EXPONENTIAL BOUNDS FOR THE DISTRIBUTION OF THE NORM OF SUBGAUSSIAN RANDOM VECTORS¹

RITA GIULIANO ANTONINI

0. INTRODUCTION

Let X be a real random variable, subgaussian in the sense of [1]. It is shown in [1] that

$$P(|X| > t) \le 2 \exp\left(-\frac{t^2}{2\tau^2(X)}\right)$$
 (0.1)

where $\tau(X)$ is the gaussian standard of X.

Two classes of subgaussian Banach space-valued random vectors are defined in the paper [2]; for both of them it is proved that $E[e^{\varepsilon ||X||^2}] < \infty$ for some ε . This yields

$$P(||X|| > t) = P(e^{\varepsilon ||X||^2} > e^{\varepsilon t^2}) \le E[e^{\varepsilon ||X||^2}] \exp(-\varepsilon t^2) = k \exp(-\varepsilon t^2). \tag{0.2}$$

Bounds of the type of (0.1) or (0.2) are what we call exponential bounds. In this paper we derive an exponential bound for the distribution of ||X||, where X is a subgaussian \mathbb{R}^n -valued random vector, and we identify the numbers k and ε of (0.2).

Our bound will appear as a generalization of (0.1); it can be used for estimating the tail distribution of ||X|| in various contexts (e.g. in the study of the asymptotic behaviour of subgaussian processes).

1. THE MAIN RESULT

Let X be a random vector taking its values in \mathbb{R}^n , subgaussian in the sense of [3], i.e. we assume that there exists a symmetric positive definite $n \times n$ matrix R such that

$$E[e^{\langle x,X\rangle}] \le \exp\left(\frac{1}{2}\langle Rx,x\rangle\right) \tag{1.1}$$

for all $x \in \mathbb{R}^n$ (we shall say also that X is subgaussian with respect to R).

In what follows, the term "vector" will always mean "column vector". We shall adopt the following conventions.

Let k be an integer, with $0 \le k \le n$, and denote by I the set

$$I = \begin{cases} \{i_1, \dots, i_k\} & \text{for } k \ge 1\\ \emptyset & \text{for } k = 0 \end{cases}, \tag{1.2}$$

¹This paper is partially supported by GNAFA. CNR and MURST.

where i_1, \ldots, i_k are integers such that $1 \le i_1 < i_2 < \ldots < i_k \le n$. Consider the $n \times n$ matrix $M_I = \{m_{ij}^{(I)}\}$ with

$$m_{ij}^{(I)} = \begin{cases} 1 & \text{for } i = j \notin I \\ -1 & \text{for } i = j \in I \\ 0 & \text{elsewhere.} \end{cases}$$

Clearly $M_{\emptyset} = Id$, while in the other cases the action of M_I on any vector $\underline{x} = (x_1, \dots, x_n)^T$ is to change the sign of x_{i_1}, \dots, x_{i_k} . When there will be no risk of confusion (i.e. when I is fixed) we shall denote by $\underline{\tilde{x}} = (\tilde{x}_1, \dots, \tilde{x}_n)^T$ the vector $M_I \underline{x}$.

Let now $R = \{r_{ij}\}$ be any $n \times n$ matrix. We shall denote by R_I the matrix $M_I R M_I$. Let $\xi^{(n)}$ be the vector in \mathbb{R}^n whose components are all 1. We shall say that R has property P iff for every I, the vector $R_I^{-1} \xi^{(n)}$ has all strictly positive components and the same happens for each of the diagonal submatrices of R (obviously, for each submatrix, I is a subset of the set of its indexes; moreover, the vector with all components 1 and M_I have the suitable order, i.e. the same as the submatrix).

