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CUBIC EXTENSIONS OF FLAG-TRANSITIVE PLANES, I1. ODD ORDER
Y. HIRAMINE, V. JHA, N.L. JOHNSON

Abstract. The finite translation planes with spreads in PG(5,q) which are odd cubic exten-
sions of flag-transitive planes and admit solvable groups are completely determined.

1 Introduction

In a previous article, we considered even order cubic extensions of flag-transitive planes. In
this article, we continue this study with consideration of odd order planes.

In particular, we consider the analysis of translation planes of order ¢° that admit collineatior
groups G which leave invariant a subplane =, of order g, act flag transitively on m, and act
transitively on the set of components not in x,,.

In two previous articles (see [14] and [13]), the general study of translation planes which
are extensions of flag-transitive planes is undertaken.

An ‘extension of a flag-transitive plane’ is an affine plane 1 containing an affine subplane
T, and a collineation group which leaves &, invariant, acts flag-transitively on 1, and acts
transitively on the parallel classes of 7t not in ®,.

The reader 1s referred the Part I, Even Order for the complete statements of the main
results of [14] and [13]). We shall give a short version of the results here for convenience.

Theorem 1 (Hiramine, Jha, Johnson ([14] and [13]). Let ® be a non-Desarguesian trans-
lation plane of order q" where q > 4 that is an extension of a flag-transitive plane and let G
denote the associated collineation group.

Then w is Hall or the derived Walker plane of order 25 in either of the following two
situations:

(i)n=2o0r

(ii}) n £ 3 and G is solvable.

When n = 3, there are problems in the general classification of extensions of flag-transitive
planes. In particular, there is a tremendous variety of of translation planes called generalized
Desarguesian planes of order ¢* that admit GL(2,q). There are many mutually nonisomor-
phic planes of this type and where the kernel of the plane may be chosen in a variety of
ways.

For such planes, the associated vector space is a standard GF(q)GL(2,g) module. What
this means is that a group isomorphic to SL(2,q) is generated by elation groups and that
GL(2,q) leaves invariant each subplane of order g incident with the zero vector in the associ-
ated GF (g)-regulus net defined by the elation axes of SL(2,q). In addition, there are always
infinite orbits of lengths ¢ + 1 and g° — g so that we obtain cubic extensions of a Desarguesian
flag-transitive plane admitting non-solvable collineation groups when g > 3.
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We have seen in a previous article (see Hiramine, Jha, Johnson [12]) that the Liineburg-
Tits plane of order 2!® is a cubic extension of a Liineburg-Tits subplane of order 2°.

Furthermore, the authors prove the following theorem:.

Theorem 2 (Hiramine, Jha, Johnson [12]Let T be a cubic extension translation plane of
even order g° with subplane 1, of order g > 4.

(1) Then , is Desarguesian or Liineburg-Tits and the full collineation group G contains
a group isomorphic to SL(2,q) or S.(,/q) respectively where the involutions are elations.

(2) If g = 2" and r is odd then T, is Desarguesian and G is isomorphic to SL(2,q) and
generated by elations.

The various articles of the authors on extensions of flag-transitive planes form a theory
which is, in some sense, a continuation of the ideas of the second author [15] who studied
autotopism groups in translation planes of order ¢" with an orbit of length g" — g. We are
replacing the assumption that the group is an autotopism group with the assumption that the
group leaves a subplane invariant and acts transitively on the flags of the subplane.

Furthermore, Jha posed the following problems P and Q:

Problem (P): Classify all spreads within PG(2n— 1,g) admitting an automorphism group
G such that G fixes globally a set A of ¢+ 1 components and acts transitively on the remaining
components.

Actually, this problem originally had the further assumption that n > 3 as it was consid-
ered too difficult to complete when n = 2 due to the many known examples.

Problem (Q): Classify all translation planes of order p” that admit collineation groups
with a slope orbit of length p” — p where p is a prime.

What we are considering in this article includes the study of problems (P) and (Q) when
there is an invariant subplane of order ¢ in the first problem and of order p in the second
problem and asking when the collineation group is solvable and transitive on the flags of the
subplane.

Hence, we can make some progress towards the problems (P) and (Q) of Jha by adding
some hypotheses regarding the action on subplanes.

We analyze the collineation groups of cubic extensions and are able to generally formulate
a classification.

We have seen previously that the generalized Desarguesian planes and the Liineburg-Tits
plane of order 2'® appear here (see Hiramine, Jha, Johnson [12]).

In this article, we consider only planes of odd order. Since there are various problems
encountered for odd order plane which are not present when the plane has even order, we
usually only consider spreads in PG(5,q). In this case when ¢ = 1 mod 4, we show that the
group must be nonsolvable and involve SL(2,g). When ¢ = —1 mod 4, although the group
is not completely determined, there is a possible class of solvable cubic extensions the form
of which is completely determined.

