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TRANSFER ARGUMENTS FOR SPACES OF OPERATORS AND TENSOR PROD-
UCTS

ANDREAS DEFANT, ALFREDO PERIS

Abstract. We prove two abstract theorems which allow to transfer stability results of topolog-
ical properties for spaces L,(E, F) of operators between two locally convex spaces (with the
topology of uniform convergence on all bounded sets) into stability results for injective tensor
products, and vice versa. Various examples demonstrate the usefulness of these arguments.

I Introduction

As usual we denote by L,(E.F) the space of bounded and linear operators between two
locally convex spaces £ and F endowed with the topology of uniform convergence on all
bounded sets. Recall that the injective tensor product £, . F of the strong dual of E with
F can be identified with the topological subspace 7 (E.F) of all finite rank operators in
Ly(E,F).

Shortly after Taskinen’s counterexamples [19] in 1986 to Grothendieck’s probleme des
topologies (When can every bounded subset of the projective tensor product of two Fréchet
spaces be localized?) and the closely related (DF)-space problem (If £ 1s a Fréchet space
and F 1s a (DF)-space, when is Ly(E,F) a (DF)-space?) 1t became very much clear that
questions of this type up to some point are finite dimensional in nature. For finite dimensional
Banach spaces Ly(E, F) and E} ¢ F coincide isometrically, hence at least “philosophically”
the topological structures of L,(E,F) and E; @ F for many infinite dimensional spaces E,
F are similar in many respects - and this 1s reflected by a long list of papers published atter
[986 (see the references of this paper and [9]).

Using ultrapower and desintegration techniques we give two abstract devices which allow
to transfer results on topological properties of E; ©¢ F into results on topological properties
of Ly(E,F), and vice versa. We prove that under very mild conditions, Ly (E, F') can be con-
sidered as a complemented subspace of an ultrapower of E; @, F. Hence for any topological
property on locally convex spaces which is stable under the formation of ultrapowers and
complemented subspaces, every stability result of this property for injective tensor products
can also be formulated for spaces of operators. By the so-called desintegration technique we
prove conversely: If E is a locally convex space and X 1s a Banach space with the bounded
approximation property, then any topological property which is inherited by quotients and
projective tensor products with normed spaces, transfers from L, (E, X) to E} ©¢ X.

[n the last section we try to illustrate the usefulness of our transfer arguments by various
examples.

We shall use standard notation and notions from the theory of locally convex spaces,
Banach spaces and tensor products (see e.g. [15], [8]). If E is a locally convex space, Uy(E)




|98 Andreas Defant, Alfredo Peris

and ‘B(E) denote the system of (absolutely convex) O-neighbourhoods and bounded subsets
in £, respectively, and ¢s(E) is the set of all continuous seminormes.

We also recall some notations and definitions of ultrapowers of locally convex spaces (see
| 13]). Let A be any set, / be an index set, and D an ultrafilter on /. Then the set-theoretic
ultrapower A’ /D is the cartesian power A’, factored by the equivalence relation: (a;) ~ (b;)
if {i : a; = b;} € D. The equivalence class containing the family («;) is denoted by (a;)/D.
Now, given a locally convex space £, we define

fin(E' /D) = {(x;)/D e E")D : limp(x;) <o for all p€cs(E)},
D

)
s

w(EY /DY = {(x;))/D € E'/D : limp(x;) =0 for all pees(E)}.
D

Denote the quotient map from fin(E' /D) onto fin(E’ /D) /u(E' /D) by ¢, and put (x;)p :=
g((xi) /D).

The full ultrapower (E)p is the space (E)qp := fin(E’"/D)/u(E' /D), the topology of
which is generated by the family of seminorms p((x;)p) := limp p(x;), where (x;)p € (E)p
and p ranges over ¢s(£).

We now consider the following distinguished subset of fin(E! /D):

bd(E! /D) :={(x;))/ D€ E"/D : 3y € D : (x;)ics, bounded in E}.

The bounded ultrapower [E) g is the subspace of (E) generated by bd(E” /D).

Some of the topological properties we are interested in are only inherited by ultrapowers
taken with respect to good ultrafilters (by a good ultrafilter on an index set we will always
mean an ultrafilter which is countably incomplete and X “-good with respect to a suitable
cardinality X). For all information on these notions and their relevance in the context of
locally convex spaces see ([5], [13] and [ 12]).

In what follows we will use the space (> of Johnson assuming f_} = (. This amounts to
choosing a sequence (Fy)ren of finite-dimensional Banach spaces which is dense in the set
of all finite-dimensional Banach spaces endowed with the Banach-Mazur distance and letting
(' be the [>-direct sum of & Fj X & F.

