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NATURAL NORMS ON SYMMETRIC TENSOR PRODUCTS OF NORMED SPACES'
KLAUS FLORET

Abstract. The basics of thetheory of symmetric tensor products Of normed spaces and some
applications are presented.

0 Introduction

0.1. Though known for quite a while to algebraists (at least since Chevalley’ s monograph [C]
in 1956), it was only in 1980 that R. Ryan in his doctoral thesis [R]introduced symmetric
tensor products for the study of polynomials on Banach spaces; before Gupta|Gu| had dis-
covered in 1968 that the space of nuclear n-homogeneous polynomials on a Banach space
E isa natural predua (via trace duality) of the space of continuous n-homogeneous poly-
nomials on E' (if E' has the approximation property). Unfortunately, Ryan’s thesis was not
published and 1 have the impression that many researchers do not feel attracted by symmetric
tensor products and prefer to use other methods. | think, however. that a consequent (but not
exclusive!) use of tensor products will give good and new insights into the theory - exactly as
Grothendieck did it successfully in his“résumé”’ ([Gro], see also | DF]) for the theory of linear
operators. Moreover, there are already various “metri? results and so it seems to be adequate
to develop a “metric theory” of n-th symmetric tensor productsin the spirit of Grothendieck.
Therefore the purpose of this paper is two-fold: presenting a thorough introduction of the
algebraic basics of symmetric tensor products and the two extreme natural norms (the sym-
metric projective norm x; and symmetric injective norm ¢,) in order to facilitate the use of
symmetric tensor products and to prepare a theory of so-called s-tensor norms the beginning
of which will appear in|F2].

0.2. This paper starts with a study of the algebraic aspects, the norms 1, and ¢, continues
with the duality between ¢, and 1, and applications to the polarization constants and finishes
with extensions of polynomials to the bidual. Though many of the results are explicitly or
implicitly known, the thorough construction of the theory gives various simplified proofs and
also new information - not only for the theory of symmetric tensor products but also for the
study of polynomials.

03.If £;,... E, and F are vector spaces over K = Rk or K = C the space of n-linear map-

pings ¢ : Eyx -+ X E, — F is denoted by L(E,,..., E;F). Ifall £,= ...= E, = E
Nachbin’s notation L{("E; F) := L(E, .E: F ) will be used; "£ should be read as n-times
| S

n
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E. The subspace Ly("E; F) ¢ L("E; F) is the space of those ¢ which are symmetric, j.e.
O(x), .« s Xn) =0(Xy(1); . . ., Xy(n)) for all permutationsn) € S, (the group of permutations of
{1,...,n}).1f the E; and F are normed spaces the subspaces of continuous n-linear maps
will be denoted by L(E\,... E,;F), L("E; F) and L("E;F) respectively; E' := L(E;K).
The closed unit ball of Eis B;. If G C Eisa subspace I{ :G < E and Qg E— E/G
denote the natural injection and quotient mapping. E = F means topologically isomorphic,

: . . ) 1 : C |
ELF isometrically isomorphic, E < F denotes an (iso-)metric injection and T : E-»Fa

metric surjection (i.e. T Br=Br). The set Cpis:={-1 1}if K= Rand nis even and
= { 1} otherwise.
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1 The algebraic theory of symmetric tensor products

11 1f n € N and Hl,.., E, are K-vectors spaces, then an n-fold tensor product (Hy, o)
(where Hy is a K-vector space and Vo € L(E,. . ., E,;Hy)) is defined by the following uni-
versal property: for every K-vector space F and every ¢ € L(E}, .. ., E,; F) there isa unique
T € L(Hy; F) with@ = T o . The pair (Hy, ) is unique up to isomorphisms and exists.

The following notation will be used: «(E,., E,), o@;?zlEj, E® ..QF,,

Q"E = @(E,....E) and  ®@(xp,... X)) = X0 QX

aswell as®x =x®-..xx. Todistinguish it from the symmetric tensor product (which will
be defined and constructed in a moment) it is reasonable to call ®"*E the full n-fold tensor
product of E. The isomorphism

L(Ey,....,E;F)= L(@_’}:,EF,;F)
will be denoted by ¢ ~ ¢~. Clearly, ®'E = E.
1.2. The symmetric tensor product will linearize only symmetric n-linear mappings.

Definition. Let E, H be K-vector spaces and o € Ly("E;H). The pair (H, o) is called an
n-th symmetric tensor product of E if for every K-vector space F and every ¢ € L,("E; F)
thereisaunique T € L(H; F) with o = T o yy.

The algebraists call (H,y) also an n-th symmetric (tensor) power of E. If it is clear
which ne N isused, the adjective “n-th” will be omitted. The universal property immediately
implies the following aftirmations for fixed n:
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(1) If (Ho,wo) is a symmetric tensor product of E, then spanwy(E") = Hy and, for all F
and Ty, T> € L(Ho; F), one has: T) = T; if and only if T} o Wo = 1> o .

(2) If (H;,y;) are two symmetric tensor products of E, then there exists a unique isomor-
phism (onto) § € L(H, :H,) withy, = § oy and y; = S71c .

(3) Let (Hy, wo) be a symmetric tensor product of E and S € L(Hy;H,) and T € L(F;E)
isomorphisms. Then (H;. S o Wy o (T, ., T))is asymmetric tensor product of F.

The statement (2) gives the same kind of uniqueness as for the full tensor product. Once
one has existence, it is therefore reasonable to speak about the (n-th) symmetric tensor prod-
uci of E.

1.3. To prove the existence, the following operation will be helpful: if n € S,,, then the n-linear
map £" — @"E defined by

(1 ey %)~ Xy @ B X1y

has a linearization ®"E — @"E which will be denoted by ; ~ 1. It is easy to see that
(2")° = z9°N The use of 1! in the definition instead of 7 is sometimes practical (see also
[Gre]). For xi,...,x, € E define

| :
XUV 0V 5= Y i) @ @iy € QF

and for z € W"E
1
op(z) == D NEQ"E
"MeES,

which clearly is the linearization ®"E — ®"E of the n-linear (even symmetric) map v :
E" — @"E. We shall show that (imc};, V) is an n-th symmetric tensor product of E. Note
that o} (®@"x) = ®"x.

1.4. Before doing this, let us state the

Polarization formula. Let E be a K-vector space, (€2, P) a probability space, €1,. . ., €, :
Q — K functions in L(P) whichare stochastically independent, centered (i.e. [, & dP = 0)
and normalized (i.e. fo |ex)>dP = 1). Then, for every xo.xi..,x, € E

{ n
aveva= o J e eme s 28k<w)”}<dw>.
: [ k=1

It is clear that the Bochner-integral exists in the finite dimensional subspace @"[span {xp,. .

"

x}] of &"E.
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Proof. The proof is straightforward: if g is the distribution measure onK of ¢, then using
o= 1

Jo- -Pldw) =

=38z i Sttt Ty T (dn) - pa (At B -+ @3, =

=Ynes, X1 @ @ X1y =nlx V.-V,

sincetheiterated integral is 1if {k,,...,k,} ={1...,n} and O otherwise. &
Many special situations are of interest:

(@) P the countable product measure on () := K" of the normalized Gauf-measure on K and
¢; being the k-th projection;

(b) the Rademacher functions: Q :={=1,+1} Y with P the product measure of 1 5 (6-t+ dy1)
and ¢, := r; the k-th projection;

(c) more general - the n-Rademacher functions which were first used by Aron and Globevnik
[AG] for the study of polynomials: Substitute{ —1,1} by the n-th unit roots A, := exp( z’ff )

hence Q isthe set {Ay,... A, }"" and g := 5] is the k-th projection. These n-Rademacher
functions are often useful in the complex theory of n-linear mappings and polynomials since

they are n-orthonormal, ..

" U ifly=...=Kk,
stoousl dP = { )
\:IQ J b

0 otherwise

(P being the product measure of 1 (3, ++ §, )), hence

iXk(])QC""?@Xk(}Z):/. {i (1) } e ® [i §p () xk n)} (dr),
k=1 <2

k=1

and satisfy a Khintchine inequality (see [ALRT], [FM] and [MeT}).

