<JV  t m,k E A : Kv c .rL’ (confer  6.8).

(iii)  A is L A 7&bounded  and  (e)  holdr.
Cundition  (ii)  implim  (i).  An  ~u~~rlogous  “righf  verrion  ” is  obtained  by  possing  fo the qqmsite
tqmlogicnl  gmu,,.

Proof. If (i) holds, note that (FU)” c PU” far  ali F c A and !l E  IY.
If (ii) holds, the set W := U,,, x -’ Vx  with any  V t Z&,  satisfies  x-’ Wx i W far al1 x t A,
which yields (i).
If (iii)  holds,  far given  U t Z,&  pick  V c U according  to (*).  By assumption  one  has
4 i V”FV”  with finite F c A and II E  W,  whence A c FU’” by (c), 0

Three corollaries of 6.14, case (ii)  (and 6.8) are

Proposition 6.15. Ler  X bc  LOI ASIN-gmup. A sub.wn~ig,nup  qf  X i.r  bibouded  ifir is srrongl~~
infrabounded.

Proposition 6.16. Lcr  X be m AS/N~,~roup  md  G o strongl~  infiwbounded  subgnxrp.  Then  C
is bwnded  and {U t Z&(X)  : Kr  t G : xI/x-’  = U}  is  CI  basis  of U,(X).  /II pnrticukrr;  eve!?
inft-uboirnded  ASIN-gr-oup  is ci  bounded  SIN-,~I-ou/J.

Proposition 6.17. Ler  X be m ASIN-grorq?.  lf  A C  X is  L A R-bounded,  if  is  bibomded.

Proof. A is L-bounded  by 6.14, and this may  be applied  to Am’. 0
Using the last  part of 6.14 we can show also  the following result  on L V  R-boundedness.

Proposition 6.18. Let X be on  ASIN-grmq  and  la  A c X be  L A R-bounded in it.se/j: Then
A is  C V R-bounded 01 irseIJ

Proof. Let U E  Li<,. The last  part  of 6.14 applied  to A and Am’  shows

3V~LI,,:VcUand~.~~A:VrcxUandxVc(i*

By assumptmn,  there  are a finite set F c A and n E  W’  such  that far every u t A there  are
b E  F and su,  x, , , s,, t A such that x0 = b,  1.8,  = o and n,  t Vx,- , V for I 5  i 5  II,  whence
xi E  xi-1 Li’ fl U’x,-1  by the choice of V. This prova  the  assertion. 0
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A similar result  is

Proposition 6.19. Ler  X br  LI toplogicrrl gnmp und  A m open,  srrong1.v  ini,-oborrndml
subnwrwid  of X. Suppose  rlwt X is an  ASIN-grorrp  or  that

(*) B := {U E Il<,(X) : Vx  E  A : xUx-’  = U} is LI buis  qfU,(X)

Thm A is  or?  SIN-subgroup  of X md  bounded in irse(f:
Far  the proof  we need

Lemma 6.20. Let  X be  n ropolo,yicrrl  grmp.  EWI:S’  opm C-  (or  R-)  bounded mmoid  A c X
is CI  rubpup  ofX.

Proof. It is enough  to consider  the case that  A is L-bounded.  TO show Am’  C  A, let
U = Li-’  E  Z&(X),  (i c A. By assumption,  A i FU” with finite F C  X and II E  N.  For given

.x E  A there  are k, / E  N,  k < /,  and b E  F such that .@,  x.’ t bU”.  Hence x-‘+*  E  li’”  C A and
x-‘=~‘-“-‘U?“C/lsinceI~k~lE~. 0

Proof of 6.19: Since  A and Am’ are infi-abounded.  the Iast  part of 6.14 shows that (*)  is
sutisfied  if X is ASIN. Suppose now  that (*)  holds and let  ci  E  B, U C  A. By assumption.
A i (FU)” with finite F c A and II E  W,  whence A = F”U”.  Hence A is C-bounded  in itself.
and by 6.20 a subgroup ofX,  which is SIN becuuse  of (c). 0

6.21 ExamplelRemark  In 6.20, the condition thatA  be Cc-  or ICboundedcannot  be weakened
to LA R-boundedncss,  BS the following counterexample  shows. Let T be an  infinite set and
X the gmoup  of al1 bijection\ x : T i  T and let  X1  := (1 E  X : {t E  T : x(f) #  t}  is finite}.
Equip X with the group  topology 7 for wbich {V,  : F c T finite} with VI:  := {.x  E  XI  :
x(f) = f far f t F} is a basis of Zn,(X,  I). Then (X,  C  A 77,)  is precompact by the xgument
fi-om  1251, 9.14 in which only  the neighborhoods U,r are to be replaced by the sets Vr.  Let
A c X be the open monoid generated  by X1  and an  element (1 E  X of infinite order. Then
A = X,  (a” : 11 t N}  and A is LA R-precompact,  but A is not  a subgroup, since  C $Z A. 0

Remark  6.22. Plainly,  in a topologica1 group  X. e has a neighborhood that is bounded (resp.
precompact) far  C or R iff e has  a bibounded (resp.  LVR-precompact)  neighborhood, and this
is equivalent  with X to be uniformly  locally bounded for L and R (resp. uniformly locally
C V R-precompact;  xe 1.19).  “Uniformly  locally bounded” may be replaced here  by B-
conservative, by the result  about  AB in 6.7. This yields a corollary to 3.13, (0) @ (1.)  @ (d),
generalizing [l5], Theorem  3 to arbitrary topologicai  groups,  for C  and R.  Similal-ly,  in
ASIN-groups,  if P  has  a neighborhood U which is L A  R-bounded in itself, then the vicinity
Ucnr,  is LAR-B-conserving  (by 6.9). and another  corollary to 3.13, for CAR-boundedness,
results.

