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ON THE COMMUTANT OF THE IDEAL CENTRE

SAFAK ALPAY, BAHRI TURAN

Abstract. The centre Z(E) of a Riesz space E is the collection of all operators T on E that
satisfy —AN < T < M for some A € R, where I is the identity operator. We study the
commutant Z(E)¢c of Z(E) in the order bounded operators on E. If E is a Riesz space with
topologically full centre, we identify Z(E)¢c with the orthomorphisms of E.

PRELIMINARIES

If E is a Riesz space £7, the order dual of E will be the Riesz space of all order bounded
linear functionals on E. Riesz spaces considered 1n this note are assumed to have separating
order duals. Z(E) will denote the 1deal centre, Orth (£), will denote the orthomorphisms of E.
If E is a topological Riesz space E’ will denote continuous dual of E. When 7 : E — Fis an
order bounded operator between two Riesz spaces, the adjoint of T carries /™ into £~ and 1t
will be denoted by 7. In all undefined terminology concerning Riesz spaces we will adhere
to the definitions in [1],[6] and [11].

When the order dual E™ separates the points of the Riesz space E, an order bounded
operator T : E — E is an orthomorphism if and only if its adjoint 7% : E~ — E™ is an
orthomorphism. Moreover, the operator { : 7 — T from Orth (E) into Orth (E™) 1s a Riesz
homomorphism [1]. The image under 1 of the centre Z(E) will be denoted by Z™(E). Z™(E)
1s a Riesz subspace of Z(E™).

Definition: A Riesz space E, with separating order dual E™, is said to have topologically
full centre if, for each pair x,y in £ with 0 < y < x, there exists a net (7,) in Z(£) with
0 <7, <Iforeach «, such that m,x — yin o(E, E™).

Banach lattices with topologically full centre were initiated in [10]. These spaces were
also studied in [2], [3] and [8]. The class of Riesz spaces and the class of Banach lattices
that have topologically full centre are quite large. o-Dedekind complete Riesz spaces have
topologically full centres. However, not all Riesz spaces have topologically full centres.

Example: [12] Let E be the Riesz space of piecewise affine, continuous functions on [0, 1].
Considered as a sublattice of C[0, 1], E is cofinal in C[0, 1]. That 1s to say for each 0 < f
in C[0, 1] there exists e € E with f < e. Hence each positive functional on E can be
extended to a positive functional on C[0,1] by Theorem 83.15 in [I1]. Theretore, we
have E~ = C(C[0,1]~. But Z(E) consists only of multiples of identity and Z(E) 1s not
topologically full. To see thislet T € Z(E) and f € E. Let x € {0, 1] be arbitrary and define
fi=f—fx) -1 f, € Eand |Tf,| < Alf;| for some A € R,. |Tf,|(x) = O as fi(x) = 0. Hence
(TH(x) = (TH(x)f(x) for all x € [0, 1]. T(1) 1s a constant function on [0, 1]. If 7(1) were not
a constant function then (7'1)(x) = ax + b on some of open interval. Then we would have
(T(T1))(x) = a*x* + 2abx + b* on some interval. This would violate the linearity of 7(T1)
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on that interval. Hence (7f)(x) = (T1)(x)f(x) so that Tf = o7f with oy = T(1).

There exists an AM-space E whose centre consists of multiples of the identity therefore
Z(E) 1s not topologically full [9]. As Banach lattices are relatively uniformly complete and
have separating order duals, we see that relative unmiform completess does not, in general,
imply topological fullness of the centre. We now give an example of a Riesz space which has
topologically full centre but is not Dedekind or o-Dedekind complete.

Example: Let X be a topological space. We denote by C;(X) the AM-space of all bounded,
continuous real valued functions on X. It is well-known that if X 1s also normal C,(X) 1s
o-Dedekind (Dedekind) complete if and only if each open F,-subset of X has open closure
(each subset of X has open closure). However, unlike these completeness properties, Cp(X)
always have topologically full centre for a normal topological space X.