The main result of this paper is the following

Proposition 1.3. Let $X = (X_1, ..., X_n)^T$ be subgaussian with respect to R and assume that R has property P; then, for every t > 0, we have

$$P(||X|| > t) \le \frac{3^n + (-1)^{n-1}}{2} \exp\left(-\frac{t^2}{2n}\alpha\right)$$
 (1.4)

where α is a number, depending only on R, that will be identified in the course of the proof. We shall use the following

Lemma 1.5. Assume that X is subgaussian with respect to R. Let $\xi^{(n)}$ be the vector in \mathbb{R}^n whose components are all 1, and assume that, for every I, the vector $R_I^{-1}\xi^{(n)}$ has all strictly positive components. Then, for every t > 0, we have

$$P(|X_1| > t, ..., |X_n| > t) \le 2^n \exp\left(-\frac{t^2}{2}\beta\right)$$
 (1.6)

where

$$\beta = \min_{I} \langle R_{I}^{-1} \xi^{(n)}, \xi^{(n)} \rangle.$$

For the proof of (1.5), we need another

Lemma 1.7. Assume that X and R are as in (1.5), and put $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_n)^T = M_I X$. Fix $u = (u_1, \dots, u_n)^T$ with $u_i \ge 0$ for every $i = 1, \dots, n$, and assume that $R_I^{-1}u$ is a vector with all positive components. Then

$$P(\tilde{X}_1 > u_1, \dots, \tilde{X}_n > u_n) \le \exp\left(-\frac{1}{2} < R_I^{-1}u, u > \right).$$

Proof of (1.7). For every $\lambda = (\lambda_1, \dots, \lambda_n)$ with $\lambda_i > 0$ for every $i = 1, \dots, n$ we have

$$P(\tilde{X}_{1} > u_{1}, \dots, \tilde{X}_{n} > u_{n}) = P(e^{\lambda_{1}\tilde{X}_{1}} > e^{\lambda_{1}u_{1}}, \dots, e^{\lambda_{n}\tilde{x}_{n}} > e^{\lambda_{n}u_{n}}) \leq$$

$$\leq E[e^{\langle \lambda.\tilde{X} \rangle}] \exp(-\langle \lambda, u \rangle) = E[e^{\langle \lambda.M_{I}X \rangle}] \exp(-\langle \lambda, u \rangle) =$$

$$= E[e^{\langle M_{I}\lambda.X \rangle}] \exp(-\langle \lambda, u \rangle) \leq \exp\left(\frac{1}{2}\langle RM_{I}\lambda, M_{I}\lambda \rangle - \langle \lambda, u \rangle\right) =$$

$$= \exp\left(\frac{1}{2}\langle M_{I}RM_{I}\lambda, \lambda \rangle - \langle \lambda, u \rangle\right) = \exp\left(\frac{1}{2}\langle R_{I}\lambda, \lambda \rangle - \langle \lambda, u \rangle\right).$$

By minimizing in λ , we find that the minimum of the last quantity is attained in $\lambda = R_I^{-1}u$, and is equal to

$$\exp\left(\frac{1}{2} < R_I^{-1}u, u > - < R_I^{-1}u, u > \right) = \exp\left(-\frac{1}{2} < R_I^{-1}u, u > \right).$$

Remark 1.8. The above lemma is proved in [4] in the particular case $I = \emptyset$.

Proof of (1.5). By writing

$$\{|X_i| > t\} = \{X_i > t\} \cup \{-X_i > t\},\$$

it is easy to see that the probability in (1.6) can be split into sum of 2^n terms; each of them is of the form

$$P(M_I X \in (t, +\infty)^n), \tag{1.9}$$

where I is a suitable set of indexes, of the type considered at the beginning of this section. Suppose now I fixed, so that (1.9) can be written in the more understandable form

$$P(\tilde{X}_1 > t, \dots, \tilde{X}_n > t) \tag{1.10}$$

and let \underline{t} be the vector in \mathbb{R}^n with all components equal to t.

Then $\underline{t} = t\xi^{(n)}$, and, by lemma (1.7), (1.10) is not greater than

$$\exp\left(-\frac{1}{2} < R_I^{-1}\underline{t}, \underline{t} > \right) = \exp\left(-\frac{t^2}{2} < R_I^{-1}\xi^{(n)}, \xi^{(n)} > \right) \le \exp\left(-\frac{t^2}{2}\beta\right).$$

We are now in a position to prove (1.3).