We do not  know if X is uniformly locally CV R-  (resp.  CA R-)  bounded if e has an  L V R-
(resp.  L A  R-)  bounded neighborhood.

Proposition 6.23. Ler X De  n  ropologicn/  pmrp  and  let  E hnvc  rnz  L-bour~ded  (resp.  L-
precomprrcr)  neighbmhood (cJ  6.22). Thm ever:v  injrubowzded  subser  is  bibomded  (rrsp.
c v R-  p’rcompact).

Proof. IfA C X is infrabounded and U E  & is bibounded (resp.  precompact) then A i (FU)”
with F c X finite and II E  W.  (FU)>1  is a finite product  of bibounded (resp.  CVR-precompact)
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sets and thus  itself bibounded (resp.  C v R-precompact),  by 6.7, whence  A is bibounded
(resp.  C V  77.precompact).

The following proposition was  show by Atkin in a weaker form (cf. [Il, 3.2 (b)).

Proposition 6.24. Lrr  X be  n  ropologicnl  grmp  md  ler  A c X mref onl~  finircly  mcrrq
lef/ (resp.  right)  H-coscrs  of X, far  any  o,m,  sa/~gmrr~~  H of  X. (iJ  A is  C A R-bound~d
iff it  is C-hounded  (resp.  77.bourlded).  (ii)  IJ EW?)  open  .subgroup  of X contains  m operr
subgroup bvhich  respecr.r  i~~fr~boundedwss  md  $  A is i~~Jrobo~&d  rhen  A i.s  C-borrnded
(resp.  R-boundcd).

Proof. For (i) let  A be C  A  R-bounded and U E  U, symmetric. (U) is il,, open subgroup,
hence A c F(U) far a finite F c A. For any  x E  F, x-‘A n (U) is L A  7&bounded,  SO  that
x--IA n (L’) c (/“EU”  forsome  finite E c s- ‘A n (Cl) c (U)  and k E  t%  ci  is  symmetric and
E is finite, hence E C U’ far  some I,  and r’A  n (U) C Li’“+‘. Choosing  k and /big enough
for al1 x t F, we obtain  A = UIFFx(,~-‘A  n (U))  c FU’“+‘, as  desired. A modification of
this argument  yields (ii):  (U) contains  an  open subgroup G which respects  infsaboundedness,
A c FG with finite F c A, etc. 0

Corollary 6.25. Let X he  u  topologico/  grmp  und A un  C A R-bomded  subset  meeting unlj
rrJ?nite  nurnber  oJC-psrlr~l[~loco~,lpr,,lerlti  of X. Th A is  bibounded.

Proof. If A meets finitely many  C-pseudocomponents,  it meets only  linitely many  left (resp.
right)  H-cosets, for any  open subgroup H. Hence  the statement follows from  6.24(i). 0

On account  of Theorem 6. IO and of 6.24 (ii) we have

Theorem 6.26. Ler  X be  CI  ropologicnl  group.  Suppose rhnr  ewq  open .cubgrmp  hos,fi~~ire
inda. Thm CI  suDsei  oJX is inJrubounded  iJf  ir is  bibomded.

Corollary 6.27. A topologico/  RI-mp is bounded  $fif  is  ir!fi-ubowzded  und  eve~~  open  .subgrwp
IzasJinite  inder

Proof. The necessity  was  stated in Remark  5.2 (1)  and Proposition 6.3, and the sufficiency  is
immediate from  the theorem. 0

Note that every  open norma1  subgroup of an  infrabounded  topological  group has finite
index.

Corollary 6.28. Eve-  infiubomded  mpological  grorrp  wirh  open L-pserr<locon~l,one,lr  P OJ
e is bounded.

Proof. P has finite index by the last  remark. SO 6.27 yields the result. n
Corollary 6.25 applies  in particular  to gooups  with only one  C-pseudocomponent.  However,

in this context a stronger  statement is easily obtained:

Proposition 6.29. Let X DP  CI  topolugicol  grorrp  whose  C-p.serr~loco~~~~~o~~erlr  P of  e hm ,jrlite
index,  X = FP withj%re  F c X. IJA  c X is  O~frnDmo&d  rhnl  fiw ew~  Li E  Ll(,  rhm  misrs
II t N srrch  thnt  A c FU”  n U”F  n F-’  Il”  n CY’F-‘.  Note  the  specird  M.W  X = P.