Let us note that C,(X) can be 1dentified with its centre. Clearly, each f € C,(X) defines an
operator 7(g) = f - g, g € Cp(X), 1n the 1deal centre. For a proof that this correspondence
1s an onto lattice isomorphism we refer the reader to Theorem 8.27 in [1]. To see that
Cp(X) has topologically full centre, we let 0 < y < x in Cp(X) and 0 < € be arbitrary. Let
D ={te X:e <x(t)}. The function z(r) = y(¢) / x(¢) is continuous and bounded on the
closed set D. Tietze extension theorem allows us to extend z = z(¢) to an element in Cp(X).
We denote the extension by z = z(f) again and consider the operator 7 defined by z. Clearly,
| v — T(x) || < € and C,(X) has topologically full centre.

We wish to thank the referee cordially for his valuable advice and suggestions.

MAIN RESULTS

Order bounded maps on the Riesz space E will be denoted by L,(E). Z(E)c will denote
the commutant of Z(E) in Ly(E). That is, Z(E)c = {T € Ly(E) : Tt = nT for each
nt € Z(E)}. Since E™ is assumed to separate the points of E, E is Archimedean. It follows
that the Riesz space Orth (£) under composition 1s an Archimedean f-algebra and therefore it
1s commutative. Hence Orth(E) C Z(E)c.

In this note we study the relationship between Orth(E) and Z(E)c. The notion of relative
uniform convergence for lattices 1s due to Kantorovitch [5]. As is done by Gordon in [4], the
notion of relative uniform convergence can be generalized so as to apply to spaces that are
not vector lattices.

Definition: A sequence (x,) in an ordered vector space E is said to converge relative uniform
tox € Eif there exists e € E4 and (A,) C Ry with A, — 0 such that, for all n € [,

_}‘nf‘? i: X — Xp £ ?\rie-

A subset Y of E'1s called relatively uniformly closed if whenever a sequence (x,,) in Y converges
relative uniform to x, x must also be in Y.

Z(E)c 15 a relatively uniformly closed subset of L,(E). Let (T,) be a sequence in Z(E)¢
which converges relative uniform to 7. To show T € Z(E)c, it is enough to show Tt = nT
whenever 0 < 7t < [. Let us choose (A,) C Ry with A, — 0 and U € L(E), with
~MU < T-T, < AU for each n. Then for each m € Z(E); with 0 < 7t < I, we have
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20U < Tn—nT = Tn—-nT+nT,—T,7t < 2A,U foreach n. Since L,(E) is Archimedean,
we have Tt = 7T and Z(E)c 1s relatively uniformly closed.

Let 7., and T be order bounded operators on the Riesz space E. If sup, {T,x} = Tx for
eachx € E4, we write T = sup,, 7,,. Since Z(E) is positively generated and consists of order
continuous operators on E, 1t is easy to see that if 7' = sup,, T,, with T,, € Z(E)¢ for each «
then T € Z(E)c.

Let E, F and G be Riesz spaces. A bilinear map ¢ : £ x FF — G 1s called a bi-lattice
homomorphism if for each f € F, the maps y — ¢(y,f) of E into G and the maps F — G
defined by g — &(x,g) for each x € E, are lattice homomorphisms. In particular, we
shall consider the bilinear map ¢ : E x E~ — Z(E)' defined by ¢(x,f) = p,,, where
Wy r(70) = f(7(x)) tor 7t € Z(E). For each x € E, the maps f — ¢(x,f) and for each f € E7
the maps x — ¢(x,f) are positive and we have |d(x, f)| < d(|x], |f]) foreach (x,f) in E x E™.

[f £ has topologically full centre, we can say more about the positivity of the map ¢.

Lemma: Let E be a Riesz space with separating order dual £E7~. If E has topologically full
centre, then ¢ : E x E~ — Z(E) is a bi-lattice homomorphism.

Proof: First, we show &(x,-) : E~ — Z(E) is a lattice homomorphism for each x € E .
Positivity of the map &(x,:) : E~ — Z(E)" implies that ¢(x, /)T < ¢(x,fT) foreach x € £
and f € 7. Letm € Z(E)4, and x € E be arbitrary, then

GO, ST = W+ (0) = fT () = sup{f(y) : 0 <y < 71(x)} .

