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SOME BOUNDS FOR THE GENUS OF M" x I

PAOLA BANDIERI, MARZIA RIVI

Abstract. Starting from a (i, j)-symmetric crystallization (I'yyn,Yym) of a closed n-manifold
M", we give an algorithm to build a crystallization (l'j%m,ﬁf”) of M" x I. This algorithm
allows to give a formula for the calculation of the regular genus of (Fﬁ;;,ﬁﬁ,,, ), in the cases
n = 2,3, and some bounds for the genus of the product-manifolds represented.

1 Introduction

This paper comes into the study of the polyhedra, represented in a combinatory way. In
particular relations between the genus of the product and the genus of its factors are wished
to be obtained. This problem also is of interest in the Poincaré Conjecture. In fact, as seen in
1 11], the following conjecture implies the (3-dimensional) Poincaré Conjecture.

Conjecture I.

(a) G(§° x§?%)=8;

(b) for every closed orientable 3 — manifold M>
(") G(M> x §%) > 8
(") G(M?> x S?) =8 iff M°> = S°.

In [4] it is proved (a) and (#’) and this result has suggested a new conjecture that implies
the Poincaré Conjecture, for all 3-manifold M?> with Heegard genus H(M?) > 5.

Conjecture I1. For every closed connected orientable 3-manifold M?, denoting by D" the
n-disk: G(M> x ") > G(M> x D").

To give a contribute in the investigation of conjecture 11, in the case n = 1, we introduce an
algorithm to construct the product between “special” contracted triangulations of n-manifolds
and D' = I. Moreover we describe how to represent such products by means of coloured
graphs. The obtained relations between the genus of the product-graph and the genus of the
crystallization of the n-manifold M" allows to find bounds for the genus of the product M" X 1.

We conclude the paper with bounds for the genus of some products of 3-manifolds for I
and with the evaluation of the genus of RP> x I.

'Work performed under the auspicies of the G.N.S.A.G.A. - C.N.R., and within the Project “Proprietd Geomet-

riche delle Varieta Reali e Complesse”, supported by M.U.R.S.T. of Italy.
1991 Mathematics Subject Classification: Primary 57N12, 57N13; Secondary 57Q15, 57M4()
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2 Definitions and notations

In this paper we shall work with manifolds and maps in the PL-category, for which we refer
to [15] and [10]. For graph theory, see [12] and [16]. All considered manifolds are supposed
to be compact and connected unless otherwise stated.

Let "= (V(I'),E(I')) be a finite multigraph (multiple edges are allowed, but loops are
forbidden) and v:E(I') = A, ={i€ Z | 0 <i<n} be a proper edge-colouring of I" (i.e.
v(e) # Y(f) for any two adjacent edges e, f € E(I) ),then the pair (I',y) is a (n+ 1)-coloured
graph with boundary and A,, 1ts colour-set.

[f ve V(I') has degree equal to n+ 1 (resp. strictly less than n+1), then v is an internal

vertex (resp. a boundary-vertex ). Let ;? (resp. p) be the number of internal vertices (resp.
boundary-vertices) of I'; if p = 0, then I is simply called an (n + 1)-coloured graph.

For each B C A, we set I'g = (V(I'),y '(B)). The connected components of I'g are the
B-residues of I' and, if B has cardinality r, we say that they are r-residues. If ¢ € A,, set
¢ = A, —{c}. T is regular with respect to the colour c iff I'; is a regular graph of degree n.
Let G, 4+ denote the class of all graphs regular with respect to the colour n.

Let I" € G,.1; we define the boundary-graph (9T ,°y) of T" as follows :

i) V(dI') is the set of the boundary-vertices of T';

i1) for each u,v € V(dI'), join u and v by an edge ¢ iff u and v lie on the same {i,n}-residue
of I" and set %y(e) = i.

Obviously, if p = 0, then JI" = 0.

I" is called contracted (resp. d-contracted) if 1" = 0 (resp. I" has non-empty boundary-
graph) and I'¢ is connected, for each ¢ € A, (resp. I'; is connected and, for each ¢ # n, I'¢ has
as many connected components as dl).

(I,v),(I'",Y) € G,y are colour-isomorphic iff there exists a triple (h,k, ) of bijections
V(D) —»V(I), kE(T') — E(T"), v: A, — A, such that k preserves the incidence and Y ok =
yov. A coloured n-complex (K(I'),¢) (see [6] and its bibliography) can be associated with
any (n+ 1)-coloured graph with boundary (I",y) by the following rules:

1) for each vertex v € V(I'), take an n-simplex o(v) and label its vertices by 0, 1,...,n;

2) for each edge e € E(I') with endpoints v,w € V(I') and colour y(e) = i, identify the
(n — 1)-faces of 6(v) and 6(w) opposite to the vertex labelled by i, so that equally
labelled vertices are identified together.