2  Ultrapower techniques

Our purpose in this section is to transfer properties from E; ¢ F to Lp(E, F). To do this we
will take bounded ultrapowers of the first space and obtain the second space as a quotient or
cven complemented subspace of a bounded ultrapower of the first one.

Definition 1 A pair (E.F) of locally convex spaces is said to have the equicontinuous ap-
proximation property (shortly, EAP) if, for each T € L(E.F), there is an equicontinuous net
{TiYier in F(E,F) such that T (x) = lim; T;(x), for all x € E.

Note that, in particular, (E,F) has the EAP if either E or I has the BAP.

The following technical lemma will be needed:
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Lemma 2 Let (E.F) be a pair of locally convex spaces with EAP and & = |S| a cardinality.
Consider the index set

[:={(M,UA)/MCE finite, Ue Uy(F), ACS finite}
together with its natural order
M UA)Y <M U AY it McM. U cCU and ACA’

Then there is a countably incomplete and R ¥ -good ultrafilter D on I refining the order filter
such that for all T € L(E,F) there is an equicontinuous net {T;}icr in F(E,F) satisfying
T(x) = limyp T;(x), forall x € E.

Proof. Without loss of generality we assume that S is such that X > max{|U|,|E|}. for some
0-basis U in F. Given T € L(E,F), let T/ be an equicontinuous subset of F (£, F) such that
T belongs to the closure of M with respect to the pointwise convergence topology. For each
I = (M,U.,A) € I we select (and fix) T; € W such that

(T-T)M)CU.
Obviously lim; T;(x) = T'(x), for each x € E. Moreover, if we consider the order filter basis
A:={L]iel}, I:=4{j€l]j>i},

then we easily observe that
;| =X for all i€l

Apply now [5, 6.1.4 and the remarks before 6.1.8] to get an ultrafilter D which refines the
order filter and 1s H*—gﬂmd. On the other hand, the order filter in 7 1s countably incomplete,
hence so 18 D.

From now on [ and D will be fixed as 1n the preceding lemma, where X 1s any cardinal
not smaller than the cardinal of some O-basis in £} ¢ F.

Theorem 3 Let F be a locally convex space which is a complemented subspace of (F, ).
(a) If E is quasibarrelled and the pair (E.F) has the EAP, then there is a continuois
surjection
v +
Q: [Eh e F]g) — L;;(Ef )

Moreover, if E or F has the BAPF, then there is a monomorpiiism
. - o I
o L;;,(E., F ) — [Eh e f‘]rﬂ

such that ¢ oy = idy (g py; that is, Ly(E, F) is a complemented subspace of [E) ¢ F| .
(b) If X is an arbitrary Banach space, then Ly,(X,F) is a complemented subspace of

[CT_"J" &“TE F] .
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Proof. (a) Identify 7 (E,F), as a topological subspace of L,,(E, F'), with E, ¢¢ F, and define

0: [E,@cFlp — Ly(E,(F).)
(T))p = T(x):=limpTi(x)

This limit is a well-defined element in F”, since {7;(x) };c; is bounded in F, for every x €
E, and every bounded subset of F is 6(F", F')-relatively compact. T is obviously linear and
for each U € Uy(F), there is V € Uy(E) such that T(V) C U, since the quasibarrelledness
of E implies the equicontinuity of {7;};c; and U? is o(F",F’)-closed. This yields T €
L(E, (F}),). *

The continuity of ¢ follows from the fact that, if B € ‘B(E) and U € Uy(F'), then the set

U:=(W(B,U))p C [E, @ Flop

is a 0-neighbourhood in [E; ¢ F]p for which ¢(U) C W(B,U).

Now define ¢ := Pod, where P: Ly(E.(F]),) = Ly(E,F) is the canonical projection. ¢
is continuous and, if 7 € L(E, F'), there is an equicontinuous net {7; };c; in £’ & F such that
T(x) =1limpT;(x), forall x € E. Then &((7;)p) = T and we get the surjectivity of ¢.

If £ (resp., F) has the BAP, there is an equicontinuous net {P;};c; in # (E) such that
x = limyp Pi(x), for all x € E (resp., {Q;}ier in F (F) such that y = limp Q;(v), forall y € F).

For T € L(E,F) define W(T) := (T o P;}p (resp., Y(T) := (Q;oT)p). Then y(T) is a
well-defined element in [E} & F|q, and

Y :Ly(E,F) — [E, @¢ Flop

s linear, continuous and satisfies ¢ oy = id; g py. From the last equality we conclude that y
1S @ monomorphism.