For each y with 0 < y < 7(x), we can find (7t,) in Z(E) such that O < 7, < [ for each « and
i (7ix) — yin o(E, E™) as E has topologically full centre. As 0 < 71, (7x) < 71(x) for each
x, we have

f(7ta () < &(x, f)(a7m) < dx, f)T () foreach «.

Hence f(y) < &(x, )T (70) for each y with 0 < y < 7t(x). Taking supremum over all such y,
we obtain ¢(x,fT) < d(x,f)T for an arbitrary f € E™.

Now we show that ¢(-,f) : E — Z(E)' is a lattice homomorphism for each f € E7. Ttis
enough to show that ¢(x,f) A d(v,f) = 0 for each x, vy in E satisfying x A y = 0. As [, the
identity operator on E| is a strong order unit in Z(FE) it suffices to show

G, ) NGO ) = (Key A py o)) = 0.
It 1s well-known that

(ef Ay )) = influp () + e p(m) 1 0 <y, € Z(E), 71+ o = 1
inf{f(m;x) + f(mox) : 0 < 7y, 10 € Z(E), m +m =1},

Let z = x+ y. Let /[, and I. be, respectively, the order ideals generated by x,¥
and z. Then /. 1s actually the order direct sum of /, and /, by Theorem 17.6 in {10] .
We denote by P the order projection of /. onto /,. Let J be the restriction to /. of order
bounded functionals on E. Then J is an order ideal in /7 because if f € [T satisfies
0 < f < g, forsome g € E™, then f has an extention to a positive functional on £ by
Theorem 2.3 in [1]. The adjoint P~ : [T — [T of P satisfies 0 < P~ < [ and as a



66 Safak Alpay, Bahri Turan

consequence we obtain P~ (J) C J. As a result of these simple observations we obtain that
the pair < I.,J > constitutes a Riesz pair and P : I.(o(/-,J)) — [.(c(I-,J)) continuous. Since
0 < P(z) < gz, there exists (7t,,) in Z(E), 0 < 7, < [ such that 1,(2) — P(2) in o(E,E™)
and theretore 1n o(/.,J). We have P(mt,z) = 1,(Pz) = 7,(x), and the continuity of P now
yields t,x — x in o(l.,J). Since we have 1,(z) = 7,(x) + 71,(y) for each x, we have
Tia(y) — 0 1n o(l.,J). As por A pyp() < f(U = 714)(x) + 7, (v)) for each «, we obtain
(Ko s A Wy o)) < Iimg, f((1 — 71,)(x) + 71,(y)) = 0 which completes the proof.

A well-known Theorem of H.Nakano (cf. [1], Theorem 8.3) states that if E has the principal
projection property then the band preserving operators are precisely the ones that commute
with order projections. Thus, for Riesz spaces having the principal projection property, Z(E)c
1s precisely Orth E.

Since Z(E)c = Orth E for a Dedekind complete Riesz space E, we have Z(E)¢ is relatively
uniformly complete. Thus it is natural to ask whether Z(E)¢ 1s relatively uniformly complete
whenever E is. Let {71, } be a relatively uniformly Cauchy sequence of positive operators in
Z(E)c. That is to say, there exists T € L,(E).,. such that for every € > 0, there exists an integer
N = N(e) with

—elT <m, —m, <eltoralln,m > N.

Hence, we have —eT(x) < m,(x) — m,(x) < €T(x) for each x € E, and all nym > N.
Since E 1s relatively unmiformly complete and £ 1s relatively uniformly closed, there exists
a unique 7o(x)eE, such that 7, (x) — 7y(x) relatively uniformly. 7y extends uniquely to a
positive operator on E. Using that 7, 1s order bounded for each n, it 1s straightforward to
prove that 7ty 1s order bounded. To show 71y € Z(E)¢ 1t 1s enough to show 71y commutes with
each 0 < TeZ(E), which follows easily from the fact that a positive operator is sequentially
relatively uniformly continuous.