1.5. Using the Rademacher functionsone obtains the classical polarization formula

1 n
x1V---Vx, = W z 81...8” Q" [X0+26k,¥k
LSS —1,1} k=1

and in particular the
Corollary.

oL(®"E)  =span{x;V---Vx, |x; € E} = span{®"x |x € E} =

I

{2']’1 o ®"x; l meN, x;eE, 0 € Cﬁl}

whereCy := {—1,1} if K= Rand nis even and Ci; := {1} otherwise.
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Now everything is prepared for the
Theorem. (imo;, v) is an n-th symmetric tensor product of E.

The embedding imo}, — ®"E will be denoted, if necessary, by tg.

Proof. The unique factorization of every ¢ € L,("E: F) through alinear 7' € L(imo’.; F) has
to be verified. Clearly T := ¢ o V- satisfies

ToV(xp,...,xp)

T(x) V- Vx,) = (»" Ly (x ;o~--&;xnj)1 =

i s N e .
7T 2 oL ((x; - @x)") = o(x1,...,x,)

since ¢ is symmetric. If the mappings 77, 7> € L(imo}; F) satisfy 7o v =175 - v, then
T; (®"™) = To(®"x) for all x and hence, by the corollary, i = T5. O

Though there are clearly other “realizations’ of the n-th symmetric tensor product we
shall - if not otherwise stated (and if the full tensor product " E isfixed) = consider the
subspace imo}; ¢ @"E together with v as the n-th symmetric tensor product: ©"*E := imG.
It is obvious that ©'*E = ®'E = E. Note that o} . ®W'E — ®™E is a projection and
G o=V, but clearly @ # 10 v if n> 1 Itiseasy to see that if (Hy,yo) is an n-th
symmetric tensor product and (H,, ;) afull n-fold tensor product of E, then

1
J(o(xp, . x)) = = Z W1 (Xn=1(1y5- - »Xq-1(n)) € Hi
" MES,

defines the natural injectionJ: H, — H,

1.6. The universal property of the n-th symmetric tensor product gives an isomorphism
L("E;F) = L(®™E;F), @~ ol = ¢l ot

itsinverseis T~~ T ¢ V. Since o} isthe linearization of v it follows that the embedding
L(R"E;F) = Ly("E;F) < L("E;F) = L(®"E;F)

is the mapping T~ To 6. For F = K one obtains

(oF)": (&™E)" = Ly("E) = L("E) = (®"E)*.
1.7.1f T€ L(E;F), then there is a unique § € L(«*E; "™ F) with S(&"x) = @"Tx for all
x ¢ E: just take S := ®"T -1} and note that imS$ ¢ ©"*F; uniqueness comes from the fact

that the elements "x span the space @*F. Notation; @™ T : " E — " F . It is easy to
see that @"*T(x;V---Vux,)=Tx;V---VTx, and ker@"*T = o (ker@"T).
1.8. It is worthwhile to note, see [C], that dimg (2" K¥)= (""" )

1.9. The elements in ®™*E ¢ ®"E are called symmetric.
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Remark.

() z € ®"E is symmetric if and only if z = \for all n€ S,

(2) Let xy,...,x, € E\{0}. Then x; & --- ©x, issymmetric if and only if span{xy,...,x,}
iSone-dimensional.

PI‘OOf- D is iminediate; for (2) assume trhat x> & span {x; } and take x; € E* with (e, x) =1
for all k and (x],x2) =0. For ¢ :=x} ®---®x; € (¥"E)* one gets the contradiction 1 =
(0, X1 QX2 ® - Qxp) = (P, 02 QX Rx3--- R xy) = 0 since x; @y @ X3+ Qxp = X QX1 &
X3 8- Qx, by (1). 0O

1.10. The symmetric tensor product ©"*E is a complemented subspace of the full one @"E
with the projection o} Vice versa, take F :=[]'_ E,and ],: E;— F and P;: F — E; the
natural injections and projections, then

. ) L8l of . n'Py 0P,
idgr g ® B — " @"F —@"Fe"F — "L E

(this construction is, for n = 2, due to Bonet-Peris [BP] and was successively extended to the
present form by Defant-Maestre [DM], [AlF1] and Blasco [Bi]). It follows that ®_E; is
isomorphic to a complemented subspace of @™ F (with “natura]” mappings, which isimpor-
tant in view of the topological situation). In particular: ®"E is isomorphic to a complemented
subspace of @™ E" If E= E", then ®"E and @"*E are complemented in each other. One
can even show more [DD]: if E= E2, then @"E = @"™E ; thisresult is also a consequence of
the formula ([AnF])

®n,x(F @ G) — @ [(X)I”F] ® [®i1~k,.x;G]
k=0

(again with natural mappings and the convention ®@%°F := K).

1.11. Blasco [B2] showed that " is isomorphic to a complemented subspace of »/*!E
- also with natural mappings; in particular: E = »'“E is complemented in ai| @"E. The
dual result (i.e. for n-homogeneous polynomials) was proved in 1976 by Aron-Schottenloher
[AS].

1.12. Recall thet g : E — F is an n-homogeneous polynomial (notation: q € P"(E; F)) if
there isa ¢ € L("E; F) with q(x) = @(x,. . ,x)for all x ¢ E; notation: q:= ¢*:= ¢ o A where
AKX = (x,. . ..x). Itisclear that also the symmetrization ¢, € Li("E; F) of ¢ defined by

1
(pvg(Xh...,X”) == —’ z (p(an(l),...,xnf;(”))
" nes,
satisfies q(x) =@, (%, . .., x). Note the relation

@ =0"olfo V. (%)
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The polarization formula implies that there is a unique ¢ € Ly("E;F) with q = ¢*. The
following notation will be used:
P”(E; F ) = LS(HE;F) = L(C{C”“"E; F )
4 ~ 4 ~ qL = (é)[,‘.\'

Ls — oL
¢ e =0 ey

Applying ¢ = g% - v to the polarization formula gives

Glxp, X)) = ,3—!];281(W)--~E”(W)({ («V()+EZ:1 £k(w)xk> P(dw) =

i
1

57 28, dne{~1,1} 01 - On g (xo + Y 5kxk)
forall g € P'(E;F) and xg,...,x, € E.

1:13. If (E;, 5) are dual systems of vector spaces, then («_, £}, ®y F;) forms a dual system
with the duality bracket

: . . ) n o
<2x’] ® - ®x, Z-V{ ®"'®>’£> — Z/(l’[i@;\y{)
1 J L] k=

If all(E; , F;) are separating, then(w';_ | E, , ®';_| F;) is also separating (for a proof, by inqug;_
tion, reduce ton = 2). In particular: (&"E,®"F) is separating if (E, F) is. Clearly, therestric-
tion (via U X ) to @™ E X @"*F gives a duality bracket. It is clear that (1", v) = (1, ')
for all (1, v) € ®"E x®"F and 1 € §,,, whence

<G%(M),V> = (117(5}(\))). (*)

Proposition. If (E. F)s a separating dual system, then(@™ E, ™ F)is also a separuting
dual system with the duality bracket

(Z & ®"x;, Zﬂj &y = Z,&ﬂ./((vk’n.“./))”
i J L

Proof. For 0 # u € ®'E C ®"E thereisav € ®"F with 1 = (u,v) = (6} (u),v) = (u,0%(v))
whence 67 (v) € ®"° F c®"F separatesu from O. d

In particular: the natural map Jg : "E — (&"*F)* = P'(F) is injective and

JE(x Ve V) () H7:1(~’Cja}’>
Je(@%)(y) = (xy)".
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Following the notation of [DF], the polynomial Jx("x) will be denoted by "x, hence
(@x)(y) = {x,y)"; this notation is helpful since the extension of J: to the completion of
@"E (with respect to T, see chap. 2) may fail to be injective (see 4.3.). If £ is normed, then

JEI : QCIL\'E~/ N fP"(E) c Pu (E)

(‘P"(E) are the continuous n-homogeneous polynomials) is injective. In particular: (2"'E,
T” (E)) isaseparating dual system with the duality bracket

(z,q) == (q".2).

Having in mind the tensor product description of the trace and the trace duality for linear
operators (see e.g. [DF, 2.5. and 2.6.]) one may call this last duality and the duality in the
proposition trace duality as well.

A polynomial ¢ € P"(E;F)iscaled of finite type (notation: ¢ € P)’;(E;F),) if there are
(x5, ym) € E* x F with ‘

glx) = Z (25, Vi forallx € E.

m=1
It follows that P7(E;F) = (™'E*) © F and for normed spaces E. F
P}(E;F) := P}E:F) 1l P"(E;F) = (™ E") R F;
for a proof use (®"E*) N L("E) = @"E' (which can be proved by induction) and the polar-
ization formula. The relation L("(E, 6(E, F))) N®"E* = @"F for a separating dual system
(E, F) and the weak topology ¢(E, F) implies
T”(E7G<E, F)) 1(\‘ (7{)11,.\'E* = @lL.\'F |

In particular: the weak-*-continuous n-homogeneous polynomials on E’ of finite type are
w™E. These formulas were first observed by Ryan|[R].