(b) Let C» = Ih((X,,),) be the Johnson space. For each M C X finite, choose (and fix)
k(M) € N and an isomorphism Ty, : span(M) — X;, such that max{|| Ty ||, || Ty ' ||} <
| +|M|~". Let us define

Vo Ly(X, F) — [Cy®e Flip

by w(T') :=(T;)p, where T; :=T o ?:.J' o Pyyy whenever i = (M, U, S) and Peoary - Co = Xy
1s the projection onto the k(M )-th coordinate. y is well-defined, linear and continuous. Now
let ~
0: [G®eFlp — Lp(X,(F)).)
() = T(x):=limpTio jian o Tyu(x)

where jiar) @ Xgmry — C2 1s the canonical injection, i = (M, U,S) and the limit is taken for
those i = (M,U,S) such that x € M. ¢ is well-defined, linear and continuous. To conclude,
define ¢ := Po @, where P: L,(X,(F/).) — Ly(X,F) is the canonical projection, and observe
Hat Goy = 1dyx F)-

i he following result 1s an immediate consequence of Theorem 3 (in case (a) we use the
open mapping theorem for Fréchet spaces).

Corollary 4 Let E and F be l.c.s. such that E is quasibarrelled and F is a complemented
subspace of (F,),. Consider one of the following two cases
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(a) Let P be a property in metrizable l.c.s. which is stable under the formation of quotients
and good ultrapowers, and assume that (E, F) has the EAP.

(b) Let P be a property in locally convex spaces which is stable under complemented
subspaces and good ultrapowers, and assume that E or F has the BAP.
Then if E) 00¢ F has P, the space Ly(E, F) also has property P.

Moreover, if P is a property as in (b) which is satisfied by Cy & F, then L,(X,F) has
property P for all Banach spaces X.

Remark. The reason why we have to assume that F is complemented in (F)); is not only
technical: indeed, 1n |17, Proposition 2.6] the second author showed that there are Fréchet
spaces £ and a Banach L..-space Z not complemented in its bidual, such that L,(E.Z) is
not quasinormable. While the first author proved in [6, 4.5.5] that G ¢ Z 1s quasinormable
whenever Z is a Banach L..-space and G is quasinormable (which is the case for G = E} if E
is Fréchet).

3 Desintegration techniques

Based on the so-called desintegration technique (see e.g. [3], [8]) we now provide a gen-
eral device which allows us to transfer topological and geometrical properties from spaces
Ly (E,F) of operators to their underlying injective tensor products E; &, F.

Theorem S Let P be a property in locally convex spaces which is stable under quotients and
projective tensor products with normed spaces.

(1)If X is a Banach space with the BAP and E is a locally convex space such that L,(E ., X)
has property P, then E; ¢ X has P.

(2) If X' (resp., X) has the BAP and Ly(X.F) (resp., Ly(X',F)) has property P, then
X' e F (resp., X ®¢ F) has P.

(3) If Lp(Co,E) has P, then X ©¢ E has P for all normed spaces X.

(4) If Ly(E,C>) has P, then E; <¢ X has P for all normed spaces X.

Proof. We start with the proof of (1) (the proof of (2) follows similar lines): Consider for an
arbitrary Banach space Y the tensor contraction

C: (YR X)oon(X'2eX) = YeX
(yRx) X, ox) = xx){(yex)

which 1s well-defined, linear and continuous; we show that it i1s even surjective and open:
Take some 7z = ) y; @ xp € Y & X and look at 1s associated operator

. € F(Y'.X), T.O") = 2y (v)xe.
Since X has the A-BAP for some A > 1, there is some § € # (X, X) such that

| .S |[< 2A and
SoTl,=T.

(see e.g. [8, Corollary 16.9]). Clearly, S defines some zs € X' 0 X for which C(z® z5) = z
and
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Now an easy check of the proot of [8. Theorem 3.5] shows that for each locally convex
space Y, in particular for Y = E7 | the above tensor contraction is a topological surjection. To
conclude consider the following continuous and linear mapping

Vi Ly(EX)2g (X meX) — Ej @eX
Too(Wox) = T wx

Since the following diagramm commutes. ¥ 1s even a topological surjection:

!

Lp(E X)on (X 2 X)  —> E| X
(E} 0e X) 20 (X' 00 X)

Clearly, this gives the claim. Proof of (3) ((4) 1s again similar): By [8, 29.7 Corollary and
35.3 Theorem| we know that the tensor contraction

(X @e () Xp (Cr @ E) —> X % E
1s a topological surjection, and hence as above

(X e )@ L(CyE)  — X oo E
(x@y)xT = xw Ty

1S a topological surjection.

