A NOTE ON EMBEDDINGS OF PROJECTIVE SPACES

HIROAKI TANIGUCHI

Abstract. Let **k** and **K** be commutative fields, and l, m integers with $l \ge 1$, $m \ge 2$. Suppose that there exists an embedding ψ of $PG(m+l,\mathbf{k})$ to $PG(m,\mathbf{K})$, then we have $r = \dim_{\mathbf{k}} \mathbf{K} \ge 4$ and $m \ge \lceil \frac{3l}{r-3} \rceil - 1$. Conversely, there exists an embedding ψ of $PG(l+m,\mathbf{k})$ to $PG(m,\mathbf{K})$ if $m \ge \lceil \frac{3l}{r-3} \rceil - 1$ and if (1) $\dim_{\mathbf{k}} \mathbf{K} = 4$, or (2) $\dim_{\mathbf{k}} \mathbf{K} > 4$ and \mathbf{K} is a cyclic extension of \mathbf{k} with some additional conditions on l and r.

1 Introduction

Let k and K be commutative fields and let n and m be integers not less than 2. An embedding ψ of an n-dimensional projective space PG(n, k) defined over k into an m-dimensional projective space PG(m, K) defined over K is a mapping which satisfies the following conditions:

- 1. ψ is an injective mapping from $PG(n, \mathbf{k})$ to $PG(m, \mathbf{K})$.
- 2. Let S be a subset of $PG(n, \mathbf{k})$.
 - (a) If $S \subset l$ for some line l of $PG(n, \mathbf{k})$, then $\psi(S) \subset l'$ for some line l' of $PG(m, \mathbf{K})$, that is, ψ maps collinear points to collinear points.
 - (b) If $S \not\subset l$ for any line l of $PG(n, \mathbf{k})$, then $\psi(S) \not\subset l'$ for any line l' of $PG(m, \mathbf{K})$, that is, ψ maps non-collinear points to non-collinear points.

It is well known that if there exists an embedding ψ of $PG(n, \mathbf{k})$ into $PG(m, \mathbf{K})$, then \mathbf{k} is a subfield of \mathbf{K} . The first non-trivial example of an embedding of affine spaces was given by J. A. Thas [4]. In [1], M. Limbos characterized the embeddings of projective spaces in case \mathbf{k} and \mathbf{K} are finite fields, using a projection $\pi: PG(n, \mathbf{K}) \to PG(m, \mathbf{K})$.

In this note, we study the conditions on n, m and $\dim_{\mathbf{k}} \mathbf{K}$ for existence of an embedding of $PG(n, \mathbf{k})$ into $PG(m, \mathbf{K})$.

2 A characterization of embeddings

In this section, we give a characterization of embeddings of projective spaces in Theorem 1 and Theorem 2.

Considering a point in a projective space as an equivalence class of points in a vector space, we denote by $[(x_0, x_1, ..., x_n)] \in PG(n, \mathbf{k})$ the equivalence class containing a non-zero element $(x_0, x_1, ..., x_n)$ of \mathbf{k}^{n+1} . Thus, for a non-zero $a \in \mathbf{k}^{n+1}$, we denote by $[a] \in PG(n, \mathbf{k})$ the equivalence class containing a.

Theorem 1 is an immediate consequense of Proposition 1 of [3].

286 Hiroaki Taniguchi

Theorem 1 Let n and m be integers not less than 2, and assume that ψ is an embedding of $PG(n, \mathbf{k})$ into $PG(m, \mathbf{K})$. Then there exists an isomorphism θ from \mathbf{k} into \mathbf{K} , and there exists an $(n+1) \times (m+1)$ matrix B with entries in \mathbf{K} , such that ψ can be expressed as follows:

$$\Psi([(x_0, x_1, \dots, x_n)]) = [(x_0^{\theta}, x_1^{\theta}, \dots, x_n^{\theta})B]. \tag{*}$$

Moreover, θ in (*) is uniquely determined, and B is uniquely determined up to a multiplication of non-zero element of K.

Next, let θ be an isomorphism from **k** into **K** and B an $(n+1) \times (m+1)$ matrix with entries in **K**. Now, we give a condition that the mapping ψ defined by $\psi([(x_0, x_1, \dots, x_n)]) = [(x_0^{\theta}, x_1^{\theta}, \dots, x_n^{\theta})B]$ is an embedding in Theorem 2.

We denote by $V(u_0, u_1, ..., u_n)$, or by V(u) for short, the \mathbf{k}^{θ} -vector subspace of \mathbf{K}^{n+1} generated by $\{u_0, u_1, ..., u_n\}$.

