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EXPONENTIAL BOUNDS FOR THE DISTRIBUTION OF THE NORM OF SUBGAUSSIAN
RANDOM VECTORS'

RITA GIULIANO ANTONINI

0. INTRODUCTION

Let X be a real random variable, subgaussian in the sense of [1]. It 1s shown in [1] that

P(|X|>1 <2exp (_Z’T;_(X)) (0. 1)

where T(X) 1s the gaussian standard of X.
Two classes of subgaussian Banach space-valued random vectors are defined in the paper

[2]; for both of them it is proved that E[¢f!XII'] < ~ for some ¢. This yields
P(|X]| >1) = PesXIF S ooy < E[ﬁ‘f”X”:Jexp(—Erz) = kexp(—et”). (0.2)

Bounds of the type of (0.1) or (0.2) are what we call exponential bounds. In this paper we
derive an exponential bound for the distribution of [|X||, where X is a subgaussian R"-valued
random vector, and we 1dentify the numbers k and ¢ of (0.2).

Our bound will appear as a generalization of (0.1); it can be used for estimating the tail
distribution of ||X|| in various contexts (e.g. in the study of the asymptotic behaviour of
subgaussian processes).

1. THE MAIN RESULT

Let X be a random vector taking its values in R”, subgaussian in the sense of [3], i.e. we
assume that there exists a symmetric positive definite n X n matrix R such that

E[e<¥%>] < exp (% < Rx,x }) (1.1)

for all x € R" (we shall say also that X 1s subgaussian with respect to R).

In what follows, the term “vector’” will always mean “column vector”. We shall adopt the
following conventions.

Let k be an integer, with 0 < & < n, and denote by / the set

B {f[,...,f'k} fOI'k:_"l
I*{ ) fork = 0 ° (1.2)
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where iy,..., i are integers such that 1 < i, < <...<i < n.

Consider the n x n matrix M; = {m?} with

] fori=j&1
fnf;}:< —1 fori=j €l
. 0 elsewhere.
Clearly My = Id, while in the other cases the action of M; on any vector x = (xy,...,x;)"
is to change the sign of x;,,...,x;. When there will be no risk of confusion (1.e. when /18

fixed) we shall denote by ¥ = (¥, ...,%,)" the vector Mx.

Let now R = {r;} be any n X n matrix. We shall denote by R, the matrix M;RM,. Let £
be the vector in R" whose components are all 1. We shall say that R has property P iff for
every I, the vector R;l £ has all strictly positive components and the same happens for each
of the diagonal submatrices of R (obviously, for each submatrix, / is a subset of the set of its
indexes; moreover, the vector with all components 1 and M, have the suitable order, 1.e. the
same as the submatrix).

The main result of this paper 1s the following

Proposition 1.3. Let X = (X, ... X)) be subgaussian with respect to R and assume that R
has property P; then, for every t >0, we have

3 + (_ 1 )H-—-l I2
P(|| X < e 1.4
>0 < ZEET exp (- 2o (1.4)

where & is a number, depending only on R, that will be identified in the course of the proof.

We shall use the following

Lemma 1.5. Assume that X is subgaussian with respect to R. Let &™) be the vector in R"
whose components are all 1, and assume that, for every I, the vector RFIE{” " has all strictly
positive components. Then, for every t >0, we have

IE
P(|X | >t,...,|X,| >0 < 2"exp (—5|3) (1.6)

where
B = mfin <R7TEM EM >,

For the proot of (1.5), we need another

Lemma 1.7. Assume that X and R are as in (1.5), and put X=UX,.... X,) = MX.
Fixu= (uy,...,u,)" withu; > 0 foreveryi=1,...,n, and assume that Rflu IS a vector
with all positive components. Then

. - l
PX,>uy,...,X,>u,) <exp (_5 in]u,u:}) ,
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Proof of (1.7). For every A = (Ay,...,A,) with A; >0 foreveryi = 1,...,n we have
PX,>up, ..., X, >u,) = P(E‘}”R‘ > M ,EA”‘"}” > [;l”””) <
< E[e<*>Texp(— < A\ u>) = E[e<*MX>Yexp(— < A, u>) =

I
= E[e<M**>Texp(— <A, u>) < exp (5 < RMIAN, MIA > — < A u :}) =

1

] ]
eXP (5 -:::M;RM;A,)\>—{)\,H:::) = exp <§<R;?\,7\}— -r::h,u}) .

By minimizing in A, we find that the minimum of the last quantity is attained in A = R} ',

and 1s equal to

] ]
eXp (2 {Rf]u,n> — f::R‘,lu,,u}) = exp (—E {Rr'u,u‘;}) .

Remark 1.8. The above lemma is proved in [4] in the particular case ] = ).
Proof of (1.5). By writing

{(IXi| >t} = {Xi>t} U{=-X;>1t},

1t 1s easy to see that the probability in (1.6) can be split into sum of 2" terms; each of them is
of the form

PM;X € (t,+x)"), (1.9)

where / is a suitable set of indexes, of the type considered at the beginning of this section.
Suppose now [ fixed, so that (1.9) can be written in the more understandable form

PX,>t,....X,>1 (1.10)

and let 7 be the vector in R” with all components equal to 1.
Then t = t&"”, and, by lemma (1.7), (1.10) is not greater than

1 1 -
CXP (—2 - er_,z}) = €Xp (—E < R;—IE,“”‘ E,{”} 33*) "':_i CXP (“EB) .

We are now 1n a position to prove (1.3).
Let C, be the closed ball in 2" centered at the origin and having radius ¢, and Q, the cube

O, = {(.r],...,.r,,J g < for every i = l,...,n} .

[
NG
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Then Q; C C, so that

- - - n I __I_
P(|X||>1) = PX € C°) < P(X € Q,)<P(U{\X,|} ﬁ}) (1.11)

By the inclusion-exclusion formula, the last probability in (1.11) 1s not greater than

- t t t !
;P(lel}ﬁ)_{_ Z P(lXEI:}ﬁilXj‘}ﬁ"Xkl}ﬁ)+”' (1.12)

|<i<j<k<n

=1

In order to make our reasoning as easy as possible, we focus our attention, for a moment,

on the term
t
|X1\::,w— | > — |X~;\:~:—).
( \/_ Vn

It 1s easy to see that the 3-dimensional vector (X, X5, X3) 18 subgaussian with respect to
the 3 x 3 submatrix of R obtained by cancelling all rows and columns in it, except the ones
having indexes 1,2, 3. Hence we can apply lemma (1.5) to the vector (X, X», X3), and we get

t t t 1>
PllX(]>—,1X%]>—,|X|>— ) <2’ ——By213 ),
(il > Tz bl > = ] > == ) < 2 exp (-2

where 3123 1s defined as 3 of lemma (1.5).
The above argument applies to every vector of the form (X;, X;, X ), so that we can write

! [ [
PIX]>— [Xi|>— X > — | <
> P (> > 2> ) <

1 <i<j<k<&n

1 n t°
< Z 27 exp (_Eﬁu,k) < (2) 27 exp (_553) ,

1<i<j<k<n
where

B3 = min 3; 4.
i.j.k

One can reason the same way for each sum appearing in (1.12), and obtains that (1.12) 1s
not greater than
5]

H [~
Z (2k+ 1)24+1 CXP (_E'B?H—l) :

k=0
Put
= min Byyq.
2

Then the above sum 1s majorized by

(1=

n\ % 3 4 (— 1y %
22ﬁ.+l o — o
) 4255 )

where the last equality 1s easily proved by induction on n.
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