1.14. 1t is worthwhile to note that 1.6. and the formulas () in 1.13. and 1.12. give that the
following diagrams commute for each dual system (E, F):

QME ks (®n,sF)* — Ls(nF) 3 0

r
ol (o)

®"E ——— (8"F)* = L("F) > ¢
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QMSE (UF)* = L ("F) > @
o { () é
J o\ % — ’

i (anf) = 1'4(7F> 3 ¢

where J; and J are just the mappings coming from the respective duality brackets; they are
injectiveif (E, F) is separating.

1.15. Just for the sake of a certain completeness of this introduction to the algebraic theory of
symmetric tensor products; the addition formula

xi+y) @ @@ +y) = 2 (Fo--wd)
DC{l....,n}

(where z? := x/if £ € D and := y, otherwise) gives

n
oty = B0}

k=0 k

with the definition x*y" % := yv...vxVvyVv.- vy It follows that
- R [ —
k—times n—k—times

L [n b Lo/n\ .
C/(X‘i‘}’) = Z <k>qL(’\J\yj k) = z <k>(f(x-,----/x-,,"=----,}’)
& =0\

for allg € P"(E;F) and x,y € E.
1.16. As aconsequence of these formulas every ¢ € Lz (E1,. ... E,: F) and every g € P (E; F)
(where E;, E and F are real vector spaces) has aunique extension ¢ € Lo (ET, .., E~ FC)
and ¢© € PA("E®; F”) to the complexification (G := G & iG) given by (P is asin 1.15))
OC(x1 + i1 ) XnFiva) = Ipcqr ayiPlo(P ., D)
- (e+iy) 1= Ty (it ().
Kirwan [Ki] and Muifioz-Sarantopoulos-Tonge [MST] studied the behaviour of the norms

9|l and [|¢“|| if the complexifications £¢ and #* are equipped with (possibly different)
“complexification norms”. ‘

2 The projective stensor norm

2.1. Let E and F be normed spaces. Then the projective norm = -; ©"E) on the full tensor
product satisfies

L('E; F) £ L(@E:F)
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(é means isometrically equal). L;("E; F) ¢ L("E;F) has the induced norm. For the natural
norm

gl en e ) == sup{||g(x)||F x € Bg}
of a continuous n-homogeneous polynomial ¢ € P"(E; F) one has

lallne.ry < sup{llger, . xlle Lot oo € B} =
= 19l 50y < Srllgllone:ry
by the polarization formula. It follows that the n-th polarization ¢constant of E defined by

c(n,E) = sup {[|gll,e:py Frormed.q € Bpnp.p)} =
= sup {11gllc.0x) | 4 € Bonie) }

is < ”,.. It is well-known that ¢(n,¢;) = 5 ~ and ¢(n,¢r) =1 (Harris [Ha] comments in the
Scottish book, that this can easily be deduced from results of Kellogg 1928 and from van der
Corpurt-Schaake 1935, but that also Banach [B] proved it). In particular: ¢(n, H) = 1 for all
Hilbert spaces; conversely, Benitez and Sarantopoul os [BeS | showed that each real normed
space with ¢(2, E) = I is pre-Hilbert. For other examplessee [S], [D2], [D4].

It follows that ||¢|| # ||| in general. If x| denotes the restriction to "E of the projective
norm on ®"E, then

llok : QLE — @ ‘EH =1

(if E #{0}). Since ¢*(c(z)) = (§)%(z) € F for all g € P"(E;F) one obtains

Wy = NlgHl o e

This shows that n| is not an appropriate norm fora metric theory of continuous n-homogeneous
polynomials.

2.2. For thisone needsa norm 1, on @™ E such that
PE; F) = L(QMEF).
The key calculation isthe following:
IQ'”(E:I") = Sup{ ”L]( ”p XGBE}: %up{ H(]l((\f)n_x)”]: W GB{:} =

= sup{ ||q F LETA BF)}

(where A" is the “diagonal” map E — ®@"*E defined by x ~ @"x). For the absolute con-

vex hull C := T(A" Z?E) one has spanC = @"SE (by Corollary 1.5.). The Minkowski-gauge
functional of C onc"*E will be denoted by m,( ;@™ E) (or shortly r,; notation: 7' E)

llq

T, (Zﬁ nsE

7€ AT(A" Be)} .

Itisclear that
llgllene:r) = supf{ lg"@)lF m(z @™ E) <1}
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Since (@"SE,P"(E)) is a separating dual system (see 1.13.) this implies that T, is even
anorm. m, is called the projective s-tensor norm (or shortly: the projective s-norm). The
completion of «7"E will be denoted by &y "E

The followi ng properties of 1, can be proved in rather the same way as the analogous
ones for 1 on ©?E (see €.9. [DF, §3 and §5]) for all normed spaces E:

Proposition.

(1) For all normed spaces F one has
P(E;F) 2 L{®FESF);
inparticular: P"(E; F) iscompleteif F isand
PUEF) L L (@ZfE;F)
in this case.

This “universal property” of 1, can also be formulated as follows: ||g(x)||r < c||x||} for all
x € Eif and only if [|¢" : @%'E — F||<c.

(2) m;is the unique seminorma on ™ E which sarisfies
(®™E, O()/ o P"(E)
(3) 7 (®"x; @ E) = ||x||" forall x € E.

(4)
Tz @™ E)  =inf TIL, [Alll]" | mEN 2= X A “*/} ]

= inf¢ $7, IAlIIxl" | 2= Zim Ay @ (s — convergemre)}

Note that 4, «o"x; can be written asd; «"u;x; with 8, € Cf; (see 1.5.) and [A | [|x;{|" = || {|".

(5) The open unit ball with respect to 1, is I'(A” 1§E). Inparticular: if 0: E—Fisa
metric surjection (notation: Q : EE F), then
Q"™Q: w’,’[‘E S F
( “m, respects metric surjections”).

Thisjustifies the name “projective”. But it does not respect metric injections, see 2.9.
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(6) If T € L(E:F), then
| Q"™ T: @ E — ®p F|| = ||IT||".
(“m, satisfies the metric mapping property”).
(7) myis finitely generated in the following sense:

(3 ®" °E) = inf {ny(z;@"*M) M € FIN(E),z € ®"°M}

(recall from [DF] thenotation FIN(E) for the setof  finite-dimensional subspaces of
E).
See 2.5. for the somehow dual situation. The norm in the completion %Z"E will also be
denoted by T,.

(8) IfK C@Z;‘VE is compact and € > 0O, then there are a zero-sequence (x;) in Bg and a
compact set D C{, with sup ||D|| < (1 +¢) supmy(K) such thatfor every z € K there is
a(A;) € D with

Z 227\.1' (X)an d
=1
(9) In particular: every ; € &, E has a representation

=

1
A ®%;

™

1

J

with ¥ |Aj|]|x,]|" < oo and

m@zmﬁzmwmwzzZMW%}
= j=1

(10) For every compact set K C&Q;;:YE and¢ > Othere is a compact set CCE with sup||C|| <
(L +¢)(supmy(K))/" and T(A"C) D K.

2.3. The“full” projective norm on " E can be calculated by

{ n 4
(5 @"E) = inf{ z H il 2=, X ®---®Xk,n}
k=1m=1 k=1

and therefore n(z) < n,(z) for all ; € ®"*E. On the other hand it follows from the definition
and 2.2.(3) that

”)l
T(x V-V ®"E) < ;Hx;“-'-Han
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hence V: E'— ®n *E is continuous and therefore also its lineari zation O QRE — @,’;’f E.
From 1.10. one obtains

L (wrEy L L(E)

P'(E) L (21°E)
and this mapping isjust g ~ ¢. Altogether:
Proposition. Let E be a normed space. Then

@ Iy © on'E — @kl = 1 (ifE#£ {0})
) llok: QIE — @n E|| = c(n,E)

(3) ®@x’Eisatopologically complemented subspace of QE.