Using the implied nonsolvability of the various groups, we then can basically complete
the classification of results on solvable extensions of flag-transitive planes of order ¢" at least
when g = 1 mod 4 or when g 1s even.

For convenience, we repeat some definitions.
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Definition 3 If an affine plane © of order q" admits a collineation group G which has infinite
point orbits of lengths g+ 1 and (¢" — q), we shall call ® a (g + 1,q" — g)-transitive plane’
and G a ‘(g + 1,q" — q)-transitive group’.

If © is a translation plane whose kernel contains GF (q) and the group G is in the linear
translation complement, we shall call n a ‘linear (g+ 1,q" — q)-transitive plane’ and G a
‘linear (g + 1,q" — q)-transitive group’.

If G leaves a subplane w, of order q invariant within the net of length g + 1 and there is
a collineation group transitive on the sets of affine and infinite points of &, and the infinite
points of T — T, then T, is a flag-transitive affine plane and we shall call T an ‘extension of
T, .

If the group of an extension is solvable, we shall call the plane a “solvable extension’.

2 Cubic Extensions when the spread is in PG(5,¢9),q = 1 mod 4

The problem of whether there exist solvable cubic extensions i1s completely unresolved. We
begin the study of cubic extensions with spread in PG(5,q). We shall require the following
result to Foulser.

Theorem 4 Foulser [7].

Let T be a translation plane of order g° that admits a planar p-group G fixing a subplane
T, of order g pointwise. Then G is elementary Abelian of order dividing the order of the
kernel of Tt,.

Proof. See Foulser [7] (3.4) part (5) to observe that G is an additive subgroup of the kernel
K, of ,. O

Assume, for the remainder of this section, that 7 is a cubic extension translation plane with
spread in PG(5,q) of odd order of a translation plane m, of order ¢ and G is a collineation
group in the translation complement which is a (g + 1,¢° — g)-group.

Lemma 5 [f the group G|m, is solvable on 1, then one of the following occurs:
(1) the subplane is desarguesian of order 9 or Hall of order 9,
(2) the group induced on the infinite points of T, is isomorphic to Aq4 or S4 and g =5,7,11
or 23,
" (3) the group is a subgroup of TL(1,4%) or
(4) g = 3 and the group induced contains SL(2,3).

Proof. Apply Foulser [4], Theorem 1, p. 459) and Foulser and Kallaher [8] (1.2). O

Lemma 6 Let S be a Sylow 2-subgroup of Gp where L is a component of m,. Then S is faithful
on .

Proof. If S is not faithful on m,, there is an involution fixing nt, pointwise which implies that
there is a subplane of order q” 2 which contains a subplane of order ¢ which cannot occur.
Hence, § is faithful on m,,. ]
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Lemma 7 If the group G|r, is solvable on &, then either T, is Desarguesian or the case that
the group is a subgroup of TL(1,g%) does not occur.

Proof. Assume that the plane is not Desarguesian and the group induced on =, is in 'L(1, ¢°)
and hence has order on 7, of order divisible by (¢g* — 1)r where ¢ = p”. Assume that the order
of a p group fixing 1, pointwise is p. By 2.1, if p“ > | /g then the plane 7, is Desarguesian.
Hence, p? < /g and a p-group acting faithfully on 7w, has order at least ¢/p® > ,/gq. Let
the order of a faithful p-group be p’/2*! where ¢t > 0. However, the group is isomorphic to a
subgroup of I'L(1,4*) and the Sylow p-subgroup has order (2r) p (the p-part of 2r). Since p
is odd, let r = p?f where (p, f) = 1 so p’/*** > p®. However, by induction, is follows that
r< prﬁH_ ]

Corollary 8 Under the assumptions of the previous lemma, T, is a K-subspace where the
spread is in PG(5,K) and K isomorphic to GF(q).

Proof. The previous argument shows that there is an element GL(6, g) that fixes 1, pointwise.
L]

Note we may assume that GG contains the kernel homology group of order g — 1.

Lemma 9 Let n, be Desarguesian and the group G|n, is in TL(1,q%). Let { be a component
of &, and let S be a Sylow 2-subgroup of Gy of order divisible by (g — I}% and let 8| denote
the subgroup of GL(6,q) in S.

Then the full subgroup St of 1 which fixes a component of , pointwise has order exactly
2,

Thus, (g — 1), divides 2r;.