The graph I" will be said to represent K(I'), its space |K(I')| and every homeomorphic
polyhedron. This construction can be inverted in order to obtain an (n + 1)-coloured graph
with boundary (I'(K),y) starting from a coloured n-complex (K,@). Note that I'(K) repre-
sents K iff K(I'(K')) = K and that this condition is satisfied iff for each ¢ € K the disjont star
Std(c,K) is strongly connected [7].

In particular a manifold M can be represented by the graph I'(K), for each triangulation
K of M; moreover every connected component of the boundary graph 0I'(K) represents a
connected component of the boundary manifold oM.
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A coloured n-complex K is said contracted (resp. d-contracted ) if it has exactly n+ 1
vertices (resp. one internal vertex coloured n and one vertex coloured c, for all c € A,—y, on
each connected component of dK).

A crystallization of a closed n-manifold (resp. n-manifold with boundary) M" 1s a con-
tracted (resp. d-contracted) (n+1)-coloured graph I" € G,4.; representing M". The contracted-
ness (resp. d-contractedness) of I" corresponds to the same condition for K(I"). For existence
and characterization theorems on crystallizations see [6].

From now on we shall assume the following notations: for each r,s € A, (resp. rs €

An—1), §,,5 (resp. agm) denotes the number of cycles of I (resp. of dI" ), with edges alterna-
tively coloured r and s.

If T is a regular graph of degree n+ 1, then dI" = 0; in this case all cycles (r,s)-coloured
are in I" and their number 1s simply denoted by g,.

The regular genus p(I') of a (n+ 1)-coloured graph I' is defined in [9] as the least integer
for which exists a regular embedding of I" into a closed surface of genus p(I'). In [8] it is
generalized the concept of regular genus for each I' € G,,1, by means of a graph I'* for which
there is a permutation € = (€g,...,&,—1,&, = 1) of A, such that I'"* embeds in the orientable
(resp. nonorientable) surface F; with A¢(I™) =9 gee _, holes and having Euler-characteristic

XE(F*): z §Ej5j+1+(l~n)ﬁ /2+(2—H)ﬁ/2
JELpy|

Hence F; has genus pe(I') = 1 — % (I™) /2 — A (™) /2, if T is bipartite (resp. pe(I’) =2 —
Ye(I™) — e (I'™), if T is non-bipartite). Then the regular genus of I' is p(I") = ming pe(I).

If I is a connected graph, its (reduced) genus is Pe (') = pe(I), if I' is bipartite (resp. Pe =
0¢(T) /2, if T is non-bipartite); whereas if I is disconnected with components T} ... T,
we set

pe(T) = Y pe(T).
=1

In [2] it is proved that for each cyclic permutation € = (€g,...,€,—-1,8n = 1) of A, Pe(l) >
Per (A1) , where €' = (g9, ...,€,—1) and moreover one define Pg(dl) = —1 when JI" = 0.
We can make similar considerations for the regular genus of a n-manifold M”, that 1s
defined as follows:
G(M") = min{p(T") | T represents M"}.
In the case of dM" = 0, it is easy to show that
G(M™) = min{p(I") | T is a crystallization of M"}.

This relation can be extended to manifolds with boundary in dimension less or equal than 3
[1]. As in the case of graphs we introduce the notion of reduced genus for n-manifolds by
setting G(M™) = G(M™) (resp. G(M™) /2 ) if M" is orientable (resp. nonorientable).

In [3] it is proved that each 4-manifolds, with C > 1 connected components of boundary,
such that G(M*) = G(dM*) (resp. G(M*) = G(M*) 4+ 1) is homeomorphic to the connected
sum of a suitable number of orientable or non orientable handlebodies (resp. of a suitable
number of orientable or non orientable handlebodies and either S° x §! or 3 ~ § ). In this
case we call M* of type I (resp. of type II).
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3 The crystallization I},

Definition 3.1. An (n+ 1)-coloured graph I" will be called (i, j)-symmetric, (where i,j €
An,i# J,) iff the subgraphs I'; and I"; are colour-1somorphic.

Note that if I" is an (7, j)-symmetric crystallization of an n-manifold, and K = K(I')
is the associated complex, endowed by the vertex-colouring induced by v, then there exists a
colour-isomorphism between the disjoint links of the two vertices v; and v; of K, respectively
coloured ¢ and .

