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A NOTE ON EMBEDDINGS OF PROJECTIVE SPACES

HIROAKI TANIGUCHI

Abstract. Let Kk and K be commutative fields, and I, m integers with 1 > 1, m > 2. Suppose
that there exists an embedding y of PG(m + 1,k) to PG(m,K), then we have r = dimy K > 4
and m > {%] — 1. Conversely, there exists an embedding W of PG(l + m,k) to PG(m,K) if
m > [%] — land if (1) dimx K =4, or (2) dimg K > 4 and K is a cyclic extension of k with
some additional conditions on [ and r.

1 Introduction

Let k and K be commutative fields and let n and m be integers not less than 2. An embedding
y of an n-dimensional projective space PG(n,k) defined over k into an m-dimensional pro-
jective space PG(m,K) defined over K is a mapping which satisfies the following conditions:

l. yis an injective mapping from PG(n,k) to PG(m,K).
2. Let S be a subset of PG(n, k).

(a) If S C [ for some line [ of PG(n,k), then y(S) C I' for some line /' of PG(m,K),
that is, W maps collinear points to collinear points.

(b) If S ¢ [ for any line [ of PG(n,k), then y(S) ¢ I' for any line I of PG(m,K), that
is, W maps non-collinear points to non-collinear points.

It is well known that if there exists an embedding y of PG(n,k) into PG(m,K), then k is a
subfield of K. The first non-trivial example of an embedding of affine spaces was given by
J. A. Thas [4]. In [1], M. Limbos characterized the embeddings of projective spaces in case
k and K are finite fields, using a projection t : PG(n,K) = PG(m,K).

In this note, we study the conditions on n, m and dimg K for existence of an embedding
of PG(n,k) into PG(m,K).

2 A characterization of embeddings

In this section, we give a characterization of embeddings of projective spaces in Theorem 1
and Theorem 2.

Considering a point in a projective space as an equivalence class of points in a vector
space, we denote by [(x0,X],...,x,)] € PG(n,k) the equivalence class containing a non-zero
element (xo,x),...,x,) of kK"*!. Thus, for a non-zero a € k**!, we denote by [a] € PG(n,k)
the equivalence class containing a.

Theorem 1 is an immediate consequense of Proposition 1 of [3].
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Theorem 1 Let n and m be integers not less than 2, and assume that \f is an embedding of
PG(n,k) into PG(m,K). Then there exists an isomorphism 6 from k into K, and there exists
an (n+ 1) x (m+ 1) marrix B with entries in K, such that \y can be expressed as follows:

W([(x0,x1, -, xa)]) = [(5, %7, x)B]. (%)

Moreover, 8 in (%) is uniquely determined, and B is uniquely determined up to a multipli-
cation of non-zero element of K.

Next, let 8 be an isomorphism from k into K and B an (n+ 1) x (m + 1) matrix with
entries in K. Now, we give a condition that the mapping y defined by y([{xp,x1,-..,X,)]) =
[(x8,xY,...,x9)B] is an embedding in Theorem 2.

We denote by V(ug,uy,...,uy,), or by V{u) for short, the k9-vector subspace of K"/
generated by {ug,uy,...,u,}.

Theorem 2 Let n and m be integers not less than 2. Let © be an isomorphism from K into K,
and B an (n+ 1) x (m+ 1) matrix B with entries in K. We define a mapping v from PG(n,k)
10 PG(m K) by W([(x0,51,..- 32)]) = [0, ... x0)B].

If U is the subset {x € K" |xB = 0} of K*"!, then \ is an embedding if and only if
dimye V(u) > 4 for any non-zero element u = (ug,u,...,u,) € U.

It is easy to see that the mapping y in Theorem 2 is well defined if and only if dimye V (1) >
2 for any non-zero element u = (up, ..., u,) € U. Because, for anon-zero u in U, if dimye V (u)
= 1 then u = Ax® € U for some non-zero A € K and for some non-zero x € k"*!, hence x* € U,
therefore we can not determine y([x]). The converse is easy.

To prove Theorem 2, we need the following lemma. We regard kK"*! ¢ K"*! by the
1somorphism 6 from k into K.