Proof. We see that the group acting on £ has order divisible by g(g — 1)>. We note that
GL(2,q) commutes with the kernel homology group of order ¢ — 1 which also faithfully
induces the kernel homology group of ©,. We see that we may assume that §; has a subgroup
S7 which fixes m, N £ pointwise. The subgroup of I'L(1,4*) which fixes a line of 7, pointwise
has order 2 and induces an involutory homology on &,. Hence, if [S7| > 2 or equivalently if
|S1] > 2{g — 1)», we have a contradiction. Note that the order of a Sylow 2-group of subgroup
of 'L(1,4?) that fixes a component of T, has order (g — 1)22r>. Hence, it follows that (g —1);
must divide 2r,. [

Lemma 10 /f g = 1mod 4, the situation described in the previous lemma cannot occur.

Proof. Let r = 29 where ¢ is odd. First assume a is not zero. Then (¢ —1) = (p' — 1)(p' +
(¥ + DY + D(p¥ +1)...(p* " +1). Let 2¢ = (p¥ — 1), so that (g — 1, = 24+a~]
where d > 3. Noteifa=0then (¢g— 1), =(p—1)2. Nowifa=0then(g—1)2=(p—1)2 > 2.

Thus, in either case, (g — 1) > 2r. O

Lemma 11 Assume that the group induced on the infinite points of m, is isomorphic to A4 or
Sq and g =5,7,11 or 23. Then g # 5 or 23.
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Proof. Since there is a planar p-group acting trivially on m,, it follows that m, is a kernel
subspace so there is a kernel group of © of order ¢ — 1 leaving &, invariant. Similarly, as
in the previous lemmas, we have a linear 2-group of order (g — I}% acting on T, and fixing
a component so it again follows that (g — 1), divides 2r = 2 which eliminates g = 5. So,
we have a group acting trivially on the infinite points of 1, of order divisible by g(g* — 1)
(g4 1)/24 which implies that if (g+ 1),/8 > 1, there is an involution fixing 7, pointwise.
Hence, g # 23. U

Theorem 12 Let &t be a cubic extension translation plane of odd order order g° and kernel
containing K ~ GF(q) which contains a subplane n, of order g > 3.

If G is a collineation group which leaves T, invariant and acts as a (g + 1,q° — g)-
transitive group G and g = 1 mod 4 then G is nonsolvable.

For any odd order if G is non-solvable then

(a) &, is Desarguesian and G|r, contains SL(2,q) or

(b) g=9 and G|n,b. ~ As.

Proof. Note that if G is non-solvable then it must induce a non-solvable group on 7, since
the 2-groups are faithful on ,. Now assume, in general, that G restricted to 7, is nonsolv-
able. Then the plane is Desarguesian, Hall or order 9 or Hering of order 3° by the results of
Buekenhout et al [1].

First assume that m, 1s Hall or order 9. The full collineation group of i, which fixes the
zero vector has order 2°-3-5. The group G has order divisible by 9(9> — 1) =2%.32.5. In
order that wt, be Hall and the group is transitive on the infinite points of &, it follows that
there must be a group of order 2-3 -5 induced. Since the group induced on 7, restricted to
the infinite points is a subgroup of §s, it follows the group is nonsolvable.

If the subplane is Hering of order 27, then the subplane of order ¢ = 3° admits a collineation
group 1somorphic to SL(2,13) which 1s normalized by . Furthermore, any odd order sub-
group which centralizes SL(2,13) must fix the infinite points 7, since each Sylow 13-group
fixes exactly two infinite points of m,. Moreover, the outer automorphism group is trivial
so there is a 3-group of order divisible by 3° of which there is a subgroup of order 9 that
centralizes this copy of SL(2,13).

Hence, it follows that there is a group of order 9 which fixes 1, pointwise. However, this
implies by Foulser, Theorem (3.1), that i, is Desarguesian.

If m, is Desarguesian and assume that the group G induced on &, is non-solvable then by
Foulser [4] (12.1), either SL(2,q) is induced on &, or the group induced contains the preimage
of As (acting on the infinite points) and ¢ = 11,19,29 or 59.

In each case, there 1s a p-group fixing the subplane 1, pointwise. Furthermore, the group
induces As on the line at infinity of the subplane it,. Hence, there is a kernel homology group
acting on the subplane of order divisible by 2,6,14,58 respectively as ¢ = 11,19,29 or 59.

Hence, there is a 2-group of order (g — 1)3 that fixes a component and a subgroup of order
(g — 1)2 which fixes a component of 1, pointwise. Hence, the subgroup fixing the infinite
points of T, has order g(g* — 1)(g — 1) /60 and since the 2-part is strictly larger than (g — 1)5
in each instance, there must be an involution fixing m, pointwise which cannot occur.