We can assume that M" is a closed n-manifold which admits a (0,n)-symmetric crystal-
lization (I'ym,Ypm ). Let p be the order of (I'ym,yuyn) and (A, k,0) be the colour-isomorphism
between I'y and I 5.

We define I'},, be the graph isomorphic to 'y, by means of the colour-isomorphism
(W', k',d"), where h' = h and

O A, — A,
[ = i+1 with (i+ 1) mod n

We set o = h(o;). For each colour d € A, we denote with iy the index of the vertex d-
adjacent to the vertex o in I'yn. Let A the following matrix® in which each row represents a
n-simplex of a triangulation of the product of a (n — 1)-simplex, of vertices vy, ...,v,—1, for
I =< wgy,w; >.

/(Vn—lzwl) (Va—2,w1) oo (vi,wr)  (vo,wi1)  (vo,wo)
(Va—1,w1)  (Vp—2,w1) o+ (vi,wy)  (vi,wg) (vo,wo)

A =
(Va—1,w1)  (vyp—2,w1) (vp_2,wg) --- 2 (vi,wo) (vo,wo)
\ (Vp—1,w1)  Wn—1,w0)  (Va—2,wo) -+ (vi,wo) (vo,wo)

Let az, 1 <k < n, be the vertex corresponding to the n-simplex 1; whose vertices are
listed in the k-th row y of the matrix A. We call (I, Yan ) the (n+ 2)-coloured graph with
boundary obtained in this way:

/ 0 p—=1 0 p—1 0 p—l}

. A _ /
l) V(I-‘ H)—{(I[],...,ﬂp_ljaﬂ}..;,ﬂp_ljﬂ”...,ﬂl ,ﬂz,...jﬂz :....:,ﬂ”}...:,a”

ii) take the graphs (I'ym)s and (Iym)g
i) fori=0,...,p—1and k = 1,...,n and for each colour d € A,, delete from ®; the

unique element (v,,ws) such that » + s = d yielding the subsequence wi(d); subse-
quently follow the rules:

>The columns of the matrix are listed by the lexicographic order.
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(a) if in mk(dv there are both v, and wy as components of others vertices, then
there exists an other row ®y such that @y (d) = ®,(d), and we join .':ch
and a, with a d-coloured edge;

(b) if v, 1s missing in mk(d‘)? then join ﬂi and ai’" with a d-coloured edge;

(c) if wg (resp. wy ) is missing in wy(d), then join a; and o (resp. o; ) with a

d-coloured edge.

iv) fori=0,...,p—land k= 1,...,n, join the vertex a} with ﬂiﬂ by means of an (n+1)-
coloured edge.

Proposition 3.1. With the above notations, (Ui, Yim) is a crystallization of M" x I, whose
boundary graph 0T, has two connected components both isomorphic to Tyn.

Proof: Let (Kyn,@pm) be the pseudocomplex associated to the crystallization 'y of the
closed n-manifold M”, then Ky x {0} and Ky x {1} are contracted triangulations of M" x

{0} and M" x {1}. Each vertex o; € V(I'y») corresponds to an n-simplex 67 =< v(}) v(}

(i)
J

Let 6~ b =< v(} U Z > be the (n-1)-face of G opposite to the n-coloured vertex.
Fork=1,...,n, the E:lf.:ments of the row ;. of the matrix A, are the vertices of an n-simplex
n; € G’f—l X ’El (in the sense of [5]); the complex 7; constituted by these simplexes and by
their faces, is a triangulation of the n-ball |67~ x 11|.

Let L{,» be the pseudocomplex formed by all simplexes of Ky x {0}, of Ky x {1} and
of the triangulations 7; fori =0,...,p— 1.

The join K4, between L4, and an internal vertex u of the (n + 1)-manifold M" x I, is
a pseudodissection of such manifold. The boundary dK%,. is formed by the two connected
components Kym x {0} and Kym x {1}, in fact every n-simplex 6" of Kymn x {0} is exactly
face of the only (n + 1)-simplex < u > *G" of K4y ; likewise for Ky x {1}.

Since @'y, 1s supposed to be (0,n)-symmetric, there exists a colour-isomorphism f be-
tween the disjoint links of the vertices vg and v, of Ky, respectively coloured 0 and n.

Then the bases of the prism |67~ x I| are the (n — 1)-simplexes f(c7™ 1) x {1} € Lkd(<
v{(;:' >, Kyn) x {1} and 077" x {0} € Lkd(< e >, Ky») x {0}. Hence we can give on Ki, a
vertex-colouring ., that assigns the colours n and 0 respectively to the vertices (v?.}i)} e

(v("') 1) -

vi}} > of Ky, in which the vertex v’ is j-coloured, for j =0,...,n.

