Note di Matematica Vol. 18 - n. 2, 227-234 (1998)

THE SUBMANIFOLDS X,, OF THE MANIFOLD xg — MEX,,
II. FUNDAMENTAL EQUATIONS ON X,, OF ¢ — MEX,

KYUNG TAE CHUNG, MI SOOK OH, JUNG MI KO

Abstract. In our previous paper [4], we studied the induced connection of the *g-ME-
connection on a submanifold X,, embedded in a manifold *g-MEX,, together with the gen-
eralized coefficients L2;; of the second fundamental form of Xy, with emphasis on the proof
of a necessary and sufficient condition for the induced connection of X, in *g—MEX,, to be
a *g-ME-connection. This paper is a direct continuation of [4]. In this paper, we derive the
generalized fundamental equations on X,, of *g-MEX,,, such as the generalized Gauss formu-
lae, the generalized Weingarten equations, and the Gauss-Codazzi equaticms Furthermore,

we also present surveyable tensorial representations of curvature tensors R A of "g-MEX,

and R.uk of X

1 The generalized fundamental equations on a submanifold X, of “g-MEX,,

This section is a direct continuation of our previous paper [4], which will be denoted by I in
the present section. All considerations in this section are based on the results and symbolism
of I. Whenever necessary, they will be quoted in the present section.

In this section, we derive the generalized fundamental equations on a submanifold X, of
*g-MEX,,, such as the generalized Gauss formulae, the generalized Weingarten equations,
and the Gauss-Codazzi equations. Furthermore, in Theorem 8 we also present surveyable
tensorial representations of curvature tensors R} ’ of g — MEX, and R ik of X,,. The con-
venient and powerful C-nonholonomic frame Df reference in “g — MEX at points of X,,,
introduced in I-Section 1(b), will be employed throughout the present section. Particularly,
we note in virtue of Definition I-11 that under the present conditions the *g — M E-connection
of a given *g — MEX,, is unique.

Theorem 1 (The generalized Gauss formuilae on X, of “g-MEX,) At points of X,,, of
*90-MEX,, the following relation holds:

DS B} = Z(—MHEI 2 8ij)NY 1.1

Proof. This relation 1s a consequence of 1-(3.4) and I-(3.3).

In the derivation of the generalized Weingarten equations, a representation of the vector

D N, it is convenient to introduce the following abbreviations:

MY, = DS N} 1.2
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XY CL i
HY = &,(V,N)NS, 1.3

Theorem 2 The vector Hy’ is skew-symmetric with respect to x and y. That is
Hy = —Hy", Hy =0 1.4

Proof. The second relation of (1.4) is a consequence of the first. In virtue of 1-(2.16a) and
I-(2.24), the first relation of (1.4) follows as in the following way:

0 = Vy(hap NI Ny)
= Vy(N?)No + V(NN
= Hy +Hy

In a sequence of the following four theorems, we derive the generalized Weingarten equa-
tions on X,,, of "g-MEX,,.

Theorem 3 The vector M}'I may be decomposed as

M}, = M, B} + Y M N} 1.5
}.1

the first vector on the right being tangential to X,,, and the second vector normal to X,,. Here
M. =M} By, M =M Ny 1.6
Proof. This Theorem is an immediate consequence of I-Theorem 6.
Theorem 4 At points of X,,, of ~g-MEX,, the induced vector M j.}x of MET may be given by
' * 7.0h %
M}x:EI i ij,_gxf kyj 1.7a

or equivalently | . | | |
M =& h" QG+ 2[X (8 — *kj') — X' “kyj] 1.7b

Proof. In order to prove the relation (1.7a), we first note that ij 1s the induced tensor of
D,NY in virtue of (1.2) and (1.6). That is,

M, = (DyNy)By, B} 1.8
Making use of 1-(2.25), 1-(2.24a), and 1-(3.9), we also note that
(V4Ny)By BY = (VyN hge) (*h°* B, )B) = & *h™" A} (1.9)

Consequently, making use of [-(3.1), I-(2.20a), I-(2.23), and (1.9), the relation (1.7a) tollows
from (1.8) as in the following way:

Mi'x = |y + (${§{}+23EX?—2*SBTXG¢)NE foB:';

~ (V4N%)B, B — 20X BY) (K, MY BY)
— g, :}:hth A,;j DY *kx’;