Let C_t be the closed ball in \mathbb{R}^n centered at the origin and having radius t, and Q_t the cube

$$Q_t = \left\{ (x_1, \dots, x_n) : |x_i| \le \frac{t}{\sqrt{n}} \text{ for every } i = 1, \dots, n \right\}.$$

Then $Q_t \subset C_t$, so that

$$P(||X|| > t) = P(X \in C_t^C) \le P(X \in Q_t^C) \le P\left(\bigcup_{i=1}^n \left\{ |X_i| > \frac{t}{\sqrt{n}} \right\} \right). \tag{1.11}$$

By the inclusion-exclusion formula, the last probability in (1.11) is not greater than

$$\sum_{i=1}^{n} P\left(|X_i| > \frac{t}{\sqrt{n}}\right) + \sum_{1 \le i \le j \le k \le n} P\left(|X_i| > \frac{t}{\sqrt{n}}, |X_j| > \frac{t}{\sqrt{n}}, |X_k| > \frac{t}{\sqrt{n}}\right) + \dots$$
 (1.12)

In order to make our reasoning as easy as possible, we focus our attention, for a moment, on the term

$$P\left(|X_1| > \frac{t}{\sqrt{n}}, |X_2| > \frac{t}{\sqrt{n}}, |X_3| > \frac{t}{\sqrt{n}}\right).$$

It is easy to see that the 3-dimensional vector (X_1, X_2, X_3) is subgaussian with respect to the 3 × 3 submatrix of R obtained by cancelling all rows and columns in it, except the ones having indexes 1, 2, 3. Hence we can apply lemma (1.5) to the vector (X_1, X_2, X_3) , and we get

$$P\left(|X_1| > \frac{t}{\sqrt{n}}, |X_2| > \frac{t}{\sqrt{n}}, |X_3| > \frac{t}{\sqrt{n}}\right) \le 2^3 \exp\left(-\frac{t^2}{2n}\beta_{1,2,3}\right),$$

where $\beta_{1,2,3}$ is defined as β of lemma (1.5).

The above argument applies to every vector of the form (X_i, X_j, X_k) , so that we can write

$$\sum_{1 \le i < j < k \le n} P\left(|X_i| > \frac{t}{\sqrt{n}}, |X_j| > \frac{t}{\sqrt{n}}, |X_k| > \frac{t}{\sqrt{n}}\right) \le$$

$$\le \sum_{1 \le i < j < k \le n} 2^3 \exp\left(-\frac{t^2}{2n}\beta_{i,j,k}\right) \le \binom{n}{3} 2^3 \exp\left(-\frac{t^2}{2n}\beta_3\right),$$

where

$$\beta_3 = \min_{i,j,k} \beta_{i,j,k}.$$

One can reason the same way for each sum appearing in (1.12), and obtains that (1.12) is not greater than

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2k+1} 2^{2k+1} \exp\left(-\frac{t^2}{2n}\beta_{2k+1}\right).$$

Put

$$\alpha = \min_{k} \beta_{2k+1}.$$

Then the above sum is majorized by

$$\left(\sum_{k=0}^{\left[\frac{n-1}{n}\right]} \binom{n}{2k+1} 2^{2k+1}\right) \exp\left(-\frac{t^2}{2n}\alpha\right) = \frac{3^n + (-1)^{n-1}}{2} \exp\left(-\frac{t^2}{2n}\alpha\right),$$

where the last equality is easily proved by induction on n.

REFERENCES

- [1] V. V. Buldygin, Yu. V. Kozachenko, Sub-Gaussian random variables, Ukrainian Math. J., 32 (1980), 483-489.
- [2] R. Fukuda, Exponential integrability of sub-Gaussian vectors, Probab. Theory Related Fields, 85 (1990), 505-521.
- [3] E. I. Ostrovskii, Exponential Estimates for the Distribution of the Maximum of a non-Gaussian Random Field, Theory Probab. Appl., 35 (1980), 487-499.
- [4] V. V. Buldygin, Yu. V. Kozachenko, Sub-Gaussian random vectors and processes, Theory Probab. Math. Statist., **36** (1988), 9-20.

R. Giuliano Antonini
Dipartimento di Matematica
Universitá di Pisa
Via F. Buonarroti 2
56100 Pisa
ITALY