We have seen the & cannot be solvable if ¢ = 1 mod 4. This completes the proof. L]
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3 Linear groups for spreads in PG(5,g),g = —1mod 4

Now assume that we have ¢ = —1 mod 4, the spread is linear and the group G is linear (within
GL(6,9))-

Assume that the group is solvable. We have noted that there is a planar p-group of order
q which fixes 1, pointwise. Furthermore, we may assume that 7, is Desarguesian and the
group induced upon T, is a subgroup of I'L(1,4%). Since the group is solvable, there is a
subgroup G, of order order |G|/|G|p. Since G fixes m,, there is a Maschke complement
of dimension 4 over the kernel K isomorphic to GF(q), as we are assuming that the group G
is linear.

Since we now also have the kernel homology group of order g — 1 acting on the plane
and on T, it follows that the group G,/ has order divisible by (¢ — 1)*(¢+ 1). We note that

the group fixing a component ¢ of &, has order divisible by g(g — 1)?. Furthermore, as the
group induced on 7, is a subgroup of I'L(1,g)?, it follows that there is a subgroup of order
g(g—1)/2 which fixes &, pointwise. In addition, Gy ; has order dividing g(q* —1)y. If there
is an element of odd order u dividing g + 1 then, since the group is linear, we have a linear
planar group of order p“uf’ for o and P positive integers. However, this says that there is a
normal u-group by Jha [15] which implies that the p-group fixes more than g element on a
line of m, which cannot occur.

Hence, the full groups fixing 7, pointwise has order exactly g(g—1)/2.

The preceding section says that we are finished or there exist involutory homologies with
axes in the net containing 7,. We consider I'L(1,4*) acting on the cosets of GF (g) as com-
ponents. In this representation, th einvolutory homologies are of the form

Gq : x — wla where a9™! = 1. Letting a = b' 9, then the line GF (g)b is fixed pointwise

by 6,. Also, the coaxis of 6, is GF (q) b’ =D/ where @ is a primitive element of GF (g*)*.
The group generated by the homologies has two orbits of lenghts (¢ + 1)/2 on the line at
infinity of m,. Moreover, each homology must commute with Gin,) so we have a normal
group of order divisible by 2(g + 1) which commute with G ) and has two orbits of lenght
(g+ 1)/2 on the line at infinity of 7,,.

We claim that there 1s a unique Sylow p-subgroup of order g in Gyg,j. Proof: The
group acts faithfully on any component ¢ and furthermore, acts faithfully on the set or 1-
dimensional K-subspaces on £. Hence, there is a faithful group induces on the projective
geometry PG(2,q) induced from the 3-dimensional vector space £. Thus, it remains to show
that there is a unique Sylow p-subgroup.

Acting on PG(2,q), we have a collineation group which fixes a point say oo, It follows
easily that any fixed-point-free group of order g which fixes o= and a line £.. has the form:

((x,y) — (x+a,xf(a)+y+g(a));a € GF(q)) where f and g are appropriate functions
and f(a) = 0 if and only if @ = 0 if and only if the corresponding element is the identity.

If there is another Sylow p-subgroup then the second group cannot fix £.. since other-
wise there would be a generated p-group with additional fixed points. This p-element would
determine a collineation of m which fixes more than g point on £.

Hence, either we have a unique Sylow p-subgroup or there is an element in Gy, which
moves ... Note that Sylow p-subgroup § as above is regular on the lines incident with e
other than £... Hence, it follows that the group generated by the two Sylow p-subgroups is



Cubic Extensions of Flag-Transitive Planes, Il. Odd Order 305

doubly transitive and hence the group Giy,) must have order divisible by g(g+ 1) which is a
contradiction.
Thus, we must have a normal Sylow p-group S in Gir,)-

Hence, the group G, permutes transitively the g* — 1 orbits of length g of S.

Let Cy be any G, complement of ,. Then the intersection of C; with any component
is at least 1-dimensional. Assume that some component is contained in C;. Then ql -1
components are contained in C; which cannot occur. Hence, the components intersect C)
in 1- and 2-dimensional subspaces. Let a and b denote the number of components which
intersect C in 1- and 2-dimensional subspaces respectively.

Then,a+b=¢g’+1andg* -1 =a(g—1)+b(g*> - 1)

so that we have g* 4+ ¢° = ag+ bg* = (¢° + 1 — b)g + bg*.

This last equation is valid if and only if ¢° — g = b(g*> — q) if and only if b = g+ 1.

Hence, the components in the net Ny, intersect any G,-Maschke complement is a G-
Maschke complement.

We shall say that such Maschke complements are 'strongly embedded’.

Assume that g+ g # 2. Let u be an odd divisor of g + 1. Then there is an Abelian
subgroup A of order quﬁ for some non-negative integer . Suppose that there is a unique
strongly embedded A-Maschke complement. Then the group § of order ¢ must leave this
complement invariant which cannot occur.