Substitution of I-(3.8) into (1.7a) gives (1.7b).
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Theorem 5 At points of X,, of *g-MEX,, the C-nonholonomic components Mf;fx of M}’I may

be given by
M, =g, Hy B;+2(3, X+, "k X) 1.10

Proof. Invirtue of (1.2) and (1.6), we first note that M’ is the induced vector of (DyN&)N.
Hence, making use of I-(2.33), [-(2.23), I-(2.20a), and (1.3), the representation (1.10) follows

as in the following way:
M, = ((DyNY)N B!
= [0+ ({8} + 285 Xy, — 27 gp, X“INE| N B
= (VyN{ )Ny BY + 2(NY No) (Xy BY) + 28 (*ky® N§ B]) (X* Ng)
=g, Hy B} +2(8 X + &, "k X)

Now, we are ready to present the following representation of the generalized Weingarten
equations by simply substituting (1.7a, b) and (1.10) into (1.5). We formally state

Theorem 6 (The generalized Weingarten equations on X, of *g-MEX,) At points of

Xn of *g-MEX,, the following equations hold.
D3Ny = (& *h" Ay ; —2X" *kyj) BY + 1
+ 3 [ey Hy' B} +2(85 X; + &, *kfX}’)] A ‘

or equivalently
DNy = e Hh Qf + 2(Xc(®) — *k)) = X' *kyy) | BY -
+3, [y Hy BI+2(80X; + & "k X7)| Ny

Our next considerations concern the derivation of the generalized Gauss-Codazzi equa-
tions for X,,, of *g-MEX,,. For this purpose, we need the following curvature tensors:

Rmy},.v = 2(8@ T‘m”m] + 1}1”[}“ F[M“m]) 1.12
Riji" =209y Ty + 1" T i) 1.13
V V o
V — * * * . 4
Hmiyl Z(a[p {(ﬂ]}t}+ {(ILLI} {(ﬂ]}u}) I.1
HIJR _2(8[.-’ {I]k}+ {P[j} {I]k}) 1.15

where FL is the *g-ME-connection of *g-MEX,, and Fﬁfj 1s the induced connection on X,

of *g-MEX,. The tensors Ry, and R; jkh are called *g-curvature tensors of *g-MEX,

and X,,,, respectively. It should be noted that R; j,;:h and H; jkh are not the induced tensors of
REM and H , u, respectively.

The following Theorem gives precise tensorial representations of *g-curvature tensors.
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Theorem 7 The *g-curvature tensors Ry," and R, jkh may be given by

Rm_u}m‘i'I —Hmu? +4(6[m ,u — X" V{m”ﬁu]h“

* 1.16
—" o Yy X +2 g\ o &lap X*XY)

Ef‘f’kh — _jﬂ;h -+ 4(6E BJEX,;— — Xh V[:kﬂk*—'

* Y ; 1.17
—* 8 VX" + 2 gigi *g1p 7 XP X")

Proof. In virtue of 1-(2.33), (1.12), and (1.14), the representation (1.16) may be proved as
in the following way:

Ry’ =20p,(* { )} 120} ]X;.L 2% gmw XV )+
+2 {ﬂ }—|—25th, 2XY *«gcx[,u)x
x(${m{]:.tl}+2Xm} & —2"gup X%)
= Hoya" +48Y9,0X3 — 4X" (31, 8] + " 8og "L ap })—
—4" )0 (B XY +"{ 1o JX®) + 8780 8oy X * X"
— rjylv‘l“il(ﬁ a,u]X:’L - XV Vr g|?|tﬂ]
~* 8o VX' +2" 8o *8lau X* XY)

Similarly, the representation (1.17) may be obtained from (1.13) in virtue of
I-(3.11) and (1.15).

Now, we are ready to display the Gauss-Codazzi equations for X,,, of *¢g-MEX,,.

Theorem 8 At points of *g-MEX,, the *g-curvature tensors Ry,p" of *g-MEX, and R; "
of X, are involved in the following equations:

(The generalized Gauss eguations on X, of *¢-MEX,, )

—

Rij" = Rpe" By B} B} Bl +23,QF pmwhhﬂ £x+

+’?(a{§_l *fc X+ 2%k,

X" 1.18

(The generalized Codazzi equations on X, of “¢-MEX,, )

= Ray® By BY B N3+ 23, Q) (B H +
+27kj, X¥) +4X" gy QL

ZV[;CQh _,F

Proof. We first note that I-(3.11) gives

=287 Xy — 2"k X .20
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In virtue of I-(3.6), I-(3.4), (1.12), (1.13) and (1.20), it follows that

2D (D BY) = 20y(D% BY) +2T°g, BY (D', BY)—

21‘*” (D5 BE‘) 21‘*[ « (D5 BY)
_ '*r B h
= 20y(B%; + B ]B g, — i Bi)+
+203, By (B, + Bj) BY g, ~ T, B})~
p Y nP h
2r,[k(Bﬂj +B) Bp rg], Il Bi)+
+4(6LF X — ke X") T, 2, NY