{})

=

=
I

-

Vi (09,0) = v)  j= ep—]

i i) * :
w‘ij’ﬂ((vfij:l)):afﬂ(p:'l-’f”(vffj) j:{]ﬁ“-:ﬂ I:U?"':-p_l
yam(u) =n+1.

Since Kj» has the only vertex u of colour n + 1, and the connected components of
its boundary are contracted complexes, the (n + 2)-coloured graph I}, associated to the
coloured cmmplex K%, is a crystallization of M" x I. Obviously the components of the bound-
ary graph oI}, are respectively 'y and Iy, that, by construction, are isomorphic.
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Corollary. For each r,s € A,,_; we have

d,A _
rs = 8rs T 8[(8")~1(r)][(8)~1 (s)]

where %g2 is the number of cycles of T, relative to the colours r and 5. [J

4 The regular genus of I'%,,

In this section we calculate the regular genus of the graph (I'4;x,Yi ) for n = 2,3. Moreover
bounds for the regular genus of the product of a closed 3-manifolds for I, are obtained.
From now on we denote with G(rpﬂ(ul,ug? ..., up) the cycle of I“f,fﬂ whose vertices are

Uy, uz,...,up and whose edges are alternatively coloured with the colours r,s € A7 by
A
L&

colouring with the colour r the edge whose endpoints are #; and u;. Moreover &,, denotes
the number of these cycles.

With the symbol €, (a?"‘) we indicate the cycle C(, (a;,a?’,a?‘ ,...) where the labels

i of the vertices aj} are the same as the vertices o involved in a cycle of I'y» relative to the

colours 4 and k. Then the number of the cycles C, (a?"“ ) is exactly gpy.

CASEn=2

Proposition 4.1. Ler I',o be a (0,2)-symmetric crystallization of order p of a closed 2-
manifold M*. Then p(T" ,) = p/2—1.

Proof: Obviously on (I';2)5 (resp. (r;,ﬁ)ﬁ ) there are gg; cycles relative to the pair of

colours (0,1) (resp. (&'(0),8(1)) = (1,2)). Furthermore, on the graph I} , there are also the
following cycles :

- 6(0,3)(‘12}2) : 8(213)(11?2) ;
- fori=0,...,p—1

e(gjl)(ﬂg,ai,aé,a;ﬂ,ﬂzﬂ a;n)? I <y
e(ﬂzz) (ﬂ:’;?a‘;ja? ;[I’;]); 1 < 1y
6{230} ({Ii,ﬂéjﬂ?jﬂ.iﬂ), 1 < Ig
Cio (o, ab,al,a) a0 ), i <
(?{351)(111“'1,&'??::1;2?515), I < Ir.

Hence we have:

oA
8o1= 801+ p/2
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oA
=P

oA
812=2801+p/2

o

gﬂg — 8§02

L]

g =p/2

=]

g;_t};;:gu

Since I'p2 1S a crystallization of a closed 2-manifold, then, by definition, it follows that
201 = go2 = g12 = 1. In the calculations of the regular genus we have the minimum genus for
the permutation € = (1,0,2,3), its value implies the assert.

Corollary L p(I"} ;) = 2p(I'y2).

Proof: For each crystallization I'y2 of a closed 2-manifold, and for each permutation
e = (&0,€1,€2) of Ay
Ae = 8epey T 8ejen T 8erey -3/2p+p=3-p/2
Pe(Tp2) =1 —%e/2=p/4—1/2.
Since ﬁ(l“;ﬂ) = p/2 — 1 and since, if M? is orientable (resp. non orientable), then M? x I
1s orientable (resp. non orientable), we have the assert.

As a consequence of the above results we find again the following relation.
Corollary II. G(M? x I) = 2g(M?).

Proof: Since d(M? x I) has two connected components M? x {0} and M? x {1}, it follows
that G(0(M? x 1)) =2 G(M?).

Then G(M?* x I) > G(d(M* x I)) =2 G(M?). If T, is a crystallization of M? such that
G(M?) = p(Ty2), then p(T,) = 2 G(M?).

Hence G(M? x I) = 2 G(M?) because M? x I admits I, as crystallization of minimum
genus (hence of regular genus).