In particular: 7t|; < 7, < ¢(n, E)n|s and 7 # 7| in general but m, = w|, for Hilbert spaces.
For ze @™ F it is not difficult to see that

mf{z EARREA

and that x|, is the quotient norm of o} : @1 E — @"°E.

k=1

gEN Z—Zxk\/ \/xk}

2.4. 1t is well-known (see e.g. [DF, 5.8.]for n = 2) that @"T : @ E — QL F is injective if
T € L(E;F)isinjective and E is a Banach space with the approximation property. Hence
2.3.(3) implies the

Corollary. If E is a Banach space with the approximation property and T € L(E; F) is
~ns

injective, then@ T:®y E—>® F|salsomject|ve

25. Denote by COFIN(E) the set of closed finite-codimensional subspaces of a normed
space. It is clear that 7, (z; ®"°E) > sup{m, ((®"* Q%) (z); ®™E /F) } (where the supremum
is taken over all F € COFIN(E)), but - in general - there is no equality: asin Example 2 in

4.3. below this can be deduced from the respective fact for full tensor products(see e.g. [DF,
16.2.]).

Proposition. If the normed space E has the metric approximation property, then

(3 @"'E) = sup{m,( (2" Q%) (z); " E/F) F € COFIN(E)}.

Proof. For € > 0 take a representation z = 37| A; ®"x; with X [A;][lx;]|" < (1 + &)m,(2) and
- using the m.ap. -a T € L(E;E) of finiterank, ||T]| <1 + ¢ and Tx; = x; (see e.g. [DF,
16.9.]). Then T=T o QF, ; and

(68" E) = 1(@"T o 0ferr (1)) < 1Ty (9" Qferr (2): ™ E/ ker T)
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which implies the result. cl

2.6. A polynomia q € P"(E) is called nuclear (notation: q € P2 (E)) if there are A, € K
and x, € E' such that

z }\'m mv 1 for all x & E

with 3% [Anllx,]]" < oo, je. O = Zm:1 An@"x,, (see 1.13. for @"). It is well-known and
easy that

llgllnue = inf{ 2 Pl " g = ZI M@”xﬁn}
m=1 m=
is a norm and (P

" (E), |l lnuc) is @ Banach space. The description 2.2.(9) of @7’ E’ shows
that the map Ji, (see 1.13.) extends to ametric surjection

~ s | )
gt O B > B (E).
Recall ®"*E' = #}(E) from 1.13.. In 4.3. theinjectivity of this map will be investigated.
n,s

27.Foraset DC P"(E)=(@n E) = (@,t E)’ the following are equivalent if E is a Banach
space (Mackey theorem for polynomials):

(& D is norm-bounded.

~n,s

(b) D is o(P"(E), )y, E)-bounded.
(c) D iso(P"(E),®" E)-bounded.
(d) {a(x) qe D} isbounded for all x € E.

The proof is immediate from this kind of theorem in £("E) and the polarization formula

2.8. The construction in 1 .10. shows‘that the full projective tensor product &ZE isisomorphic
to a complemented subspace of ®x' E”. The formulafor @™ (F @ G) at the end of 1.10. holds

topologically (see [AnF]) which implies that ®7" E = ®2E if E 2 E* (aresult which is due
to Diaz-Dineen [DD]).

2.9. The construction 1.10. is also quite useful to transfer counterexamples from 1 to m;
example: if G ¢ E is a subspace, but the norm @G is not equivalent to the induced norm
from ®2E, then the same holds for @y’ G" and 59” *E™: the projective s-tensor norm does
not respect subspaces topologically. However, QL ‘F — @y E" is always an isometry (see
6.7. below), in particular dense subspaces are respected (this can also easily be deduced from

2.2.(2)).

n.s

2.10. Blasco's construction[B2] mentioned in 1.11. givesthat @, E is topologically isomor-

phic to a complemented subspace of Qptls
mented subspace of ® .\» °E for all n € N.

E. In particular, E isisomorphic to a comple-
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3 Theinjective stensor norm

3.1. The metric theory of full tensor products of normed spaces, due to Grothendieck and
Schatten treats “reasonable” normsa on"(Ey,. . . | E,) with ¢ < o < and alows, for ex-
ample, to treat interesting subclasses of multilinear forms or operators via duality. To follow
such strategies for polynomials, © was substituted by T, since the latter is more appropriate
for polynomials. In this sense, the injective s-tensor norm g, on ®"*E is defined to be the
induced norm from

J : ®II>SE N T”(E,) é (®;’[5E,)’

hence

&(z@ME) V() llen ey = sup{l{z,®"X')| ¥ € B/} =

%up{'z kk(x',xk)"‘ ¥ € BE/}

if 2= Y, M ®"x. Notation: ®¢"E and ’@elsE for the completion. From the commutative
diagrams (see 1.14.)

. 1 1
®GE — (®nE') ®eE — (QrE')
J (o) o"[ \ ()
QIE ———  (RLE') g L. (RRE'Y

and the same with therdles of E and E’ interchanged one obtains from 2.3. the
Proposition.
(1) |V : @ E — QPE|| < c(n,E') and ||V}, : @ E' — Q¢E'|| < c(n,E)
@) ||ob: @rE — @ E||= VifE # {0}
(3) @e'E is a topologically complemented subspace of ®!E.

If |, denotes the restriction of the injective norm ¢ of the full tensor product to the sym-
metric one, one has in particular

€ < 5‘5 < C(”aEl)8s3
in particular: &, = €|, for Hilbert spaces. For equality in (1) see 5.3..

3.2. More properties of g, are collected in the
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Proposition.
(1) e(®"x;@™E) = ||x||" for all x € E; in particular: ¢ < .
(2) € satisfies the rnetric mapping property, i.e.
l&™ T2 ®e'E — ®¢'FI|= (IT - B— F||".

(3) If EisaBanach spaceand T € L(E; F)isinjective, then

~n ~n,s ~n,s

QT Qg E — ®¢ F

isinjective aswell.

(4) If 1: G Eisametricinjection, then @] : ®e'G N ®c'E
(“ggrespects metric injections”),

(6) &(z:@™E) = inf{ey(z;®"*M) M € FIN(E),z € @"*IM} (i.e. & s finitely generated).
The infimum is attained.

(6) IfC c Brris 6(E', E)-dense, then
&s(z; @™ E) = sup{ |{z,@™)| |x €c}
for all z€ @E. In particular:
&(¢s @™ E") = sup{ |, ®")| x € B}

forall 7 € ™E’ in other words:

S 1 Y71 n,s
P (E) = L'E' < P"(E) = (S%'E)’

The proofs of these statements are straightforward; for (6) one uses that for z= 3L A &"
X the function E' 3 ¥ ~~ (z,@"x') = 3}, Ak (x,x)" is o(E',E)-continuous. Recall that
D c Bg is called norming if ||x|| = sup{ [(x',x)| X € D} which is equivalent to I'D being
G[E/, E)'dense in BE’-

However, (6) does not hold for norming C ¢ Bgs: take E = C[0,1]and C := {§,| 0 < t <
1}, since

®**Clo, 1] ¢ C[0, 1]?
one obtains sup{|(h,®?8,)| | 0 <t <1} = sup{|A(r,1)|| 0 < t <1} but there are 0 # h €
*4C[0, 1] which are 0 on the diagonal.
It can be seen as in 2.9. that €, does not respect quotient mappings topologically.

3.3. A neat application of the basic properties of ¢, (in particular itsinjectivity 3.2.14)) isthe
following: it is straightforward from the definition that (for n> 2)

n
& <Z M ®ex; ®"’X€3> =max{|Me [k=1,....n}

k=1
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n,s

hence (., SN e, 0. Dvoretzky’s theorem () is (1 + g) 1som()1ph|c to a subspace of every
infinite-dimensional normed space E) |mpllee that (7! & Qe 03 & o e, E. Tt follows that (..

isfinitely represented in g E and in P (E) x” *E’; thisresult is due to Dineen[D3]. In
particular: none of these spaces have proper type or cotype.

3.4. Asinthe n-linear case the description of the dual will be crucial. Sinceg, < i, one has
(00 E) ¢ (07 E) = Z'* (E).

A polynomial g € P"(E) is called integral if 4" € (¢ E)'; notation g € P} (E). It is clear
that with || . ||i, defined by
glline := H‘/ H S

P (E) becomesa Banach space. Note that it is obvious from the Hahn-Banach theorem and

the fact that €, respects subspaces (see 3.2.(3)) that every integral polynomial g on a subspace
G CE has an integral extension g € 2y, (E) with ||g] i, = |1¢]]in-

Theorem. [Dineen [DI]]. Let q € P*(E). Then q is integral if and only if there [s ¢ signed
Borel-measure u on Bz (with the 6(E', E)-topology) such that

9 = [ () () (+)

/By,
for all x € E. Moreover:

lglln = min{lja] pas in (+)}
If K=Cor: K= Randn odd, theng best measure u can be chosen positive, bur otherwise,
in general, not.