The following corollary summarizes the spirit of this note.

Corollary 6 Letr P a property in locally convex spaces which is stable under quotients, pro-
jective tensor products with normed spaces and good ultrapowers. Then for each quasibar-
relled locally convex space E complemented in (E})!, and for each Banach space X comple-
mented in X the following hold.

(1) Let X have the BAP. Then Ly(E . X ) has P if and only if E} ¢ X has P.

(2) Let X" have the BAP. Then Ly, (X .E) has P if and only if X' 2¢ E has P.

(3) Lp(X.E) has P for all X if and only if X @¢ E has P for all X.

(4) Ly(E,X) has P for all X if and only if E; ¢¢ X has P for all X.

4 Examples

In this section we want to tllustrate the usetulness of the previous results and provide partic-
ular examples - without trying to be as complete as possible.

We first recall some topological invariants from the theory of locally convex spaces which,
like properties as “(DF)™, “barrelled” or “bornological”, are in general not stable under the
formation of spaces of linear operators and injective tensor products: A locally convex space
E 1s quasinormable 1f

VU € Uy(E) 3V € Uy(E) Ye>0 IBe B(E): V Cel+B.



Transfer arguments for spaces of operators and tensor products 203

and E 1s said to satisty the strict Mackey convergence condition, (SMCC), if
VB € B(E) JC € ':B(E) Ve >0 JU € (U(}(E) - UNBCel.

[n connection with his study of ultrapowers of locally convex spaces, Heinrich {13} in-
troduces the density condition, (DC), as follows: E satisfies (DC) if given any function
A Uy(E) —|0, 40| and and arbitrary element V € Uy(E ), there always exist a finite subset
F of Uy(E) and an element B € ‘B(E£) such that

() MU)U CB+V.
vey

This property was intensively studied by Bierstedt and Bonet [1] in the context of Fréchet
spaces.

The space E is said to satisty the dual density condition, (DDC), (resp., the strong dual
density condition, (SDDCQC)) (see [2]) if given any function A : ‘B(E) 4,»}[}. —i—c}ﬂ[ and an arbitrary
element A € B(E), there always exist a finite subset F of B(E) and U € Uy(E) such that

ANU C F(U AMB)B |, (resp., ANUCT U AB)B |).

\BeF Bef

[n the context of Fréchet spaces, Vogt introduced the classes (€2y) and (DN ) for the
splitting theory of exact sequences of Fréchet spaces. See e.g. [21].

Corollary 7 Let E and F be l.c.s. such that E is guasibarrelled and I is a complemenied
subspace of (F)...

(a) If (E.F) has the EAP, E is a (DF)-space, F is a Fréchet space and E, ¢ F (s quasi-
normable (resp., satisfies condition (L)), then Ly,(E,F) is also quasinormable (resp., satis-
Jies (L2¢)).

(b) If E or I has the BAP and E}; we Iis quasinormable (resp., has the (DC), is a
(DF)-space, is a (DF)-space with the (DDC), is a (DF)-space with the (SMCC), is a metriz-
able space with condition (DNy)), then L,(E.F) has the same property (in the fourth case
Ly (E.F) is a (DF)-space which has even the (SDDC) instead of only the (DDC), which in
particular implies that it is bornological ).

(¢c) If X is a Banach space then all the properties considered in (b) are transferred from
Cr w0e F 1o Lp(X . F).

Proof. (a) Quasinormability and (€2, ) are properties which are stable under the formation of
quotients and good ultrapowers (see [12, Remarks after Corollary 3] and [ 16, 3.3.6]). Apply
then (a) in Corollary 4.

(b) and (c): Quasinormability and the rest of properties in (b) are all stable by taking
good ultrapowers (see {12} and {16, 3.3.6]). In the case when E;f} e I 18 a (DF)-space with
the (DDC), we have that [E} ¢ Flgp is a (DF)-space with the (SDDC) [12, Proposition 2}.
We again conclude by Corollary 4.

Recall that a locally convex space G 1s in space( £, ) if for each continuous seminorm p on
G, there 1s another continuous seminorm ¢ > p such that the canonical map from £, into E;:
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factorizes through some L, (). Banach spaces in space( L, ) for r = 1 (resp., r = oo) are the
Ly-spaces (resp., L..-spaces) in the sense of Lindenstrauss and Petczynski; for 1 < r < oo they
coincide with the class of all £,-spaces in the sense of Lindestrauss and Petczynski together
with all Banach spaces 1isomorphic to a Hilbert space.