Lemma 3 Assume that the mapping \y in Theorem 2 is well defined. Then \f is an embedding
if and only if U NV = {0} for any 3-dimensional K-vector subspace V of K" spanned by
three elements of K",

Proof. Let x, y and z in k"*! be linearly independent elements over k. Then [x], [y] and []
in PG(n,Kk) are not on any line. Let V be the vector subspace in K"*! spanned by x9, y?
and 2%, If U NV # {0}, then there exist elements A, i and v of K such that not all elements
are zero-and (Ax® + y® +vz%)B = 0. We may assume that A # 0. If we put i = u/k and
Vv =V/A, then we have (x® + u'y® + v z%)B = 0, which implies that [x°B] = [u y®B + v z°B].
Thus we see that y([x]), w([y]) and y([z]) are collinear. Therefore we conclude that y is not
an embedding.

Conversely, assume that y is not an embedding. Then there exist [x], [y] and [z] in
PG(n,K), such that, although [x], [v] and [z] are not on any line, y([x]), Ww([y]) and y([z])
are on a line of PG{m,K). Note that x, y and z are linearly independent over k. We may as-
sume that y([x]) is either on the line y([y])w([z]) with w([y]) # w([z]), or w([x]} = w([y]) =
y([z]). This implies that there exist A, g and v in K such that not all elements are zero and
(A®)B = (uy® +vz®)B. Let V be the K-vector subspace of dimension 3 spanned by x%, y®
and z%. Then we have U NV 3 Ax® — 1n® —vz% £ 0. O
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Proof. [Proof of Theorem 2] We may assume that y is well defined. Now, assume that there
exists a non-zero u € U such that dimye V(1) < 3. Then there exist a, b and ¢ in K, and oy,
B; and y; in k for 0 < i < n, such that u; = a0 + bB? + cf. If we put o = (0g,-..,00),B =
(Bo,---,Bx) and Y= (Yo,--.,¥x), then we have u = a0® + bB® +cy’. Let V. C K"*! be a 3-
dimensional K-vector subspace spanned by three elements of k"*! such that V contains o,
B® and ¥°. Then we have U NV 3 u # 0. Thus we conclude that y is not an embedding by
Lemma 3.

Conversely, assume that y is not an embedding. Then by Lemma 3, there exists a 3
dimensional vector subspace V C K"*! spanned by three elements a., 3 and y of k"*!, such
that U NV # {0}. Hence there exists a non-zero u = a0® + bB® +¢y? € U with a, b and ¢ in
K. Thus we have dimye V (1) < 3, since V(1) C k®a+ k% +k°¢. O

Corollary 4 is a consequense of Theorem 1 and Theorem 2.

Corollary 4 Let y be an embedding of PG(m+ 1,K) into PG(m,K) form > 2 and 1 > 1, and
0 an isomorphism from K into K as in Theorem 1. Then we have dimye K > 4.

3 A numerical bound

As for the relations among n, m and dimye K, we show the following result.

Theorem 5 Let \y be an embedding of PG(m + 1,k) into PG(m,K) for m > 2 and | > 1,
and 8 an isomorphism from K into K as in Theorem 1. Then we have m > i'| — 1, where

) r—3
r = dimye K.

Remark 6 By Corollary 4, we have r > 4.

Proof. Assume that m < [-25] — 1 and that y(PG(m + [,k)) spans PG(m,K) as K-vector
spaces. Let B be the matrix given in the expression (*) of y in Theorem 1. Then rank B =
m+ 1. Hence if we put U = {x € K"™'*!|xB = 0}, then we have dimg U = [, and therefore,
dimge U = rl. Let {e},e,...,e,} be a basis of K over k® and {g1,82,...,8x} a basis of U
over k%, and let us express gy for 1 <k < rl as

6 8
( a k e 41k \
IEIB ﬂﬂ
m14+2.k o D)k
gkz(elr"*:er) . \ . 3
{IH HH )
\ (r=D(m++D)+1k  ** “rim+l+1)k

where a; a2k, - -, 8r(m+14+1) 1 are elements of k. We define k®-vector spaces W; for 1 <i <
r(m+1+1) as