Proof. If g (and hence also ¢") has such an representation, it isimmediate that |[g||in < ||u/|.
Vice versa I(z) (x') = (©"¥', ) defines an isometry [ : co; ' E < C(B;) and the Hahn-Banach
theorem gives a signed (regular) Borel-measure u € C(Bg+)' which extends g* (i.e: I'(u) =
gt and ||| = HqLH gy~ IFK =R andnis even, then positive measures represent (via(x))
only non-negative q. In the remaining cases Defant’s proof for the ¢o.-situation ([DF, 4.6.])
can be adopted: denote by D the Dirac-measures, by M| the probability measures and by
M = C(Bg) all signed Borel-measures on Bj. Then, by definition, Z' (D) is norming for ¢,
on ®™'E, equivalently:
I'(p)’ = B

For A € By there is o € By with ot = A (this were not possible if K =R and n even!) hence
M'(8,)=1I' (8¢ ) for all X' € Ber. Since 0€ Z' (D) if follows that conv (I'(D))= T'(I'(D)). The
bipolar theorem and the 6(M.C(Bp))-compacity of M| givefor 6. = o((w:¢ '), 20" E)

B aepy = (D))" = rl’(D) = c()nvl’(D) ¢ I'(M])
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For X' € E itis clear that @™ € @™ E’ ¢ P"(E) is integral and ||&"||;y = W[ (by
3.2.(6)) hence (by the universal property 2.2.( 1))

o E'— PR(E)| <1

and also

J : ”\‘ Q)I?UL(F) - P’T“(E)

has norm < 1. It follows that ||g|| < [lgl[in <||¢lnuc- In section 4 it will be investigated under
which circumstances J”, isinjective, an |somorph|sm (in) and onto.

3.5. The following example will turn out to be typical: let u # 0 be a signed measure such

that |u| is strictly localizable (e.g. if i is o-finite), then @y € Lo("Loo (L, |u]): L-(L, |u])) is
defined to be the multiplication

@M(flv fn = <ka>
Remark.

(1) (o)™ € L(Rg) Lo (€, [u]); Lo (1)) with norm 1.
(2) If uis finite, then the n-homogeneous “integrating” polynomial ¢, dejined by
a:(f) = / fhdu
Jo
is integral and ||qulline = {|gnll < |u](£2).

Proof. If A Lu(€2, |y]) — Le(, |y|) is alifting (see e.g. [F1, 16.9.]). then 3, (f)
h(f)(w) defines a functional in B;, , hence one obtainsfor g =3 @, © e

LS/~ — “ . TN —
H('pMs (g)Hloo - HEO(m]‘,ZHLm = 5upwe£2 <8\1'-2a1n.f,;11>| -
= SUPeq (®"8w, X0y @"fin) <& (88" Le)

If isfinite and y;(f) = [ fdu, then gk = o (pM "which givesthat g, isintegral; the rest
is easy. O

Corollary. For g € 1?"(E) the following statements are equivalent:

(D) q is integral.

(2) There exists asigned finite measure yonsome Qand T € L(E; L..(|u|) with

g = [ (T u(an)

for all x € E.
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(3) Asin (2), hut with a signed Borel measure on a compact set.

In this case: _ _
llglline = min{|l|[|T]" mTasin (2)) =
= min{--- . --(3)}

Proof. (2) implies (1) and ||g|line < [lul| || @& Tl = |lull [IT]]". If q is integral, then define
T E C(Bg) and Theorem 3.4. gives a representation (3) with ||¢||in = [l || T1]". O
In other words: q factors through the integrating polynomial

(/n

q: E - Lo (|uf) 2

Conceming positivity of y the same statements as in 3.4. apply; in particular: if K = C the
measures in the corollary can be chosen positive.

3.6. Define for a normed space and the canonical mappings./; and J; the mapping ® by
0 0B 2 al'E Ly (sEY L (E):
- Yy € g - L&) 6

note that Jj, is onto and /, an isometry (in). It follows that the Borel transform B = @' factors

!

B: P(E) L () = B (E) 2 (9B Lo (E)

and /}isametric surjection and J; injective. In other words: imB =" (E’) (an observation
from [CZ]). Note that J and J’ are both norm-norm and weakx-weak* continuous. For
¢ € P"(E) theintegral polynom|al B(¢) € P"(E') can be calculated as follows:

B(@)(') = (Jy o J1(0).®"x') = (9,&"x)
(see 1.13. for the notation ®"x').

3.7. The statements of 2.8. and 2.10. hold @ so for the injective norms: 2 E isisomorphic toa
complemented subspace of oo? *E" und these two spaces are topol ogically isomor phic if E =
E” (see [AnF]). It was observed in [AnF] that a careful check of Blasco's construcﬂonlBZ]
gives also that (x>" *F is topologically isomorphic to a complemented subspace of @, “E;in
particular: E is |somorph|c to a complemented subspace of @g"E for all n € N.

4 Duadlity and the approximation property
4.1. If Eisanormed space, the definition of &; (and 3.2.(6)) give that the natural mappings
SE — (SRE") = PYE)

GUE — (2R'E) L P(E)
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are metric injections. The polynomials in 692;"5' c T"(E) are usualy called upproximable.
How is the dual situation? When are the mappings

B EPE — (eUE) = 2L (E)C P(E)

Jp: @7 E — (RE) = PL(E) ¢ P'(E)

injective or even metric injections, when are they surjective?

4.2. Theinjectivity and surjectivity can easily be deduced from the anal ogous properties of
the full tensor product. Here the result is asfollows:

Theorem. Let Ej,.., E,_;beBanach spaces# {0}.

(1) Er,... , Es have the approximation property if and only if for /] Banach spaces £,
(or only separable reflexive E, ) the canonical map

~Nn ~n
®K,j:1Ej —> ®€,j:1Ej
is injective.

2) Ei .....E/ | have the Radon-Nikodym property (=: RNP) if and only if for all Banach

n—1
spnces E, the canonical map

~n ~n
Q—Qn,j:IEj =i ((X)s,j:lEj)/

is surjective. In this case it is even a metric surjection.

Proof. These results are known. Proofs for n = 2 can be found e.g. in [DF, 5.6.,21.9.,16.5.]
- and the general case can be deduced from this: For (1) use [DF, 4.3.(2)] and
E]&CK(EQQET[ .. )—) E]&)g(Ez‘gCn | - ) — El GBE(EZQ@(E_;@R. . )) —
= Eiés e ngEn

and, for the other direction, that the condition implies that @Z j' (Ejhasa.p.. For (2) look at

~ I~ ) | 1
®n( ;""7Ei/l>_+)®ﬂ:(E;7“‘7E/7 (E,,_]QOEEH)/)—»---—»( Vg, j= IE) (*)

n—2

For the converse note that the condition implies that

(© 21 Ej) Bny — (95 j=1 Ej) )
is always onto, hence (" L \E;)" has RNP and so do all E; (forj =1, .., n = 1) since they
arecomplementedm(&ogl' [E ). 0

In particular: & E has the approximation property if E has it and (©.E)" hasthe RNP if
E' has RNP (use(*x*) of the foregoing proof for this). Complementation of the symmetric in
the full projective tensor product and Blasco’s resultscited in 2.10. and 3.7. give the
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Corollary. The Banach space E has the approximation property (resp. £ " has RNP) ifand
only if ®, E hasthe approximationproperty (resp. /! (E) = (&, E) has RNP).

The result about the a.p. is from [Mu2]. Since (©%¢,)" does not have the a.p. (for n= 2
thisisthe famous result of Szankowski, the case n > 2 easily follows from this) 2.8. implies

~ns

that also (@y"£,)' = P"(¢,) does not have the approximation property. Note that ©e, Edls0
hasthe ap. if E hasit since thisresult istruefor @, E (see e.g. [K0, §44.5.(7)]).