Hence, there are at least gA-Maschke cnmplﬂments Ci,i=1,2,...,q. Wesee that ;N C;
for i # j is at least two dimensional and since {q - 1l,g+ l) 2 it fnl]nws that C; NC; must
be 2-dimensional. Since the orbits of G, are divisible by g* — 1 on the components not on
T,, it follows that two A-Maschke -::umplements which are images of a strongly embedded
complement can intersect only on components of T,. It follows easily that C; N C; must be
a subplane of the net Ny, containing m,. Hence, there are at least 1 + g subplanes of order g
incident with the zero vector in Ny,. We assert that a group H in Gy, of order (¢ — 1) /2 must
fix exactly three 2-dimensional GF (g)-subspaces. Acting on a component taken as PG(2,g),
we see that the group H fixes a point (e) of PG(2,q). The associated normal p-group fixes
(e=) and a line £.. Note that no non-trivial element of H can commute with a non-trivial
element of S;,. Hence, H 1s a subgroup of the group of an affine Desarguesian plane and thus
is a subgroup of Wy T where T is the associated translation group. Since G is linear, it follows
that H acting on PG(2,q) is in GL(2,4)T. Hence, H/HNT =~ H is isomorphic to a subgroup
of GL(2,q) and it follows that HNZ(GL(2,q)) = (1). Since (g —1)/2 is odd, it follows that
H is cyclic. Thus, we may assume that H fixes three points of PG(2,q) of a triangle. It
follows that H fixes three subplanes of order g of the net N not all in the direct sum of any
two of them. Hence, we may diagonalize H.

For another viewpoint, we redress the argument in matrix form.

We let i, be represent by {(x1,0,0,y1,0,0);x1,y; € GF(gq)} where the translation plane
1s represented with respect to x = 0, y = 0 in for the form

{(x1,%2,%3,¥1,¥2,¥3): %, ¥i € GF(q), fori =1,2,3}.

Hence, we may represent elements of the p-group fixing 7, pointwise in the form

1 0 O
diag | ¢ 1 0
d e 1 |
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We first assert that for the group of order ¢ the set of elements e in the (3, 1)-entries is GF(g).

] 0 0
Suppose there are two elements with the same (3 — 1)-entries e saydiag | ¢ 1 0 [ and
| d e 1 |
1 0 0]
diag | ¢ 1 0 |.
d* e 1
Then, we obtain an element of the form
10 077'T1 0 0] B 0 0
diag | ¢ 1 0 c 1 0 |=diag | c=c 1 0
| d° e=e" 1 | d e 1 |  d—d” 0 1
1 0 071" B 0 0
asdiag | ¢ 1 0 =diag | =" ] 0
d e 1 —d*+c"e"® —e"=—e |
This element fixes a point on x =0 say (x1,x2,x3) if and only if

(c—=c")xa+(d—d")x3 =0.

If (c — c*)(d —d*) # 0 then there exist additional fixed point on x = 0 which cannot occur. If
c—c*=0butd—d* # 0 then (x1,x72,0) is fixed pointwise. Hence, ¢ — ¢* = 0 if and only if
d—d” =0.

The above agrument is basically symmetric so that it follows that the set of (2, 1)-entries
is GF(q). It thus follows that ¢ = f(e) for all e € GF(q) where fis a 1 — 1 function on GF(q)
which must be additive since the p-group 1s elementary Abelian. Furthermore, it similarly
follows that d = g(e) where g is a function on GF(gq).

Since the group is commutative, it is direct to verify that we obtain the following condi-
tions on the functions:

gla) +ag(b) +g(b) =g(b)+bf(a)+gla) =gla+b)
and so
bf(a) =af(b)

for all a,b € GF(q).
The second equation implies that f(a) = af for some non-zero element f of GF(q).
Hence,

gla)+gla)+abf =gla+b).

Represent g as follows:
g—1 _
gla) = 2 g;ia forg; € GF(q).
i=0

Let a = b 1n the above equation so that

2g(a) =a’f = g(2a).
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Hence,

2¢,+2g1a+ (282 + fla* + 23;31 _(23f}ﬂf
g2 +2g1a+4ga + 31 (g2))d
foralla € GF(qg).

Hence, we obtain

2o =0, f = 2g,8; = Oforall i > 3.

Hence,

gla) gra+ fa*/2
foralla € GF(q).

Now since H fixes three subplanes, we may choose a basis without alternating the form

1 0 0
for S, so that element of H have the formdiag | 0 v 0 for the order of b dividing
0 0 m(b)
(g—1)/2 and m a function on GF(q).
Since §), is normal then
100 17'[1 oo0][1 0 0]
diag | 0 b 0O af 1 0 0 b 0
0 0 mb) | |[gla a 1 |[0 Omb) ]
M1 0 0]
= diag | b laf 1 0

- m(b)"'g(a) bm(B0"la 1 |

Hence, this implies that

bm(b)~' = b~ and hence m(b) = b°.