Proof. As P is closed,  P is open by the assumption. Let U = U-’  t Z& U c P without
resttiction.  Then (li)  = P, SO  A i F(U), and the proof of 6.24 yields A C  FU’ with some
i t W.  Since  also  A-’  i s  infrabounded,  one  deduca  A-’ i FU’  f o r  someJ  E  W.  Since



C0niiihiiii0ri.i IO riw  ihcor~  o( ho,,,i<,~,<,,,ers  i,?  zm~,orx  i>mY~.,  iirir,  i,,,x,,ngid  ,g>ni,,>., 223

X = PF = Fm’P, the full asserrion  follows. 0
A Surther  corollary  to  6.24 ib

Proposition 6.30. LPI  X he  o ropologicol  grmp wifh opm ~-~~,serr~lorr,~~~po,~e,,r  P ofe.  Thcn
o .s~thser  R  c X i.r hihou~derl  ffA is  l A R-bomded md  <rho  (f P ir.s,>~~fs  i,!f,-rrhorolrl~,r/,lpss
rind  A i.v  i~!/irrho~~r~d~~~l.

Proof. P bring  an  open  nol.nul  subgoup  there a r e  F  c X  finite  a n d  I, E N wch  rhut
A c P”FP”  = FP = PF, respectively  A c (FP)” = F”P = PF”. Therefore 6.24 applies  and
gives  the result. 0

Concemint the hypothesis on P see  end of Exampie  6.3 1.  Regarding  infraboundedness
of open connected C-pseudocomponents  and for a discussion of the hypotheses  of 6.30 we
present  the l’ollowinf cxample  simila  to  6.5 which however  does  not yield the “contrast”  at
the rnd of 6.6.

Example 6.31. ofa lopological  group  X whose  L-pseud»c«mponent  P ofe  is open, connected,
and inli-nbwnded.  but ~not  strongly infi-abounded.  In pxticular,  the open normal  subgroup  P
does not respect  infi-aboundedness.  and in the second  part  of 6.30 (with  A = P) the hypothesis
that P respect  infraboundedncss  is not wpcrtluous.

La (B(IQ SO)  be the bounded  TVS constructed  in 4.1, let S,  be the vector  space topology
induced  011  B(W)  by the product  Iw’“.“, and equip  B(R)  with the Hausdorff  wctor space
topology S := $I  V SI. The  torus goup  T := Iw/ Z acts  on 10,  I [ naturally  by “translation
modulo 1”.  (I, s)  u t(,>) (I E T,  s E 10,  I I). Plainly,  this yields  far  evwy  i E Ta topological
automorphism  B, of (B(R), S). <T,~)(s)  =f(r(s)),  and a homomorphisrn  u : T + Airt(B(R),  S)
@in: rise to  the k~pological  xmidil-ect  pl-oduct X := (B(IW),S)x,T  with T can-ying  the
discrete lopology.  The \ets

w,  : =  {f  t B(W)  :  Np(]  E, El)) >  I - E] CE>@

form  a basis ofZ1,~(B(W).  S,,).  the  \et\

V,(E)  := w, n v t B(R)  : If(s)i < e far  s E E}

with E >Oand  finite t‘ c 10,  I [ formabasisofLI,>(B(PS),S),  and the ?et? U,(E) := V,(E) x {0}
fol-m  a hasis of u<.(X).  Clearly  the CC-pseudocomponent  P of e in X is qual  t»  the open
connected normal  suhgroup  B(R) x {0} of X. TO  prove that  P is infinbounded  consider
the basic neighborhood  U,(E).  There  is II t N such thut W: = B(R) since  (BCRJ.  2%)  is
connected. Choose  f t i- such that  r(E) n E = II. The”

(*) U,U(O) = “,(V,(E))  x {O}  = (O,w<(mh~)-’

Using  a function  h E B(W) with h([O,  I[) c  [O, Il. h(E)  c { 1 } and h@(E))  c {O}. every
(f. 0) E W , x (0)  can he written  as

(f,()> = U!f  + v ~ /!f),O) E  (V,(KE))  + V,(E))  x 10)  c (0% w,mo C’U,E),

by (v). Hence  ((O,t)U,(E)(O.r)~‘U,(E))”  > W; x {0} = B(IW)  x {O}  which prova  that  P
is infrahounded.  But  P is not strongly  infrahounded.  Otherwise  P would  be infrahounded  in
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itself,  and hence bibounded in itself (since  abelian), hence (B(LR).S,) would be bibounded, a
contradiction:  X is not infrabounded  since  otherwise X and P would be bibounded by 6.28:
In this example  T may be replaced  by any  dense subgroup  of W/ ZZ,  in particular  by a cyclic
dense subgroup.

Questions 6.32. Are Z and SL(2,  @)  bounded, non-precompact for some group  topology  ?
SL(2, C) admirs no C-precompact Hausdorff group  topology, see  1201,  Corollary  9.12.
(ii) IS  there  an  abelian group X with two gl-oup  topologia S and 7 such that S is bibounded,
‘T is precompact,  and I V  S is not  bibounded 1
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