4.3. The natural maps &' E — P"(E') and & E' — P"(E) have ranges in ¢ E N
(@eE") and @E"‘E’ﬂ(@ﬁs )’ respectively, hence the injectivity of J¢ and Jg (from 4.1) is
~n.s

equivalent to the injectivity of & ,1 -— 0, - respectively. Since certainly the diagram

e —— BE
'}én{ J’l}b}:e
®rE ®E

(natural mappings) is commutative, 4.2.( 1) gives the

Proposition. ]f E is a Banach space with the approximation property, then, for alln € N, the
natural map

~n,s ~n,s

Qp B — &g E
is injective.

Note that & 'E Ly (E") and @, E P"(E). For the nuclear polynomials (see 2.6.)
G = L pn (E)holdsif E' has the approximation property; in particular:
P (E) = P"(E') in this case-a result which is due to Gupta [Gu] in 1968 (see 0.1).

Is the condition of E having a.p. in the proposition necessary?

it follows that &,

Example. Let P be a Banach space without a.p. such that P@n P = P®8 P holds topologically
(Pisier [Pi] has constructed such spaces). ItfoIIowsthat® P —>® Plsmjectlve hence
the converse of the propositionisfalse for n = 2. However, an example like Pisier’sspaces
P does not existfor n> 3: John {J] has shown that a Banach space E with®2E = &7 E for
some n> 3 igjinite dimensional.

Example. Let E1,. . ., E, be Banach spaces such that @y ;_ Ej— @, ;i Ejisnot injective
and take f,:= 1} Ej. Itfollowsfrom the construction in /. (., the metric mappingproperty
of & and 1 and the continuity of oy, that

® Fn — (><)” \Fn
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is not injective. Take now(Ey, ..., E,) = (IM,..., K, E, E') withan E without a.p. such that
E 2 Ex K (for example E = G & ¢, and G without a.p.) one obtains that f, ~ K"~2 x E x
E'=EX E'hence G := E x E’ hgs the property that

~n.s

o F—>%”

A

G

is not injective for all n> 2.
[t isnot known whether the injectivity for some n> 3 (or all n)impliesthe a.p..

4.4.1f (F,G) isaseparating dual system of normed spaces and the natural map
’“F—>T”(C) (5{””(,')

n,s

isinjective, then (using 1.13.) <<>o F, @"*G) is aseparating dual system. Inparticular

Corollary. Let E be « Banach space. If E (resp. E’) has the approximation property, then

(c@;‘b &"SE') (resp. ((}O E', @"SE)) is a separating dual system.

Just one application of this result:

Proposition. [Ryan [R]]. Let E be ¢ Banach space with the upproximution property such
that P"(E) is reflexive. Then every q € P"(E)is 6(E,E')- continuous on bounded subsets of
E.

Proof. The fact that (D = & E’, &} \B : G) is a separating dual system implies that
o(G,D) is a Hausdorff topology on G which (by the reflexity of G) ceincides with o(G, G')
on bounded = 6(G, G’)-relatively compact sets.

Now take a bounded net (x,) in E with o(E,E’)-limit x. Then (©"xg,z") — (", 7)
for every 7/ = YA, ®"x/ € D = @"E' ¢ P"(E) = G’; hence (by what was just said) 2"x,

o(G, G')-converges to ®"x, i.e. for all¢g € G = P'*(E)

q(xe) = (g",®"xq) — (¢", ") = ().
d
The space P” (E) 1s reflexive for example in the following cases: E= {, (if n < p < oo;
see [AlF1]and[Gol]) or E =T, the original Tsirelson space (see { AAD]). Note that the claim
of the proposition holds also for the non-reflexive space ¢ since all g € P"(cq) are weakly
seguentially continuous (due to Bogdanowicz [Bo] and Petczynski [Pe], see also [AlF1]) and
the bounded sets in ¢ are weakly metrizable.

4.5. The diagram of natural maps

~n.s g ~ 1,8

T E/ - (‘&8\ E)’

o T I ()

~n

n

J .
& —— @5y
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is commutative (see 1.14.). Clearly, if J is surjective, J* is as well. Therefore, if E’ has RNP
4.2.(b) implies that J* is onto and hence open, in particular (use 2.6.) 27, .(E) =P (E) (with
equivalent norms); this result is due to Alencar [Al] who even treated the vector-valued case.

I
Tosee the norm equality, Boyd and Ryan [BR] first used the metric surjection/’ : C(Bg/) —

(@ME) L @ (E) (see the proof of 3.4.) to show that the extreme points of the unit ball of

mnt
Pl';“( ’) (where E is an arbitrary normed space) are of the form +&"x' with ¥’ € B hence

eXtB’Pi" (E) C BT{‘I (E) C B;pn (E) . (*)

mt

If E” has RNP, then (as shownabove) By, .(E) = P}, (E) and the norms are equivalent. Since
P! (E) hasalso RNP(see Corollary 4.2.) aresultof Lindenstrauss' (see [DU, p.190]) implies
that the unit ball of ¢ (E) isthe norm-closed convex hull of its extreme points, hence ()
and 2.6. give the

Proposition.  [[All, [BR], [CD]]. If E' has the RNP then the natural map
J$o GRE' — 22 (E)is ametric surjection, in particular: " (E) = Pl (E).

As a conscquence one obtains that

n,s

(B E"Y®xF W (26 E) @pF — 9\((& E:F) = £PI(

~n.s

“ELF)

(AL for the nuclear and TI for the Pietsch-integral linear operators; see [DF, DS.] for the last

isometry and note that (¢ E)’ has RNP) isa metric surjection:

Corallary. [[Al], [CD]]. If E' has the RNP, then the natural map
(Bn E"Y®nF — PI(®, E;F)
isa metric surjection for all Banach spaces F.

It follows (see Carando-Dimant [CD] for details) that - in this case - the latter space is
the space of integral n-homogeneous polynomials E —» F in the sense of Alencar [Al].

Note that the mappings in the proposition (use 4.3.) and in the corollary (use the proposi-
tion, 4.2. and [DF, 5.7.]) are injective (henceisometric) if E’ has the approximation property.

4.6. Concerning the isometric embeddingsone has the

Duality theorem. Let E be a normed space.
(1) IfE has the metric approximation property, then
RE < (QF'E)
is a metric injection.
(2) If E’' has the metric approximation property, then
QO E' < (®¢E)

is a metric injection.
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The natural setting for the duality theorem and its proof is the theory of s-tensor norms
which will be presented in [F2]. Therefore only the proof of (2) will be given; (1) can be
shown along the same lines.

Proof. [Proof of (2)] Note first that for finite-dimensiona] G one has @¢.'G ( @nG") hence

@G (@O'S'f )'. Now define for dual Banach spaces F’ the norm y(-; @™ F') on @™ F’
(notation: 4" F') by

O (F)
The following properties of y are easi Iy checked:
@ v <m onall@™F'.
(b) y = m, on @™ F' if dim F < oo,
© If T€ L(Fi: /), then || @™ T @ @y K — < F|| <||T'||" = ||T||".

Statement (2) says that n; = y on @"*E’if E' has the m.ap.. Now suppose - a hit more
general - that E' has the h-approximation property and take 7 € @™ E'. Then there is afinite
dimensional subspace F ¢ E’ with Z/ € @™F. The quotient map Q : E — E /o (the dual of
which is the embedding / : F — E’) has finite rank, hence (see e.g. [DF, 16.9. Cor. (2)]) the
A-a.p. of E' implies the existence of afinite rank operator S € L(E; E) with||S]| < A(1 + E)
and 0 =Q. S; it followsthat S «/ = I and therefore

7= (®™8)() e @S (E').
The properties (b), (c) and the metric mapping property for , imply
(& E) = m((@S)(Z)8ME) < m((@"S)(Z):" S (B) =

= V(&™) (2); ™ S(E')) < IS|I"v(z's 0™ E") <

SN 14¢)"y(Z i "SE"Y.
It follows that y < 1y < A"y on @™ E’. O
4.7. In particular: P! .(E ) < P! (E) if E' has the m.a.p.. The proof even showed that, if E
has the Lapproximation property, then

llgllint < lgllnue < A" [lgllint

for all g € P (E).

5 Some consequences for the polarization constants
5.1. From 92 it is known that

c(n,E) = sup{ |l .oy Ilgllns) < 1} = llof : @IE — @ E]|
for every normed space E. Since (%"T)z" = [@"T (z)]" the diagram
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O

®I’1E ®/?,SE
9" T l ®"T if T € L(E;F)
Q"F QMSF

commutes and simple diagram chasing (or manipulation with polynomials) give the
Proposition.