Corollary 8 Let E be a Fréchet space and F a (DF)-space complemented in (F)),. Then in
each of the following cases L,(E,F) is a (DF)-space:

(1) E is a Banach space and F is in space(L;).

(2) E is a Banach Ly-space (1 < p <2)and F is in space( L. ).

Proof. Both results follow from Corollary 4 and their counterpart for e-tensor products:
Statement (1) is a consequence of (7. Proposition 2], and (2) of |7, Proposition 3} and [3].

For related results see for example [10] (L,({;,F) is (DF) for every locally complete
(DF)-space F') and Taskinen [20].

Following [9] we say that a locally convex space E has type 2 (resp., cotype 2) whenever
for a basis U of 0-neighbourhoods all £y have this property. We speak of uniform type 2
(resp., uniform cotype 2) if all £y have type 2 (resp., cotype 2) with a uniform constant not
depending on U. Examples will be given below.

Corollary 9 (/) Let E be a Fréchet space of uniform type 2 with the density condition. Then
E, @3¢ X is a bornological (DF)-space for each Banach space of cotype 2,
(2) Let E and F be Fréchet spaces of uniform type 2 with the density condition. Then
"}'J e P‘,: is a bornological (DF)-space.

The following lemma, which 1s based on Pisier’s factorization theorem (see e.g. [8] or
[18]) will show that it suffices to check that £} ¢ [» for each E as above is a bornological
(DF)-space

Lemma 10 Let P be a property in locally convex spaces which is stable under quotients and
projective tensor products. Then E| ©¢ E» has property P provided the E}'s have cotype 2
and their injective tensor products with [» have P.

Proof. We know from [8, Theorem 35.3 and (1) in Proposition 29.3] that

O: (E1®eh)on(bh®elky) — K Dy L2
(x2&)®(lxoy) = <EC>xwy

1s a topological surjection - here m; 1s the tensor norm associated to the Banach operator 1deal
L, of all operators factoring through a Hilbert space (see [, 17.12]). By Pisier’s factorization
theorem (see e.g. [8, 31.4])

X XY =X X, Y

(isomorphically) for all cotype 2 spaces X and Y; hence, since the E;’s have cotype 2, we
easily obtain that
El :f"f::E E:j — E] :’hh{j{!]j !::2

(topologically) which completes the proof.
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Proof. [Proof of the corollary] We deduce these results from their analogues for spaces of
operators. Indeed, as proved 1n [9, Prop. of sect. 4 and Ex. 5 of sect. 5] under the above as-
sumptions L, (E, X) as well as L, (E, F}) are bornological (DF)-spaces. Consider the property
“bornological (DF)-space”, which is stable under quotients and projective tensor products
(see e.g. [15, 11.3.8]). By Theorem 5 (1) we know that E‘;’J ®e [ 18 a bornological (DF)-space.
In view of the lemma it remains to check that £; has uniform cotype 2. By [9, Proposition
of section 1] 1t 1s possible to choose a fundamental system B of absolutely convex, bounded
sets 1n £ such that Ep has type 2 for all B € B. Then the polars B?, B € B, form a basis of
0-neighbourhoods of E;. Since each (E;)po can be considered as an isometric subspace of
(Ep); and duals of type 2 spaces have cotype 2, we get what we wanted.

We can give some concrete examples of bornological injective tensor products. For | <
p <2, let

!.,!}. :: lndq{_ﬂfq

S.Iﬂ — : — lndq{PSq

where §, stands for the Schatten g-class. And, for | < p < 2, consider
Ly+[0,1] :=indgs L, [0, 1].

These are strong duals of Fréchet spaces of uniform type 2 (see [11] for the Schatten classes)
and, moreover, by Holder's inequality they satisty the (SMCC) (we refer to [14] for [, and
to [4] for L, [0,1]). Hence they even are strong duals of Fréchet spaces with the density
condition.

EKxamples.
(1) For p as above and for each Banach space X of cotype 2 the injective tensor products
- 2e X, Sp-®e X and L, [0, 1] ®¢ X are bornological (DF)-spaces.

(2) For E. F equal to any of the spaces {,,_, S, or L, [0,1] and p as above, we have that
the tensor product £ &¢ F is a bornological (DF)-space.

Counterexample.

For all 2 < p < oo there is a Banach space X of cotype 2 such that /,,_. ©¢ X is not (DF).
To see this, by [9, Example 3 in section 4|, consider a Banach space X of cotype 2 such
that Ly,({,r,X) is not (DF). Assume that [, ©¢ X was a (DF)-space. Then L,(/,,,X), as a
complemented subspace of some ultrapower [/, ¢ X |, would be a (DF)-space, which is a
contradiction.
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