= —Rey® B} BY BS + Ryji" B3+
+4 3, (Qf; Xy — ki ), XhN®

On the other hand, the relation I-(3.4) gives

2D%(D BY) = —2%,.Df (% N
= ZZI(D‘“ Qﬁk],,Nﬂ +zzxs}* (D3 N)

In virtue of I-(2.33), the first term 1n the right-hand side of (1.22) may be written as

Firstterm =23, (d;;Q" e =T — T QRIS

— sz(v!j k] —I-4QI[ Xk] —I—2X 31[; Qﬁi[k]“

~2X" "k QNS

Making use of the relations (1.11b) and

8_;;‘ kJ —*iji

the second term 1n the right-hand side of (1.22) is equal to

Second term =23%, ;[k[ ) hf’hex+2(3p] kP )X+
+27k ) XP]B“+-|—4ZI ik Xj] Ny +
+23%,, Quu(B)) Hye, + 2%k X7 )N

Substitution of (1.23) into (1.22) gives

2DRDGBY = 22 Hi(Sy "hPex + 28 — k)Xot
+2*k] XP)BD!-!-QZI(V[} |”k]+

—]-QXh *gl[j QX

hik] il

+23, f[k(B}} Hy, + 2%k, XY )N

!The relation I-(2.24b) show that
ek = e ko BS Nj = "kog BY (exNg) = "kop BI N = ks

+20% . Xy — 2X" *kjp Q3, )NE+

23]

1.21

1.22

1.23a

1.235

1.24
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Consequently, comparing (1.21) and (1.24), we finally have

Ryji" BY _RﬂﬁﬁBBB?BEHzIQA Q) P+
—|—2(8*"’] kjP) X427k, XP|BS+-
+2 ZA(V[ S + 2X" gy Qi IN%+

+22x;,ﬁlk(3 Hy +2 %k, X”)NY

(1.25)
Jx

The generalized Gauss equations (1.18) follow by multiplying B¢ to both sides of (1.25)
and rearranging the indices suitably. Similarly, the generalized Codazzi equations (1.19) may
be obtained by multiplying N to both sides of (1.25) and rearranging the indices. In the
derivation of both equations, use of the relations [-(2.23) has been made.

2 The generalized fundamental equations on a hypersubmanifold X,,_; of *g-MEX,

In this section, we investigate the fundamental equations on a hypersubmanifold of “g-
MEX,. On a hypersubmanifold X,,_; of *g-MEX,, the theory of submanifolds assumes a
particularly simple and geometrically illuminating form. This simplication is mainly due to
the fact that at each point of X,,_; there exists a unique normal NV,

In this case, we may take
€ = 1 2.1

without the loss of generality. Therefore, quantities intoduced in I and the previous section
take the following simpler forms and values:

N =N*E N NE=N'E N, 2.2a
X, = X" = X  N* = y 2.2b

Q= Q) = (DpNo) B BY = Q 2.2¢
Af; = Al = (VpNo)BY BY = Ay 2.2d
*kie = *ki* = *kin = *kog B* B® £ *I, 2.2¢
kg = "k’ = "kpn =0 2.2f

HY = H" =0 2.2g

In virtue of (2.1) and (2.2), it may be easily shown that
ng:Afj~2x*gfj 2.3a

*t = —*k; 2.3b
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Theorem 9 At points of a hypersubmanifold X,_.1 of *g-MEX,, the following generalized
fundamental equations hold:

(The generalized Gauss formulae on X,,_; of “¢g-MEX,)

D‘?B? = (—‘Afj -+ 2x*g,-j)N” 2.4a

(The generalized Weingarten equations on X,,_; of *g-MEX,)
DSNY = (*h™ Apj+2X"*k;)BY +2(X;+ % *k;j)N

J . . . )
= [*h" Qpj +2X" *kj + 24(8; — *k;')|BY + 2.4b
+2(X; + 5 *k; )N

(The generalized Gauss equations on X,,_; of *g-MEX,)

Rijx" = Ryye® B} B Bf Bly +2C,(Qpy "W+

2.4c
/ %7, _h % h
F2(8 — "k +27k XP)
(The generalized Codazzi equations on X,,_| of *g-MEX,)
2V Qi1 = Reye® By BY BS Noo+ 43 Qg kjy +4* 81 Qg X 2.4d)

Proof. Invirtue of (2.1), (2.2), and (2.3), the identities (2.4) follow from (1.1), (1.11), (1.18),
and (1.19), respectively.
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