W; = {x181 +x282+ - +xnu8n | xx €K® forl <k <rl

with x1a?| +x2a, +---+xpal,; =01},

where a; 1,a;2,...,a;, are elements of k which appear in the expression of g for 1 < k < rl.
It is obvious that W; C U and dimye W; > dimye U — 1. We define a k®-vector space W' as
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W =W, NWoN---NW,_y NW,_, C U. Then, since m < = 3'; — 1, we have m < - —— ,
which implies (r—3)(m+1+1) <rl—1. Since dimye U = r! 11 is easy to see that there E:{lStS

a m:m Zero elemenl TS 'Hr"F C U. If we express u as u = x1g1 +x282 + - + X121, then, since
X4, ]+xga 2+ 4 x0a? , =0for 1 <i<rl—1,wehave

Ll

/ 0 0
0 e 0
“:(E]:“-:E:‘) B bﬂ 3
g =3 m+I+1)+1 " gr—l}(m+!+])
E) =2}(m+i+1)+1 " b{r—~|}{m+f+l]|
{ Ly(m+i+1)+1 """ b?{m+f+l] )

where b; € kfor (r—3)(m+14+1)+1<j<r(m+1+1). Thus we have u = (ug,uy,...,tpn;)
€ U c K™+ with

Uj-1 "b{r-E}{m+!+l +j€r- 2+b|{r 2)(m+i+1)+€r=1 +b{r D (m+1+1)+

for 1 < j<m+1[1+ 1. Hence dimye V(u) < 3, which contradicts that y is an embedding by
Theorem 2. L]

4 Existence of an embedding in case dim K =4

In this section, we prove that the converse of Theorem 3 is true in case dimye K = 4.

Theorem 7 Let m be an integer not less than 2 and | an integer not less than 1. Let © be an
isomorphism from K into K such that dimye K = 4, and assume that m > 31 — 1. Then there
exists an embedding \ of PG(m + 1,K) into PG(m,K) defined as in Theorem 2.

Note that, if » = dimpe K = 4, then [-25] — 1 =3/-1.

Proof. Let {e1,e2,e3,e4} be a basis of K over k®. For 1 <i< |, let f; be an element of
K"™t*1 defined by

’/ 4i—3 4i—2  4i-1 45 \‘
0 1 0 0 0 0
fi = (ey,ea,e3,e4) | 0O 0 1 0O 0 0
0 0 0 1 0 0

\ 0 0 0 0 I 0 )

Since m > 3/ — 1, we have m+ [+ 1 > 4l, hence we can define f, f>,..., fi. Notice that, for
any non-zero A € K, there exists a 4 x 4 matrix M;; of rank 4 with entries in k? such that

Afi= {51132133134){0: - 0,Mp,,0,...,0).

Therefore, 1t 1s easy to see that f1, f3, ..., f; are linearly independent over K. Let U be
the /-dimensional K-vector subspace of K"*'*! spanned by {fi, f5,...,fi}. Then for any
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non-zero element u of U, it is also easy to see that dimye V(1) = 4. We define an (m+ 1+
1) x (m+ 1) matrix B = (b;;) with b;; € K by U = {x € K™™*!|xB =0} . Then by Theo-
rem 2, the mapping y from PG(m + [,k) to PG(m,K) defined by y([(x0,x1,.-.,Xm+1)]) =
[(xg,xe, .. ,xﬂl_,_f)ﬂ] is an embedding. O

5 Existence of an embedding in case K be a cyclic extension with dimye K > 4

In connection with the converse of Theorem 3 in case dimye K > 4, we prove the following
Theorem 8.

Theorem 8 Let m be an integer not less than 2 and [ an integer not less than 1. Let 0 be an
isomorphism from k into K such that K is a cyclic extension of k®, and that dimoK=r>4
Let my = [25] — 1, and assume that | =t —3 (mod r — 3), where r >t > 3. Then there
exists an embedding y from PG(m + 1,K) into PG(m,K) if one of the following conditions is
satisfied.

1. t=3=00r(2/3)(r—3) <t-—3, and m > my.
2. (1/3)(r=3) <t-=3<(2/3)(r—3), and m > mp+ 1.
3. 0<t—=3<(1/3)(r—23), and m > mg+2.

The following two lemmas are some variations of Theorem 1 of [2]. Thus we omit the
proofs.