This also provides

b~%g(a) = g(b™'a) for all a for all b of order dividing (¢ —1)/2.

Thus, we obtain
A(gra+ fa*)2) = gica+ fcta* )2
so that ¢>g; = gic for all ¢ of order dividing (¢ — 1) /2. Hence, either g = 3 or g; = 0.
Thus, for g > 3, '
We may represent the group Giy,) as follows:

1 0 0
<Diag fa 1 0 ;ﬂEGF(g)).
fa*f2 a 1
1 0 0
<D£ﬂg 0O b 0 |;orderofbdivides [q-l)/2>.
0 0 »

However, two of the 2-dimensional GF (g)-subspaces are subplanes of Ny, and hence are
fixed by the group generated by the homologies. It follows that the third 2-space is then
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fixed. However, this means that the subplane contains the centers and axes of all of the
involutory homologies. That is, the subplane in Ny,. Let Then, since we now have a direct
product of three subplanes lying in the net it is possible to use the Krull-Schmidt to show
all are isomorphic are £-modules where £ is the enveloping algebra of the net so that by
Liebler [19], it follows that the net Ng, is a regulus net. The centralizer within GL(6,q) of

. . ah BhL |
Giz,) is isomorphic to GL(2,g) and has the form < [ L v ] oy — 0P # 0>‘ The group

generated by the homologies commutes with Gi ) and thus, we see that this group is faithful
on .

Theorem 13 Theorem. If a translation plane T of odd order ¢ with spread in PG(5,q)
admits a solvable collineation group G in the linear translation complement which fixes a
subplane T, of order q and acts transitively on the components of T, and transitively on the
components of T — T, then

(1)g=—1 mod4,

(2) the net N defined by the components of T, is a regulus net (corresponds to a regulus
n PG(5,q)),

(3) G is the direct product of two groups F and N such that F fixes m, pointwise and has
order g(q—1)/2, and N has order 2(g* —1).

Furthermore, if g > 3 then bases may be chosen so that the group F has the following
form:

1 0 07 "1 0 0
<d£ﬂg fa 1 0 ><diﬂg 0 b 0 >
fa*/2 a 1 0 0 &

where the order of b divides (g—1)/2 and for all a in GF(q).
The group N acting on T, is faithful and has the following form:

(=10 % Js= 3 &' ])

where g has order g* — 1 and 8, Y in GF (q) and 9 is a non-square in GF(q).
my o omp M3
(4) Let M = | myy my ma3 | and take the component y = xM.

1 0 0
The image of y = xM under FN is
1 0 0 (1 0 0
y=x|| -b7"'fa b7! 0 M| fa b 0
b72fa?)2 —b7la b | fd?/2 ba b |

=xMgp by Giy,) then

y=xMgp ontoy = x(8+Y(£Myp) ' (O + (EMp)).
(3) Hence, the spread is

x = 0,y=xBlLy=x(8+y(EMyp) ' (YO + (EMyp))
forall B,d,y € GF(q).

(6) The spread is a union of a set of g(q — 1) /2 Desarguesian spreads sharing the regulus
net of degree g+ 1.
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Proof. By 3-transitivity choose an involutory homology p with axis y = x such that the group
generated by the homologies is (G,p).
o l+o | . . | @ -1 -0
-0 -—o pms[l—m o ]
The group generated by the homologies has order divisible by 2(g + 1) and contains —/
in the kernel group of order ¢ — 1 and has two orbits of length (¢ + 1)/2 on the infinite points
of 1t,. The order of pc is (g + 1). The centralizer of this element is

(3, % |ssxcora-o)

so this is the field of order g* — 1 where (o.—1)/(0t+1) =67,
mip M2 M3
LetM= | my my» ma3 | and take the component y = xM.
1 0 0
In order to have a spread we need that the group

(o=Lo % o= &' ])>

p has the form [

1 0 0 1 0 0
<d.fag fa 1 0 ><d.iag 0O 6 0 >map5y=xM onto
Cfa*f2 a1 0 0 b
1 0 o 1 [1 0 0 |
y =X —b~lfa b1 0 M| fa b 0
i b=2fa?/2 —b"%a b? ] ! fa*/2 ba b* ]

= xM,p by Gig,) then

y=xM,ponto y = x(d+Y(£M,up) " (Y + (EMap))-
Hence, it suffices to have a spread that

(B+Y(£Map) ™" ) (Y8 + 8(+Map)).

(8+Y(EMap) ™" ) (v +8(xMyp)) +pI,
(8+v(£Map)~ ") (v +8(£Myp)) — M and

M + 1l are all nonsingular.

