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DECOMPOSITIONS OF MONTEL KOTHE SEQUENCE SPACES'

JUAN CARLOS DIAZ

Abstract. The following result has been recently proved by the author: Let E be a Fréchet
Schwartz space with unconditional basis and with continuous norm; let F be any infinite
dimensional subspace of E. Then we can write E as G & H where G and H do not have
any subspace isomorphic to F. This theorem is extended here in two directions: (i) If E is a
Montel Kothe sequence space (with certain additional assumptions which are satisfied by the
examples described in the literature) and the subspace F is Montel non-Schwartz; (ii) If E is
any Fréchet Schwartz space with unconditional basis (so the existence of continuous norm is
dropped) and F 1s not isomorphic to .

1 Introduction and notation

A Fréchet space E is primary it whenever E = G & H then either G or H is isomorphic
to E. This property has been widely studied for Banach spaces. Concerning Fréchet (non
Banach) spaces, it is known that the power space X" is primary if X is the scalar field K,
{, (1 < p<eo), g, or L,([0,1]) (1 < p <o), see [14], [9], [1], [2]. Other primary Fréchet
spaces are [, , by, (1 < p <o), [, ,L, (1 < p < oo) and the complementably universal
elements of certain classes of Fréchet spaces, see [15], [4], [5]. However very little 1s known
about primariness of Kothe sequence spaces though this is one of most important classes in
the Theory of Fréchet spaces. The aim of our research is to give some insight into this subject.
In fact, the following result (see [6, Corollary 1.6]) constitutes the starting point for this note.

Theorem 1 Let E be a Fréchet Schwartz space with unconditional basis and with continuous
norm and let F be an infinite dimensional subspace of E. Then we can write E as G H such
that G and H do not contain any subspace isomorphic to F. In particular E is not primary.

We are interested in relaxing the hypothesis of this theorem in two directions. Firstly,
we extend the theorem to certain Fréchet Montel spaces. In section 2 we obtain the result
for certain Montel Kothe sequence spaces which include all the examples described so far in
the literature. Secondly, we remove the hypothesis on the existence of a continuous norm. In
section 3 the theorem 1s extended to Fréchet Schwartz spaces with unconditional basis, 1n this
case we must clearly assume that F is not isomorphic to ® := K" . Our main tool is the linear
topological invariant (-, -) due to Zahariuta (see [7], [8] and the survey paper [18]). We also
introduce in section 3 a slight modification of B(-,-) to be used for Fréchet spaces without a
continuous norm.
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Fréchet spaces are usually denoted by (E, (V;)) where (V)) stands for a decreasing se-
quence of absolutely convex closed sets such thdt (lVA) 1s a O-neigbourhood basis.

2  On certain Fréchet Montel spaces

Let / denote a countable index set. A matrix A = (a(i));es 18 said to be a Kéthe matrix on /
0 < ap(i) <apei(i), k € N,i € I. We define the Kothe sequence space

AM(A) =M (LA) = {(x) € K"+ ||(x)]||x —Z\r,hiu < oo, k € N},

=

Without loss of generality we assume that a;(i) = 1 holds for every i € I. Given a subset
J C I the sectional subspace of A, (/,A) with respect to J is defined as

MLA) i={(x) e MLLA): xi=0VigJ}

Note that A (1,A) = A (J,A) b A (I\J,A). For more information on Kothe sequence spaces
we refer the reader to [ 13, IV.27]. The results of this section hold for Kéthe spaces of order
p € [1,00] but we keep p = 1 to simplify the notation and the statements.

We deal here with Kothe sequence spaces A (N°,A) that satisfy the following conditions:

VieN, sup{a;(i,j): i€ N} =B, <o, (C.1)
WR C N,k E _,*', lilﬂg_;,mﬂk(flgj)/:‘ff;l-_{_] (!,j) == 0: {CE)
Vk € N,e > 0,dmyg, sup{ag(i,j)/ /a1 (i, j): i€ N, j>mpo} <e. (C.3)

Kothe sequence spaces with conditions (C.1), (C.2) and (C.3) are Montel non-Schwartz. In-
deed, (C.1) implies that A;(IN*,A) is not Schwartz (see the related notion of obliquely nor-
malized basis by Bellenot [3, Definition 3.1]); by (C.2), the sectional subspace A; (N x j,A)
is Schwartz (j € N) which toghether with (C.3) imply that A, (N*,A) is Montel. (See Flo-
ret’s construction of Montel non-Schwartz spaces [10].) A Kothe sequence space is called
a canonical Montel Kothe space if it satisfies conditions (C.1), (C.2) and (C.3). All the ex-
amples of Montel non-Schwartz Kothe sequence spaces found in the literature satisfy these
conditions, see |12, 1.31.5], [13, 27.21] and [ 16, pp. 217-221]. The purpose of this section is
to prove the following result.