(1) If G c Eis a closed subspace, then ¢(n,E/G) < c¢(n, E).

(2) If F c E is complemented subspace with projection P, then

c(n,F) <|[|P||"c(n, E).

(3) If M is ajiltruting subset in FIN(E) (i.e for each M,N € M exists an L € M with
M UN C L) such that UM is dense in E, then

c(nmE) <sup{c(n,M) M € M}.
4) c(n, €,) = supy c(n, fl,‘))

(5)If Eisan Llf]\—space, then c(n, E) <\'¢(n,()).

Recall from [DF, §23] that E isan L7 , -space if for all M € FIN(E) and € > 0 there is
factorization If; = So Rwith ||[R : M — &8[|||S : € — E[| < A +e.

Proof.[Proof of (5):] Takez € ®"E and M € FIN(E) with z € @"M. For a factorization
I£, = So R through ¢ one obtains

s (0L (2); ®E) = m,([®"S) oqf,;)k o [®"R](2); ®E) <
< IISI™ IRI" e (n, €5) m(z; 2" M)

and the fact that 7 isfinitely generated (i.e. 1(-,®"E) = inf{n(-;@"M) M € FIN(E)}) easily
gives the result. a

Since {,, is 1-complemented in L,,(p), properties (5) and (2) imply
Corollary. [[S]]. If Ly(u) is infinite-dimensionad then c¢(n, L,(u)) = c(n,£,).
Sarantopoulos [S] gives estimates and some precise values for ¢(n, £)).

5.2. However, in genera there is no equality in (3) (take, in the complex case E = /., and
M = {} and note that c(n,(..) <5; see e.g. [D2, 1.3.]). Therefore the polarization constant
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is not locally determined, but it is somehow “co-1ocal” ~ at least under the presence of the
m.ap.:

Proposition. Let E be a normed space wirh the metric approximation property. If G is a
cojinal subset of COFIN(E) (i.e. for each F € COFIN(E) exists G € G with G ¢ F), then

c(n,E) = sup{c(n,E/G) G € G}

Proof. Since  is cofina in COFIN(E) 2.5. and the metric mapping property of 7, give

TC( n.sE sup{ng ( \'”‘A.Ql(i‘)(Z);@’LXE/G) GE g}

The same statement holds also for the “full” projective norm n on @"E (see e.g. [DF,16.2.]
for n = 2 or use the same type of arguments asin 2.5.). For z € ®"E and G € G one has
[®0%] o of = O/ 0 [®"QE] hence

([ QB0 ()5 E/6) < o clle(="0b 2 "E/G).
Taking sup’s givesc(n, E) <sup.. .. The other inequality was already stated in 5.1.(1).  Cl

5.3. The duality results in §4 have also interesting consequences for the polarization constants.
The upper arrows of the commutative diagrams (see 1.14.)

S E — (®E) QRE —— (®E)
02-1 () T I (2)
SIE  ——  (QLE') QRE ——  (®E)

are isometries if E or E' has the m.a.p. respectively; the lower are also isometries in these
cases (for a proof generalize the approximation lemma [DF], 13.1. and the duality theorem
[DF], 155. from 2 ton) hence (with an obvious notation)

c(E) = Jlogl < Il if Ehasm.ap.
cmE) = log Il < gl if E'has m.a.p.

From 3.1.( 1) one obtains the
Proposition.
( 1) Iif E hasthe m.a.p., then

U+ @ 'E" — @RE'|| = c(n, E)
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(2) If E' hasthe m.a.p., then

g : ®e’E — QpE|| = c(n,E").

The continuous polynomials of finite type are
P} (E) = GF'E' > P'(E)
hence one obtains from @ E’ _1) L("E) that
e, E) = sup{[|gllc¢e) | 9 € PF(E), llgllen <1}
if E has m.a.p. - but this can also be shown directly.

5.4. Another immediate consequence of this proposition (look at 1\1:,;“8”) is the following
result from [LRY]: '

Corollary. If E" has m.a.p., then

c(n,E)= c(n, E").

6 Extensions to the bidual and ultraproducts

61 Let E,..., E, benormed pces and ¢ € L(E, . .. , E,) withassociated Lo € L(E), ..., E,—1: E});
the n-linear map @ e L(E,, ..., E,_,, E")is defined by
O Cery g X)) = (L, s Xn=1 )5 X ) ED D =

= <xj7[L(P(x|7"'axjfh'axj-l-lw"7xilfl)]/x:1/>Ej‘E; =
= I|m, ([)(X} Y e 7)(,1717);0()

if (y") in Eo(E,, E})-converges to x//. It is obvious that H(pA(")H = ||| and that /(") is the
unique separately 6(Ey,E})----6(E,—1,E!_,)-6(E}! E})-continuous Y € L(Ey ..., E,_1,E!)

which extends cp. For other j€{ 1,...,n =1} the extension (p/\(f) is defined in the analogous
way. If A € S, one defines

V(A) . ANAA(2 An
oMM = (L (@M )M e (B ).
Clearly, ||¢"™|| = [|¢]|. It follows that

INU S Y] A . . o o
o'W, A= lim ... lim ox;", ... X" (%)
() €A Oy €A
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if the net ()c(f”)OL ca INE;o(EY EY)-converges to x]. These extensions were first studied by
JJojea; . i, A
Arens [Ar] for n = 2. The special extension

Q= ( . (((pA(”‘))A(nfl))' '_)A(l)

is called the Arens-extension of cp. 1t is the unique extension y € L(EY, ... . E))of g €
L(Ey, ..., E,)suchthat forallj=1,.. nallx, € Eand x] € £
W(xl,..,,,x_,-,l,-7,\7‘/;“,...7)(;1') (%)

is 6(E". E')-continuous. Clearly, an analogous charaterization holds for ¢ ).
Just one Smpleexample: if 7)€ L(E;; F;)and @ € L(F1, ..., F,), then it is easy to check
(e.g. with (xx)) that [cpo(Ty...., T)] =@ o (T, T)).

1> *n
6.2. The characterizations (x) and (xx) easily imply the

Proposition. Let ¢ € L(E,, ., E,). Then the Arens-extension ¢ is separately weak-*-
continuous if and only if = ¢V forall L €S.

Now recall (e.g. from [DF, 1.6.]) that for ¢ € L(E.F) the extension ¢ is separately
weak-*-continuous if and only if L, : E— F’ isweakly compact. Since every permutation
A €S, isaproduct of transpositionsone obtains (b) ~ (a) of thewell-known (see e.g. [ACG,
sect. 8))

Corollary. Let E be a normed space and n > 3. Then the following are equivalent:
(a) For every ¢ € L("E) the Arens-extension ¢ is separ ately weak-* -continuous.
(b) The same as (a) withn = 2
(c) Every T ¢ L(E; E’) isweakly compact.

Proof. For the remaining implication (a) ~ (b) take ¢ € L(*E) and consider y(x;, ,x,) :=
O(xy,x2) (Xox3) . (X x,) for X £ 0. O

6.3. Unfortunately, it isnot true that ¢ issymmetricif ¢ € £("E)is. Thisfollows easily from
the following

Observation. Let E be norrned and ¢ € L("E). Then @ is symmetric if and only if ¢ is
separately  weak-*-continuous.

(This is an immediate consequence of (x) in 6.1. and proposition 6.2..) Therefore it is
enough to find a symmetric ¢ € L(QE) such that Ly € L(E;E') is nor weakly compact. The
typical non-weakly compact operator is the summing operator ¢, — (| = {.. (see [LP, 8.1.]).
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Arens [Ar] considered ¢ € £,(*/,) having the representing matrix

naon a

Its 2m-th row ©(ea, ) = Leo(e2n) =: X 6(Le, {1 )-converges form— = to (1,0,1,0,1.0....)
= xX":if p € (_ is a Banach-limit on the odd components, then (b,x,,) = 0, but (b, x") = 1.
It followsthat L, (B, ) is not o (L., £.,)-compact and the Arens-extension @ is not symmetric.
Another but related example was given in[ ACG].

6.4. Using the same ideas as in 6.2. it is straightforward to verify that the following holds
true:

Proposition. [[ACG]]. For every normed space E the following statements are equivalent:

(@) For everyn>2andevery ¢ € L,("E) the Arens-extension @ is Symmetric (equivalently:
separately weak-+-continuous).

(b) Thesame as (a) for n = 2 only.