When E i1s Dedekind complete, commutativity of a positive operator with the operators
in the 1deal centre implies that it 1s an interval preserving operator. Let 0 < SeZ(E)¢ be
arbitrary, then for each z € E™, 5[0, z] C [0, Sz]. Thus, it is enough to verify [0, Sz] C S[O0, z].
Let 0 < y < §z be arbitrary. Then there exists some 1 € Z(E), 0 < 7t < [ satisfying
(Sz) = S(nz) = y. Thus y € §[0, z].

Proposition: Let E be a Riesz space with separating order dual £~ and topologically full
centre. Then Z(E)c = Orth E.

Proof: Let T € Z(E)c be arbitrary. It is easy to see that ur, s = |, 5, for each x € E and
f € E™. On the other hand if x L y in E, then positivity of the map ¢ : £ x E~ — Z(F)'
implies that |is| < Myx 1| < Hix.prjvie) and [Wy.e| < Byl jg) < By pjvie) for each f, g in E7.
Hence 0 < [key| A [Hyel < Wplriviel A Histiiviel = Hixialllfiv]e] = O by the lemma. Thus
we obtain that, if x L yin E, then p, s L p,, in Z(E) for each f, g in E~. In particular, we
have e gr L My for each f € E~. Hence ur., L u,, for each x,y in E with x L y and
f € E™. Since E™ separates the points of E, the result Tx L y follows from the fact that
x — ¢(x,f) 1s a lattice homomorphism for each f € E7.

Results show that for a Banach lattice with order continuous norm we have Z(E) = Z(E™) =
Z(E'"), where E’ denotes the topological dual [7]. The next result characterizes Riesz spaces
for which Z(E) = Z(E™).
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Proposition: Let £ be a Dedekind complete Riesz space. Then £~ = E77 if and only if the
adjoint map  : Z(E) — Z(E™) 1s surjective.

Proof: Suppose £~ = E7°. Then the topology o(E, E™) 1s order continuous. Therefore E
is an order ideal of (E™) by Theorem 11.13 in [1]. Let T € Z(E™) be arbitrary. Then
T~ € Z((E™)7) and it leaves E invariant. Thus we conclude that 77| is in Z(E)., It is
straightforward to see that (T~ |g)™~ = T. Thus ¥ is surjective.

Suppose U 1s surjective. To show that E~ = E7” it 1s enough to prove that each band in E™
1s o(E™, E)-closed by Theorem 11.10 in [1]. Let B be an arbitrary band in £~ and P be the
band projection on BY. Then P € Z(E™). By hypothesis there exists P, € Z(E) with P7" = P,
As P : (E~,0(E™ E)) — (E~,0(E™,E)) continuous, B = P~'(0) is o(E™, E) closed.

Let us recall that Z™(E) 1s the image of Z(E) under the adjoint map \p : Z(£) — Z(E7).

Proposition: Let £ be a Riesz space with topologically full centre. Then Z7(E)¢ = Orth
(E™).
Proof: E£™ has topologically full centre as it 1s Dedekind complete. Therefore Z(£7 )¢ = Orth
(E™) by previous proposition. Z™~(E) C Z(E™) C Orth (E7) implies that Orth (£7) C Z™(E)¢.
Thus it 1s enough to show that Z™(E) C Orth (£7). Let T be an order bounded operator on
E™ that commutes with every operator 71, 7t € Z(FE). Suppose f L g £7. Weclaim Tf L g
in E7.

Let us consider the bilinear map ¥ : E~ x E~™~ — Z(E™) defined by W(f,F) = s
where wr p(t) = F(rif) where F € E~~, f € E™ and 7t € Z(E™). E™ has topologically
full centre and the bilinear map V¥ : E~ x E™™ — Z(E™)' has similar properties to those

of & : E x E~ — Z(E) defined earlier. In particular, it is a bi-lattice homomorphism,
and if x — % is the canonical embedding of £ into £~ then p, ((71) = py,:(7) for each

xe E.f € EYandm € Z(E). Sincef L g, we have y, L p, ¢ forarbitrary /,G in E~7. In
particular, for F = T™% and G = X we obtain W, 75 L Wi in Z(E™). We let Z7(E)° be the
holar of Z~(E) in Z(E™) . Then (Z~(E)°)? is a projection band in Z(E™)". P will denote the
band projection on (Z~(E)°). Let us consider Z(E™)' |7~ in Z~(E).