Theorem 2 Ler A (N, A) be a canonical Montel Kéthe sequence space and let F be any
) : i
non-Schwartz subspace of Aj (N, A). Then there is a subset I C N* such that neither h (I,A)
2 . . ’ . . . p
nor A (N“\1,A) contains a subspace isomorphic to F. In particular M (N?,A) is not primary,

This theorem is proved after some preliminaries. Given U, V subsets of a linear space E,
and denoting by ‘Ey the family of finite dimensional subspaces of E spanned by elements of
V., we define

BV.U) :=sup{dimL: L€ Ey,LNU CV}.

We refer the reader to [7] or [8] for more details and elementary properties of B(-,-). Our first
lemma can be obtained as Lemma 1.3 of [6], see also Lemma 7 below.



Decompositions of montel Kdthe sequence spaces 145

Lemma 3 Let (F.(Uy)) be a Fréchet space isomorphic to a subspace of (E.(Vy)). For every
k€ N there exist o(k) < olk+ 1) <olk+2) <o(k+3), k<t(k)<tlk+1)<t(k+2)and
M = M (k) > O such that for every couple of scalars s and 1t we have

B(Us(iy NMtUsr+3), Us(iy U sUsr42)) < BM (Vi NtV 1) Ve UsVian))-

Lemma 4 Let A (N?,A) be a canonical Montel non-Schwartz space. If Uy denotes the unit
ball associated to the weight ay, then for every natural numbers p < g < r and every s > ()
there exists t > 0 such that

BU,NtU, U,UsU,) = oe.

Proof. By the definition of B(-, ) it can be readily checked that B(U,NtU,,U,UsU,) is bigger
than or equal to the cardinal of the following set

I l

T ={(i.j) s max{apli,j). ~a,(i. j)} < min{a,(i. /), ~agi.j)}}

By conditions (C.1) and (C.3) we can find jj big enough to satisfy

| .. | . N B .
3—”1‘(“.}{]) E —'ﬂj{}("a.fﬂ) ':f_: ] {.f: “}‘(LJU) E T“iﬁ(‘!"ﬂ})? Vie N,
L_m Jo S
Thus, with 7 = [3,, the set T contains {(i, jo) : { € N} and consequently |7| = co. O

Proof of Theorem 2 The proof is rather similar to the one of [6, Theorem 1.4] but some
new 1deas are necessary. By [3, Theorem 3.2.(I1) or Corollary 3.5] I contains a subspace
isomorphic to a canonical Montel Kothe space A, (N*, B). It suffices to do the proof for F =
A (NE.}B). We denote by U, (resp. Vi) the unit ball associated to the kth weight of A, (N?. B)
(resp. A1 (N?,A)). Now, we seiect sequences of integers (1m,,). (s,) and (#,,), with m,, < m, 1,
as follows, first we set my = s = t; = 1, then for every n > 2 we choose successively m,,, s,
and ¢, to satisty the tollowing properties

< 1)
Sp o= 3nm, sup{B;: j <my}. (2)
B{:Uﬁ ﬁruU;'f U:.u U-"'H'Ur;) - mj”ﬁf!) < g <r < n-+ [ (3)

The choice of m,, such that (1) holds is possible by condition (C.3). Then we set s, according
to (2). Finally, by Lemma 4 we select 1, to satisty (3). The construction proceeds by induc-
tion. We put / := Nx [, esdJ: mon < j <moyip}. Letus prove that F is not isomorphic to
a subspace of A (I,A). The proof that F is not isomorphic to a subspace of A;(N*\ 7,A) is
analogous. The neighbourhoods V, NA;(/.A) are denoted again by V;, k € N; this does not
create any contusion.