Note that if M + t/ is nonsingular for all T € GF {g) then

1 0 0 1 0 0
b fa b! 0 (M++l) | fa b 0 | =
 b72fa?/2 —b*a b? | fa*/2 ba b

M, + Ul is nonsingular so that B + 6(+M, ) is nonsingular.

Furthermore, in this latter case, (8 +Y(£Ma5)" ") (yg +8(£M,p)) + pI is nonsingular
unless dp = —yg and yp = —& which is valid if and only if 82 = ¥%g, a contradiction.

Hence, a spread is obtained if and only if

M + 1l and (yg + &(+xM,)) — (8 +y(£M,p))M are nonsingular or identically zero for
all 1,07 € GF(q).

If these two sets are nonsingular or identically zero, a spread is obtained with components

x=0,y=xyl,y =x(8+Y(£(Map) " (Y8 +(EMyp)).

If M+l for all T € GF(g) is non-singular then M has no eigenvalues and since M sat-
isfies its characteristic polynomial of degree 3, it follows that the characteristic polynomial
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is irreducible. Thus, whenever M + 1/ is non-singular for all T € GF(q), then the module
generated by M over GF (q) is a field of order ¢° — 1.

Furthermore, it then also follows that (M, ;, GF(q)) is a field of order ¢° — 1. Note that
the group (x,y) + (x,y) is a collineation of each such spread.

Hence, we have a set of Desarguesian partial spreads

Sap = {y =x(8+Y(EMap) " (Y8 + 8(£Mpp));

8,Y€ GF(q)— {(0,0)} each of degree 2(g+1). O

Remark 14 When q = 3, for example, g(q — 1) /2 = 3 and there is a planar element of order

3 that acts on one (all) of the above Desarguesian spreads. Hence, the Desarguesian plane

of order 3° provides an example of a translation plane that admits the group indicated.
However, we have used GAP to show that there are no possible examples when g = 7.

4 Cubic extensions of order ¢ with arbitrary kernels, g = —1 mod 4

In this section, we assume that the associated translation plane of order ¢° does not admit
affine involutory homologies. In this case, our arguments may be generalized and do not
require an assumption regarding the kernel.

We begin with a fundamental lemma:

Lemma 15 Assume that q is not 3. If G* = G|n,, is a solvable transitive subgroup of TL(2,q)
then any 2-group of G* which fixes a component and which is linear is in the kernel of T,.
Furthermore, the involution is the kernel involution of the superplane.

Proof. First assume that g — 1 has a p-primitive divisor « and let g be an element of order
u. Then we assert that g is linear. Assume that u|r. Then u divides (p*~' - 1,p* —1)
= (p'*~12) — 1) which implies that (x — 1,2r) = 2r since u is p-primitive so that if u|r we
have a contradiction.

Now we assert that < gZ > is normal in GL(2,q)/Z where Z is the center since G*/Z is
a dihedral group of order dividing 2(g+ 1) or A4, or S4. In the latter case u = 3. SInce the 2-
group of G is faithful on 7, it follows that (¢” — 1), is at least 8 so that the group must be Sy.
So, (g+1)/(r,q+ 1) <24 so that the only possibilities are when g = 3, 3%,3% 34,5 5% 7,11,
13, 17,19,23. However, the only survivors of ¥ = 3 and the order of the Sylow 2-subgroup
having order 8 are g =5and g = 11.

Hence, we may assume that G* N GL(2,q) modulo Z is a subgroup of a dihedral group
of order 2(g + 1) and there is a characteristic subgroup of order u. Hence, there is a normal
subgroup < g > Z in G*. Since u does not divide the order of Z then < g > is normal and
characteristic in G* since there cannot be two distinct u-subgroups in a solvable subgroup.
Moreover, G* acts irreducibly on m, and < g > is a cyclic normal subgroup; There is a
kernel involution of the plane which we may assume is G*. Thus, there is a 2-group fixing a
‘component £ of order 4. THe linear 2-group in I'L(1,4*) has order (g> — 1),2 so the 2-groups
stabilizing components have orders 4. Moreover, there is an unique involution which fixes a
component of T, pointwise in I'L(1,4%). The 2-group of the kernel of , has order 2. Hence,
there must be an involution which fixes m, pointwise which does not occur. O
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Theorem 16 Let & be a translation plane of order g¢° which admits a collineation group G
that fixes a subplane m, of order g and is a (q+ 1,q* — q)-transitive group. Assume that there
does not exist involutory homologies with axes in T,,.

If g = —1 mod 4 and q is not 3 then G is nonsolvable.

Furthermore, the subplane is Desarguesian and G|m, contains SL(2,q).