Z(E™) |7~ is the class of order bounded functionals on Z™(E) that have order bounded
extentions to Z(E~) and is an order ideal of Z(E™). Therefore Z(E™)' |7~ £ 1s a Riesz subspace
of Z(E™)'. The map P(1t) — |z~ g is a Riesz isomorphism of (Z™(E)°)! onto Z(E™) |z~ k).
By Theorem 7.3 in [ 1], it is enough to show that it is a positive bijection with positive inverse.
Suppose |z~ = Wa|z~ for some py,pa € Z(E~). Then puy — palz~ = 0 so that
(U, — o) € Z~(E)°. Hence P(u; — W) = P(y) — P(un) = 0 or P(uy) = P(ua). Positivity
of P u — |z~ is clear. Surjectivity of u — |z~ g is also clear. Positivity of the inverse
follows from Theorem 2.3. in [1]. Since a positive orthomorphism is a lattice homomorphism
P(Hfiﬁ) L P(u, ;) tollows from He s L Hei Therefore, we have HJ:?E—I 7~ L Heilz~um).
Since T € Z~(E)¢c. Tit = 7T for each m € Z(E) and we have 'F.lf-_?:i."/f’--”._'} = Wiy k|76
Therefore wyy i|lz~) L Heilz~). As uzyi(70) = Wy gy(70) for each m € Z(E), f € E™ and
x € Eitfollows that i, 7y L o in Z(E). ¢ @ Ex E~ — Z(E)" is a bi-lattice homomorphism
implies that W, j77jale = 0 in Z(E) for each x € E. Evaluating at / € Z(E) we see that
(|Tf] A |g|)(x) = 0 for each x € E.. Hence |Tf! A |g| = 0 as E™ separates the points of £.
This shows Tf L gin E~ and T € Orth (£7).

Commutant of Z™~(E) seems to be related to another subalgebra of L,(£™) which we now
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define. Let W(E™) be defined as W(E™) = {T € L,(E™) : T(I) C [ for each o(E™, E)-closed

ideal 7 in E~}.

When E has a topologically full centre, the class of o(E™, E)-closed ideals of £~ coincide

with the o(E™, E) closed Z(E)-submodules of E~. Thus W(E™) can be described as the order

bounded operators on E™ that leave invariant each o(£™, E)-closed Z(E)-submodule of £7.
The next result describes elements of W(£™) 1n terms of the bilinear map (x,f) — s of

E x E~ — Z(E).

Proposition: Let £ be a Riesz space with separating order dual £~ and topologically full
centre. An operator T € L,(E™) 1s in W(E™) it and only 1f @,y = 0 imphes p, 7w = O for
xe E feE™.

Proof: Let T € W(E™) and w,, = 0 for some x € E,f € E~. We have (Z(E)x)" = I for a
Riesz space with topologically full centre. Hence, f € (/)" which is a o(E™, E)-closed band
of E~. Therefore Tf € (Z(E)x)". That is to say, Tf(7x) = p, () = 0 for each 7w € Z(E) or
w7 = 0 as claimed.

Let now I C E™ be a o(E™, E)-closed ideal of E~. (]), polar of I taken in E, is an ideal
in E. We wish to show T(/) C I. Let us choose f € I, and x € (°I); and observe that
w, (1) = 0 for each 7t € Z(E). It follows that p, s(71) = 0 for each x € (°I) and f € I. Then,
by hypothesis, p, 7y = 0, x € D), f € I. Thus Tf € (°I)" and Tf € I by the Bipolar theorem.

o(E™, E)-closed ideals of E™ are bands (cf. Theorem 106.1 in [11]). Therefore for a Riesz
space with topologically full centre, we have Z™(E)- € W(E™). In general, an arbitrary band
in £~ may not be o(E™, E)-closed. A necessary and sufficient condition for this to happen is
E™ = E7. Thus, W(E™) = Orth(E™) whenever E™ = E7”.
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