If F is isomorphic to a subspace of A(/,A) then by Lemma 3, given k£ € N we have

3(n— ])In----]”;:-(f:.;f) < “q('{:j}!v p<q<n,j>nmy |

B(Us(ky NtUs (4431 Ustiy U sUgri1)) < BM (Vi NEVegei2y) - Vi U sVesay) (4)

for increasing indices o(-)’s, T(+)’s, a constant M and every s.7. We prove that, taking t = t,
and s = s, for n a big enough odd integer, the left hand side of (4) equals infinite whtle the



146 Juan Carlos Diaz

right hand side is finite; this contradiction settles the proof. Indeed, let n be an odd integer
with
n > max{2M,c(k+3),t(k+2)},

and sett =1,,, s = s,. The left hand side of (4) is infinite by (3). We are done if we prove that
the right hand side is finite. By (C.2) we can find i, such that

agi1(i,J) 2 3ntympay(i, j), ViZ> iy, j <my,j<gq. (5)

Let us show that
3(M(V£ ﬁ!”V ) V Uﬁnv{ﬁ;—}-ﬂ}) g f”ﬁ!”. (6)

Consider the following partition of /,

Jo =i, j))el: i<iyj<m,},
Ly ={i,nel:i>ip}L VI<r<m,
{(,)) €1 j>mupr},

and denote by Py, Py ., P the canonical projections from A; (/,A) onto the sectional subspaces
associated to Jy, Jy, and J> respectively. If the inequality in (6) fails then there exists x €
A (I,A) with Py(x) = 0 and such that

] (Ve UsnVags2)) Cn(ViNt Vo)), (7)

Let oo =sup{y: Yx € Vi) UspVers2) t- By (7), we have o € n(Vy N1, Vy442)). We apply the
projections and obtain

I
P> (o) € Pr(nty Vi i2)) C 3 Vtlk);

where the inclusion is a consequence of (1). Now fix r <m,. If t(k+2) < r then, by (2)

, 1 ]
P, (ox) € P],r(nvk) C Pl,r(”vl) C =P ,(s:V;) C __Suvt[k+2}:
3m,, 3m,,

while, if r < 1(k+ 2), we obtain from (5)

1 [
Py (o) € Py (nt, Vo, C —Vy C — Vi
() (At T{Hz}) 3m, t(k+2)—1 3m, t(k)

It follows that

iy

o = Y Py, (o) + Pr(ow) € =

: (Ve UsnVir2))

r=1

a contradiction with the choice of o. This validates (6) and finishes the proof. []

Remark 1.4. Theorem 2 does not hold if the subspace F is Schwartz or if A;(A) is any
Montel (not necessarily canonical) Kothe sequence space. Indeed, given B = (by) a Kothe
matrix on N we define C = (¢;) on N° as follows:

k(i g) = bk(i), if k<i,  cli, J) = bi(i)bx—i(j), if k> 1.



Decompositions of montel Kdthe sequence spaces 147

Then for any subset I C N? either A;(/,C) or A (N*\/,C) contains a complemented copy of
A1 (B) (15, Proposition 2.(b)]). Consequently the assertion of Theorem 2 fails for the space
A1 (N?,C) and the subspace F = A;(B). Finally, observe that: (1) If A;(8) is Schwartz then
A1 (N?.C) is a canonical Montel non-Schwartz space; (2) If A;(B) is Montel non-Schwartz
then X (N*,C) is a Montel space which is not canonical. In the latter case we do not know if
A1 (N.C) is primary or not.

3 Fréchet Schwartz spaces with unconditional basis

Let / denote a countable index set and let (£, (V})) be a Fréchet space with an unconditional
basis (¢;)ics, 1.6. every x € E can be written in an unique way as x = > o, x;e;, Xx; € K
and the series converges unconditionally. Given J C [/, we denote by E; the closed subspace
spanned by (e;);cs. which is called the sectional subspace associated to J. There 1s a canonical
projection Py 1 E — Ey, 3.iej Xiei — YicyXie;; and we have E = E; &b Ep ;. We can assume that
the neighbourhoods system has been chosen to satisty Py(Vy) C Vi, for every k € N.J C I,
e.g. see (17, 1.18].
This section is devoted to prove the following theorem.