Since the regular genus of a closed surface M? equals its genus g(M?) [9], we have
G(M? x 1) =2 G(M?) =2 g(M?). ]

CASEn=3
Proposition 4.2. Let T'y;3 be a (0,3)-symmetric crystallization of a closed 3-manifold M> of
order p, then ﬁi(l"i,ﬂ = p—2g0.
Proof: On (I'y3)4 (resp. (I, 5)g ) there are the cycles relative to the pair of colours (0,1),(0,2),(1,2)

(resp. (1,2),(1,3),(2,3) ) which are respectively go1,£02,212. The others cycles of 1“‘:.:{3 are
the following:
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- Co(a3") . €3)(a3”) . Ca)(d)?)
Co.4) (ﬂ?g) , C0.4) (a;m)
Caa (a;”) . C2.) (ﬂ*fim)

Cia)(a?) , Cra(as?)

- fori=0,...,p—1
E(D?U({xi,aﬁ,agjag’jai“,m;ﬂ), [ < g
e((}:g) (Hﬁ;,{li ,Hil }{1‘;] ), 1 < Iy
6(2!(}) (ﬂ%,ﬂg,ﬂg},ﬂ;ﬂ), 1 < Ip
6(013}(&;,.115;,&?,[1;2), 1 < Iy
6{310:, (ﬁi,ﬂg}ag};{ifﬂ), 1 < 1y
(?{1?2}(@}::15,,&5,&12‘,&5‘,a‘;l), i < iy
(‘3(1:3}(5151,::15,&;3?&"12), [ < i
6(113}(-115,{1;1,&;],(15), 1 < i
6(2‘3}(H5,ﬂ5}&f,Ot,‘z}ﬂ;‘z,ﬂg), [ < i
6[1}4}(.{1?,&5}&?,&?): 1 < f3
6(234) (H%,ﬂ%,ﬂ?,ﬂ?% 1 < 53.

Hence we have :

oA
8o1=2801+p/2

oA

Ep— 802+ P

A

Epz=8go2+p

A
g1r=2g12+g01+p/2
A

gi13=8n2+p

oA

813=2g12+p/2

oA
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oA
814= 813+ p/2
A
8r4=g13+p/2
oA

834= 2 823

An easy calculation shows that, for the permutation € = (1,3,0,2,4) of A4, we obtain the
minimun value Pe(T ) = p—2 goz.

From now on, we denote by @’ (M?) the minimun order of a (i, j)-symmetric crystalliza-
tion representing M>.

Proposition 4.3. For each 3-manifold M> admitting a (i, j)-symmetric crystallization:

2G(M?) < GMP xT) < O'(M?) =2G(M?) —2.

Proof: Let 'y a (i, j)-symmetric crystallization of M> of minimum order O’ (M?), then

GM* x1) < p(Typ) = O' (M) = 2(go — 1) = 2

Since g — 1 > G(M?), it follows the assert.

Remark. Since, for the crystallizations '3 of a closed 3-manitold, the following relation is
satistied

gor+802+g3=2+p/2  [7]
and p(I'y3) = min{go; — 1 : ; = 1,2,3}, we have that

ﬁ(riﬁ) =2(go1 — 1) +2(go3 — 1) > 4p(Ty3).

Note that the (0,3)-symmetry of I',3 implies gg; = go3; hence we have the equality iff go; =
802-

S Some applications

Let g3, I'rn ) and g1, g2 be the standard crystallizations respectively of S°, of the lens space
of type (h,k) and of S' x §?, represented in figures 1, 2 and 3 with the respective graphs I}

§3
[ forh=2andk=1)and T ..
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Figure 2
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Figure 3
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Let I'z3 be the crystallization of 7° = S! x S! x §!, shown in figure 4. Moreover let X3 the
Poincare’ Sphere and I'pggr its crystallization showed in figure 5 and built in [14] as DESF
and in [13] as R24/2.

Figure 4
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Figure 5

All these crystallizations are (0,3)-symmetric, then, the values of the regular genus of
the crystallizations Fﬁh obtained starting from the above-mentioned graphs, give an upper

bound for the regular genus of the respective 4-manifolds M> x I. Moreover they represent
3-manifolds M> whose product for I is neither of type I nor of type II, then the gap between
G(M? x I) and G(o(M?> x I)) is at least 2, and so G(M?> x I) > 2G(M? x I) +2. Hence we

state the following:

Proposition 5.1.
(1) G($®>xI) =0

2) 4 < G(Lpy X I) < 2h
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(3) 8<G((S' xSt xS x1) <16
4) 4<G((S'~ S xI)<8
(5) 6 <G(Z*x1I)< 14,

Remark. Note that the relation (2), for # = 2 and k£ = 1, directly gives

G(RP’ xI) = 4.

One of the authors has elaborated a program in language C that, given the graph '3, it
builds the graph I} ; in the cases n = 2,3 and calculates its regular genus.
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