(c) Every symmetric T € L(E;E') (i.e. (Tx,y) = (Ty,x)) is weakly compact.

Normed spaces E satisfying one of these equivalent conditions are called Arens-regular
or symmetrically regular; E iscalledregular if all T € L(E; E’) are weakly compact. Pisier's
factorization theorem [Pi, 4.1.] implies that E isregular if E' has cotype 2 and E has the
approximation property, since in this case all operators E — E' even factor through a Hilbert
space. The Haagerup-Pisier-Grothendieck inequality (see |[H]) implies in the same way that
every C*-algebra is regular.

If E= £, then regular = Arens-regular, but Leung[L]showed that the dual of the James
space is Arens-regular but not regular; Harmand gave an example of an Arens-regular space,
the bidual of which is not (see [AGGM] for these and other results on Arens-regularity).

65. If ¢ € P"(E), then g defined by g(x") = g(x".... ,x") extends ¢ to a continuous -
homogeneous polynomial on E”. Since Aron and Berner [AB] used this extension for ex-
tending holomorphic functions E -— C to E” (viatheir Taylor-expansion) g is called nowa-
days the Aron-Berner extension of . Though g is not symmetric, it isimmediate from 6.1.(x)
that g(x")=(g)"™ (x", ... ,x")for allL €S, in other words: the Aron-Bemer extension is
independent from the order of extendingg ¢ L(E,. .., E) to the bidual.

Example. For g e P"(E)and T € L(E; F) onehas(q¢T)™ = GoT'. This follows from the
example at the end of 6.1..
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Example. Let 4 be a finite signed measure and ¢, (f) := [ f"du the n-th integrating poly-
nomial on L. (see 3.5.). Then g, = qn o K where iz, Ly ((u]) = Ly (Ju])" = Le.(|y])" is the
canonical embedding.

Proof. It is enough to show that the extensionys of g, defined by
W) i= [ TT 6
j=1

satisfies the continuity-condition (+) a the end of 6.1.. For thistake f},. . ., f;; € L..and

Xy Xy €LL Forg = fio fimi -, ()% (0)) € L C Ly and 2" € LY, one has
V(s f XX ) = (e, () e = (ke (€)1

which proves the desired continuity. O

An obvious modification of this proof shows that ¢ is even separately weak-*-continuous.

66. If P(E) == @, P"(E) (with PY(E) = K) is the space of all polynomials, then for
q=c+x'+X,qn € P(E)

q:= C+X’+ ZZ]’T
defines a linear extension map P(E) — P(E") which, by 6.1.(x), is multiplicative.

6.7. Whileit is obvious from the definition that ||| = ||@||it Is not at all trivial that ||¢||p: ) =
1| @n (). This was proved by Davie and Gamelin; the key for the proof is the following
approximation result (see [DG] for a proof):

E'

Theorem. Let E be normed, S C E bounded and x{j € SPEED Then there is a net (xq)in

conv (S) such that
lva) — ()

for all polynomials q € P(E).
Applying thisto § = Bg givesthe

COl'Ollal'y. For every q € ?"(E) one has ||(]||g)n<E) = II?”T”(E”)‘

“orollary. The natural embedding ©"* kg : @y E — @y E” isan isometty

<roof. Cleary | @™ kg|| < 1and (g,2)= (g. @""kg(z)) gives the remaining inequality. O
There is anatural duality bracket between " (E) and S E":

<(1, ZN> = <a’ ZN> pn (EII)A%\/L.\'EII
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the restriction of which to™*E gives the duality P"(E) = (®;’E:‘E)/; hence the bipolar theo-
rem implies the

Corollary. The unit ball B ., is 6(@™E”, P(E))-dense in B, s .

6.8. It is well-known (see e.g. [DF, 6.7.] for n = 2, the extension to n > 2 is easy) that
0 €[@e(EY,. E]if ¢ €[®e(Ey,. .. E,)) andthe“integral” norm is the same. This and
the fact that &, respect subspaces(3.2.(4)) impliesthat ¢ € P"(E) isintegral if and only if g
is.

Actually also the norm remains unchanged:

Propostion. [Carando-Zalduendo [CZ]]. Let g € P(E). Then g is integral if and only if §
is. Moreover, ||ql|ine = 119llint holds in this case.

Proof. To see the norm equality, factor ¢ = g, o T according to Corollary 3.5. with ||¢||in =
llgn|[ |T]|". The Examples 1 and 2 in 6.5. give g = g, o x;, o T" hence, again by 3.5.

[@line < lgall Iz, 1" 17711 = llglline

The other inequality isobviousfrom 3.2 (4). «

6.9. The Arens- and Aron-Bemer extensions can also be obtained using ultrapowers. For this,

take for anormed space E the index set / :=FIN(E") x FIN(E") x]0,1] and choose (with the

strong principle of local reflexivity) for every 1= (M,N,¢) an operator T, € L(M;E) with

Tix = xfor all x € MN E, having ||T|| €1 + € and satisfying (7.x”,x') = (x",x') for all

(x",X') € Mx N;for x" € E” define f,(x"):= T.¥" if ¥ € M and := O otherwise. Take an

ultrafilter {1 on1 whichisfiner than the order filter; i( is usually called alocal ultrafilter of E.
For the ultrapower (E) define the following two natural mappings:

J:E — (E)y and Q:(E)y —E 7
s (i) (Du ~ limgx
(o(E”,E")-limit). It is easy tosee that the (linear) isometry J extends the embedding E 5 x ~+
(x)u € (E)y and QJ = idgr; since ||Q|| < 1t follows that JQ is a norm-1-projection of (E)y
onto imJ.

If 4;isalocal ultrafilter of £;and @ € L(E, ..., Ey), then

1

Pu,) ((Xll)u, ,...,(xﬁl)u”) = 1l]i.r;l]1 ...Jli’g]”(p(xll!,...,xﬁz)

isin L((E\)y, ..., (Ex)y,) With norm ||@||. The special continuity of the Arens-extension
(6.1.(x)) gives that

Q) =00(Q1,--,Qn) and G =@y o (1.5 Jn) (%)

in particular
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Proposition. [[LR]]. If g € P"(E) and {{ «a local ultrafilter of E, then

g(") = lim...limd (f, (&), /i, (1)

1.4 1,3
If g€ P"(E)andif gy = (¢){ € P"((E)y) isthe polynomial associated to (¢)y, then the
proposition, (x) and Corollary 1 in 6.7. imply that ||gy|| = ||9!.

6.10. For ultrapowers, however, itseems more natural not to use an iterated limit (see [DT],
[LRY]): for alocal ultrefilter 4 of E and ¢ € L("E) define

(PJ(( )xb...,(.xil)u) = Iimlu (p(’(ll. ,)C{I)
Clu((xt)u) = limyg(x)

Obviously,

ull = lloll and [lgull = [lg

Observation. [[LR]]. gy # ¢y on (E)y in general

Proof. Take Arens example from 6.3. and U, € U with U, D U, and NU,, = @. Fory, :=
if L€ U, and := ey, = ey, 1if 1€ U,\U,4 onc gets

Gu((n))y = lim hm(pmI Vo) =0# =1 =1imo(y,n).
1,8t LY

a

It is likely that also g* := g o/ # g € P"(E") in general. In any case it is clear that
this “uniterated Aron-Berner” extension qJ( ”) = limyy g(f,(x")) is aso a natural and useful
extension of ¢ € P"(E). Note that||7*'|| =|¢|| is obvious (but[]qH =||¢|| was rather involved).

Using the ultrastability of maximal operator ideals (due to Kiirsten, see [Ku] and [He])
one can show that ¢ isintegral if and only if ¢y, is- with the same norm; it follows that 4 is
integral if and only if g, (and hence alsog*) isintegral. In [FH] it will be shown in the more
general context of s-tensor norms that even||g* | in =||g| i, holds.

6.11. If one has fixed an extension procedure L"(E)> ¢ w(f)e L("E") (either the Arens-
extension or the “uniterated” ultrapower extension from 6.10.), then every ¢ € L("E;G)

(where G is normed as well) has an extension (I)e L("E"; G") defined as follows
(O 6y X Vi o = [V o Q) (K ey )
which, clearly, has a characterization asin6.1.(x) but with the 5(G”, G')-topology on G”.

It follows that there is also an extension P (E:G) > g ~~q€ P"(E";G"). Recall that Arens
used his extension to extend the multiplication on a Banach algebra to the bidual.
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