Lemma 9 Let {e],e2,...,e,} be a basis of K over kK°. Let 6 be a generator of the Galois
group of K overk®, and let s > 1. We define a mapping y from PG(rs —1,k) to PG(3s—1,K)
as follows:

W([(x]y ey XX, X, xl, X))

= [({I; ,ﬂ?,ﬂ?ﬂ ,ﬂz,ﬂg;ﬂgz:- ree 1a3‘rasﬁiﬂ.?2)]i

where a; = (x] )Oey 4+ ( ,-)E'e,,ﬁmr 1 <i<s. Then W is an embedding.

Lemma 10 We assume the same conditions of Lemma 9. Lett be 4 <t < rand s > 0. If we
define a mapping y from PG(rs+t — 1,K) to PG(3s+2,K) as

W([(x, - ,xr,xé, R 1% --zax;,, XXy 1o Xy )])

— g O G ) 4]
—-[(ﬂ],ﬂl,ﬂl 1a23a21ag yeeeylsy g dg !as+]5ﬂ3+]:ﬂ3+1)]:

where a; = (x})% + -+ (x])%, for 1 < i< s, and asiy = (x),,) %1+ + (¥, )%, then
W is an embedding.

Lemma 11 If there exists an embedding W of PG(mg + 1,k) into PG(mg,K), then, for any
m 2> my, there exists an embedding lp" of PG(m+ 1K) into PG(m,K).

Proof. By Theorem 1, there exists an isomorphism 8 from k into K and an (mg+1{+ 1) x
(mo+ 1) matrix B = (b;;) with b;; € K, such that y can be expressed as: Y([(x0,x1,- -, Xmg+1)])
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= [(xg,x?,“.,xsmH)B]. If we put U = {x € K™0**1|xB = 0}, then, by Theorem 2, we
have dimye V(1) > 4 for any non-zero element u € U. Let E be the identity matrix of or-

1 0

der m —my, i.e., E = ,and let B be the (m+ [+ 1) X (m+ 1) matrix defined
0 1

by B = ( ﬁ g ) Let U' = {x € K"*"*!|xB' = 0}. Then we have a k®-isomorphism

U ~U', and hence, for any non-zero element 4 € U, we have dimye V(') > 4. Thus, by The-
orem 2, the mapping  from PG(m + 1K) to PG(m,K) defined by W ([(x0, X1, . .., Xms1)]) =
[(x8,49,... ,xEHE}B’] is an embedding. O

Proof. [Proof of Theorem 8] Since / = s(r —3) +1 — 3 for some s > 0, we have mg+[+1 =
rs+1t+ [@] —3andmp+1=3s+ fjf:;]].
(1) The case thatt —3 =0o0r (2/3)(r—3) <t—3.

If (2/3)(r —3) <t -3, then we have r > > 3 and hence [%1 = 3. Thus, we have

mo+Il=rs+t—1and myp =35+ 2. If t — 3 =0, then we have [%1 = (J, which induces

that mo+ 1 =rs—1 and mg = 3s — 1. Note that, if t =3 =0, then s > 1 by [ > 1. Hence,
by Lemma 10 and Lemma 9, there exists an embedding y of PG(mg + [, k) into PG(my,K).
Therefore, by Lemma 11, m > mg = ;%1 — 1 implies that there exists an embedding qu of
PG(m+1,K) into PG(m,K).

(2) The case that (1/3)(r—3) <t -3 < (2/3)(r—23).

In this case, we have [ﬂr’%] = 2, and therefore mp+1+1=rs+t—1landmp+ 1 =35+ 2.
Consequently, by Lemma 10, there exists an embedding y of PG(my+ 1+1,Kk) into PG(mg +
,K), and hence by Lemma 11, if m > mg+1 = f;%—], there exists an embedding W of
PG(m+1,k) into PG(m,K).

(3) The case that 0 <r—3 < (1/3)(r—3).

In this case, we have f—g-g—_:;—l] = |, which implies that mp+2+[ =rs+t— 1l and my+2 =35+
2. Hence by Lemma 10, there exists an embedding v : PG(mo + 2+ {,kK) = PG(my + 2,K),
and therefore, by Lemma 11, if m > mp+2 = [%1 + 1, there exists an embedding !.|,lfr of
PG(m+ [,k) into PG(m,K). Thus we complete the proof of Theorem 8. O

In relation to the above results, the author conjectures that there always exists an embed-
ding ¥ of PG(m + ,k) into PG(m,K) if m > [%1 — 1 and if K is a cyclic extension of k®
with dimkﬂ K >4.
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