Theorem 5 Let E be a Fréchet Schwartz space with an unconditional basis (e;);c;. Let F be
an infinite dimensional subspace of E not isomorphic to . Then there exists J C I such that
Ly and Ejp do not contain any subspace isomorphic to F. In particular E is not primary
unless it is isomorphic to .

We introduce a new invariant By(-.-) to be able to handle spaces without a continuous
norm. It is a modification of the invariant 3(-,-). Let E be a linear space; we denote by |x]
the line spanned by x € E. Recall that £, stands for the family of all finite dimensional
subspaces spanned by elements of V C E. Given V, U subsets of E we define

Bo(V.U) =sup{dimL: L€ Ey, LNU CV. x| ¢ UVxe€L}.
The following elementary properties are straightforward.

Lemma 6 Let E be a vector space and let U, V C E, then:
(@) Po(A,B) < Po(V.U) fACV, U CB.
(b)) If T : E — F is a linear injection then Bo(T(V), T(U)) = Bo(V,U).
(¢) Bo(aV,U) = Bo(V, o 'U), Vo> 0.
(d) If S is a subspace of E then Bo(VNS,UNS) < Bp(V,U).

Lemma 7 Ler (F,(Uy)) be isomorphic to a subspace of the Fréchet space (E,(Vy)). Then for
every k € N there are increasing indices o(-)’s, T(+)’s, and M = M (k) such that

Bo(Us(k) N1 Us(ks2), €Uk UUg iy U sUg(r42))
< BoM(Viy Nt Varsny ) €V U Ve 1) YU sV 43y )

for every s.tr.€ > (.
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Proof. The proof 1s similar to the one of {6, Lemma 1.3] so we give only the main details.
We write B < A to mean that B C AA for some A > 0. If T : F — E is an isomorphism onto
the image then, given & € N, we can find increasing indices o(-)’s and T(-)’s to satisfy

T(Ux) > Ve NT(F) > T(Ugy) > Ve NT(F)
> T(Usi1)) > Vapay NT(F) > T(Uspi2)) > Ve NT(F).

We fix M = M(k) such that B C M'/?A for every couple B < A in the chain above. The
assertion follows from the elementary properties of By(,-) collected in Lemma 6. ]

Lemma 8 Ler (F.(U;)) be a nonnormable Fréchet space with a continuous norm. Assume
that Uy does not contain lines and that U,, and U, do not induce equivalent topologies if
p # q. Given integers p < g < r and given s > 1 there exist 1y, €y > 0 such that for every
I >ty and O < & < gy we have

Bo(U, NtU,,eU, UU,UsU,) > 0.

Proof. We fix x € F such that x € U, \sU,. Then we choose € and 7y such that [x|NeyU, C U,
and [x] N U, C toU,, respectively. Hence, 1t 1 > 1y and 0 < € < g we have

XN, uU,usl,) = x]NU, C [x]N(U,NtU,),

consequently
Bo(U,NtU,,eU, VU, NsU,) > 1.

Proof of Theorem 5 Without loss of generality we can assume that F = (F,(U;)) has a
continuous norm and that U, and U, do not induce equivalent topologies if p # ¢. If E has
a continuous norm this theorem is a particular case of [6, Corollary 1.6]. Assume that no
continuous norm 1s defined on E. Two possibilities may occur. (i) There is /; C 7 such that
E;, has a continuous norm and Ep g, 18 1somorphic to ; (i1) The set / can be written as a
countable union ot pairwise disjoint infinite sets, I = | J;cx /; in such a way that £; := E; has a
continuous norm and £ 1s isomorphic to the product [ ;o E;, see [11]. We give the details of
the proot of the latter case; the proof of case (1) 1s obtained with small modifications indicated
below.