Proof. If the group is nonsolvable acting on 7, then the previous argument shows that the
Hering plane or order 27 does not occur. ,
We note that (g — 1)2 = 2. Assume that G|m, is solvable. If the plane is not Desarguesian
then either g = 9 or the group induced on the subplane is a subgroup of I'L(1,4?). If there
exists a planar p-group S of order ¢ where ¢ = p” then by Foulser [7], the subplane m, is
Desarguesian. Assume that p is not 3. If &, is non-Desarguesian then the p-group fixing 7,
pointwise has order less than or equal \/g. Let p’/' denote the order of the largest possible

proper subfield of GF(g). Then there is a faithful p-group of order at least p"~"/' which
is larger than r,. Hence, there is an elation group of 7, on each axis which generates a
non-solvable group except in the case when p = 3 and SL(2,3) is generated. In this case,
p"~"" > 3r3 so that SL(2,3% > 3) is generated. Thus, in all cases, 7, is Desarguesian.

Now assume that there is not a p-primitive divisor so that ¢ = p and p+ 1 = 2° for some
integer a. It follows that the group induced in PGL(2,4g) is a subgroup of a dihedral group of
order 2(p+1) or 2(p—1) or A4 or S4. We see that (p+ 1)/2 must divide the order of the
group so in the second possibility we can only have 29 = 2 or 4. Hence, p = ¢ = 3. In the
latter two case, (p + 1)/2 must divide 8. Hence, 2% = 2, 4,8 or 16. However, 2 —1 =3 or
7. If g = 3 then (3° — 1), = 8 and there must be an element of order 3 induced. An element
of order 3 on a Desarguesian plane must be an elation so that the group generated is SL(2,3)
which is possible. However, we have excluded the case when g = 3. Assume that g = 7.
Then the order of a Sylow 2-subgroup of G is at least 16. We shall come back to this order.

Hence, the induced group is a subgroup of a dihedral group of order 2(p + 1). Assume
that the intersection with the kernel with the full group is trivial. Hence, there is a dihedral
group of order 2(p+ 1) in G*. Hence, there is an elementary Abelian group of order 4 acting
linearly on a Desarguesian affine plane m, and there are no Baer involutions in G* (Kallaher
and Foulser [8]). Hence, there must also be a kernel intolution in the generated group.

Thus, we must have a kernel involution acting in G* which leads to a contradiction exactly
as previously since there are no involutory homologies.

Now assume that ¢ = 5 or 11 and the induced group in PGL(2, q) is S4. First assume that
(g% — 1) divides the order of G*. When ¢ = 5 then g* — 1 = 24 and this is possible. When
g = 11 then (g*> — 1) = 120 = 5- 24 so perhaps this is possible also.

Since g = 5 is not congruent to —1 mod 4, we are left to consider ¢ = 7 and g = 23.
The only problem arises when where is no kernel involution induced on &, for if a kernel
involution is induced then it must be kernel of the plane and this implies by the transitivity
requirement that there is an extra 2-element which, in turn, implies that there 1s a planar
2-element whose fixed points contains those of 1, which cannot occur.

If ¢ = 7 and there is no kernel involution induced then 16 must divide 24 as the only
solvable such group would necessarily be S4 or As.

If ¢ = 11 and there 1s no kernel involution induced then it 1s possible that S4 1s induced
as a subgroup of m,. However, there is an elementary Abelian subgroup of order 4 which
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contains no Baer involutions so that there must be a generated kernel involution on T,,. L]

5 Final Conclusions

Our results tend to imply that it might be possible to classify the generalized Desarguesian
planes directly by the fact that they are cubic extensions of flag-transitive planes. However, it
may be possible that even order planes of order g° admit S.(1/q). For example, consider the
Liineburg-Tits planes of order 4° admitting S, (h*). If h = 8, we obtain a cubic extension. We
leave open the following problem:

Completely determine the cubic extensions of order ¢> admitting a collineation group
isomorphic to S;(g).

We also now can essentially complete the general theory of solvable extensions when
there are no involutory homologies.

COmbining our general classification result mentioned in the introduction together with
our results on cubic extensions and the results on even order [12], we obtain:

Corollary 17 Let m be a solvable extension of order q",q > 4 of a proper flag-transitive
plane of order q.

If the spread for w is in PG(2n —1,q) and g = 1 mod 4 then T is the Hall plane or order
g° or the derived likeable Walker plane of order 25.

Corollary 18 Let m be a solvable extension of order q",q > 4 of a proper flag-transitive
plane of order q.

If g = —1 mod and © contains no involutory homologies than T is the Hall plane or order
2

g-.

We note that when g = —1, we also have a possibly class of translation planes where we
have completely determined the equations for the components. Furthermore, while there is
at least one example in this class, and GAP shows that no examples are possible when g = 7,
the question of existence for other orders is completely open.
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