We set some notation. The basic elements {e; : j € I;} are labelled as {¢; ; : j € N}.
Hence (¢, ;); is an unconditional basis of £;. A decreasing 0-neighbourhood basis of E; is
denoted by (V. ;)i to stmplify the notation we assume that V. ; = E;, Yk < i and that V; ; does
not contain lines: we also assume that V,, ; is precompact in the topology induced by V), ;, for
every i € Nand all i < p < ¢g. The 0-neighbourhoods (Vi) of E are defined by Vi = [T;cx Vi

For every i,n € N we denote by (,,; (respectively R, ;) the projection onto the sectional
subspace spanned by {¢; ; : | < j <nj} (respectively {e; ; : j > n}). Then we have

“ME N, \?’f} < - Y 6 > U, = 1o . LﬁfﬁR”_;(E) C ‘SVPF_\IR”‘;(E)._ YV 1 E 1ngo. (1)

This formula is obvious if p <7 and it follows by compactness areuments if { < p. As in
Theorem 2 we construct sequences (m,,), (s,), (). (€,,) as follows. Setm; =5, =1 =¢; = 1.
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For n > 2 we choose successively m,,, s,, and the couple t,,, €, to satisty

(n— Dity1VyN Ry, /(E) C 5:VpN Ry i(E), Vi<n—1,Vp<g<n, (2)
Vi Qi (E) C 51750V N Oy i(E), Vi<n—1, (3)
Bo(Up,Nt,U,,€,U, U0, Us,U) >0, Vp<g<r<n+l. (4)

The existence of m,, is ensured by (1). The choice of s, can be done since V; induces a norm
on the finite dimensional subspace Q,, ;(E). Finally, ¢, and €, are selected by Lemma 7.
(Note that to prove the case (1), 1.e. when E = E}, b , the choice of m,, is done only tor = 1.
This is the only difference between both proofs.) We set J = Nx |J,,en{j: man < j <mopi1},
and show that F is not isomorphic to a subspace of E;. The proof that F' 1s not 1somorphic
to a subspace of Eyp,; 1s analogous. The neighbourhoods Vi M E; are denoted again by Vi,
k € N; this does not create any confusion and simplifies the notation. To get a contradiction,
if F1s isomorphic to a subspace of £, then given any k € N, by Lemma 7 there are increasing
indices o(-)’s, T(+)’s and M such that

Bo(Us(k) NtUgk+2),8Ux U Ugry U sUsg(42))
< Bo(M (V) NV Vees2) €V U V1) UsVess) ).

for every s,7,€ > 0. We fix an odd integer n with

(5)

n > max{M,c(k+2),1(k+3)},

and sett =t,, s = s,, € = &,. Then the left hand side of (35) 1s bigger than zero by (4). We
are done if we check that the right hand side equals zero. Assume on the contrary that there
1S x € £ such that

["‘f] N (€ Vek) U Veks 1) UsnVa+3)) C (Ve UtnVarsa)),
X Z €aVe) U Ve 1) U snVagis 3)-

By the latter condition we can define

(6)

o = SUP{'}’I X € EHVT(“ g Vt{k+l} U‘Y”V’E{k-i—:ﬂ} < ©9o,

By the first inclusion of (6), we have o € n(Vy) N1,Vy442). Let us consider the following
partition of J,

J1 = {(I.,j) c€J: IE T(k):' JE ”In}}

J2 = {(ff) cJ: fﬂ T(k)z j} mn—l—]}:

Js={(i,j) € J:i>1(k)},

and denote by Py, P, and P3, respectively, the projections onto the associated sectional sub-
spaces. For every i < t(k), we have by (3)

Pl (m) M Qﬁh;-f.(E) € ”VTH} 2 an-f(E) C ”L? [ QHI”J'(E)

C 23—45!11’/1? QOn,f(E) C ﬁSHVT{H{%}z
whence

|
P] ({I.l) € E‘THVT(-{:-FB:I'



150 Juan Carlos Diaz

By (2), for every i < t(k) it follows

PE(W) [ an+1.¢' (E) € ”‘r”v’f{k‘i‘zj M R"””"‘"-f (E)

< ::'_’!EVT“:'F” ﬂRm:H—lwf(E) C Eﬂl'zv’[[.[:—l—]]:

i

thus

l
P>(ox) € 1‘”’r(k+1)-

Finally [P3(0w)] C Vi), in particular

1
P ((I.,IT) - ‘EEH VT“;} :

Altoghether we deduce

3
ox = (P, + P+ P3)(ow) € E(En Vi) U Vs 1) UsnVaks3))s

in contradiction with the definition of oL (]
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