Theorem 2 Let n and m be integers not less than 2. Let θ be an isomorphism from \mathbf{k} into \mathbf{K} , and B an $(n+1) \times (m+1)$ matrix B with entries in \mathbf{K} . We define a mapping $\mathbf{\psi}$ from $PG(n,\mathbf{k})$ to $PG(m,\mathbf{K})$ by $\mathbf{\psi}([(x_0,x_1,\ldots,x_n)])=[(x_0^0,x_1^0,\ldots,x_n^0)B]$.

If U is the subset $\{x \in \mathbf{K}^{n+1} | xB = \mathbf{0}\}$ of \mathbf{K}^{n+1} , then ψ is an embedding if and only if $\dim_{\mathbf{k}^0} V(u) \geq 4$ for any non-zero element $u = (u_0, u_1, \dots, u_n) \in U$.

It is easy to see that the mapping ψ in Theorem 2 is well defined if and only if $\dim_{\mathbf{k}^{\theta}} V(u) \ge 2$ for any non-zero element $u = (u_0, \dots, u_n) \in U$. Because, for a non-zero u in U, if $\dim_{\mathbf{k}^{\theta}} V(u) = 1$ then $u = \lambda x^{\theta} \in U$ for some non-zero $\lambda \in \mathbf{K}$ and for some non-zero $x \in \mathbf{k}^{n+1}$, hence $x^{\theta} \in U$, therefore we can not determine $\psi([x])$. The converse is easy.

To prove Theorem 2, we need the following lemma. We regard $\mathbf{k}^{n+1} \subset \mathbf{K}^{n+1}$ by the isomorphism θ from \mathbf{k} into \mathbf{K} .

Lemma 3 Assume that the mapping ψ in Theorem 2 is well defined. Then ψ is an embedding if and only if $U \cap V = \{0\}$ for any 3-dimensional **K**-vector subspace V of \mathbf{K}^{n+1} spanned by three elements of \mathbf{k}^{n+1} .

Proof. Let x, y and z in \mathbf{k}^{n+1} be linearly independent elements over \mathbf{k} . Then [x], [y] and [z] in $PG(n,\mathbf{k})$ are not on any line. Let V be the vector subspace in \mathbf{K}^{n+1} spanned by x^{θ} , y^{θ} and z^{θ} . If $U \cap V \neq \{0\}$, then there exist elements λ , μ and ν of \mathbf{K} such that not all elements are zero and $(\lambda x^{\theta} + \mu y^{\theta} + \nu z^{\theta})B = 0$. We may assume that $\lambda \neq 0$. If we put $\mu' = \mu/\lambda$ and $\nu' = \nu/\lambda$, then we have $(x^{\theta} + \mu' y^{\theta} + \nu' z^{\theta})B = 0$, which implies that $[x^{\theta}B] = [\mu' y^{\theta}B + \nu' z^{\theta}B]$. Thus we see that $\psi([x])$, $\psi([y])$ and $\psi([z])$ are collinear. Therefore we conclude that ψ is not an embedding.

Conversely, assume that ψ is not an embedding. Then there exist [x], [y] and [z] in $PG(n, \mathbf{k})$, such that, although [x], [y] and [z] are not on any line, $\psi([x])$, $\psi([y])$ and $\psi([z])$ are on a line of $PG(m, \mathbf{K})$. Note that \underline{x} , \underline{y} and \underline{z} are linearly independent over \mathbf{k} . We may assume that $\psi([x])$ is either on the line $\psi([y])\psi([z])$ with $\psi([y]) \neq \psi([z])$, or $\psi([x]) = \psi([y]) = \psi([z])$. This implies that there exist λ , μ and ν in \mathbf{K} such that not all elements are zero and $(\lambda x^{\theta})B = (\mu y^{\theta} + \nu z^{\theta})B$. Let V be the \mathbf{K} -vector subspace of dimension 3 spanned by x^{θ} , y^{θ} and z^{θ} . Then we have $U \cap V \ni \lambda x^{\theta} - \mu y^{\theta} - \nu z^{\theta} \neq 0$.

Proof. [Proof of Theorem 2] We may assume that ψ is well defined. Now, assume that there exists a non-zero $u \in U$ such that $\dim_{\mathbf{k}^{\theta}} V(u) \leq 3$. Then there exist a, b and c in \mathbf{K} , and α_i , β_i and γ_i in \mathbf{k} for $0 \leq i \leq n$, such that $u_i = a\alpha_i^{\theta} + b\beta_i^{\theta} + c\gamma_i^{\theta}$. If we put $\alpha = (\alpha_0, \dots, \alpha_n), \beta = (\beta_0, \dots, \beta_n)$ and $\gamma = (\gamma_0, \dots, \gamma_n)$, then we have $u = a\alpha^{\theta} + b\beta^{\theta} + c\gamma^{\theta}$. Let $V \subset \mathbf{K}^{n+1}$ be a 3-dimensional \mathbf{K} -vector subspace spanned by three elements of \mathbf{k}^{n+1} such that V contains α^{θ} , β^{θ} and γ^{θ} . Then we have $U \cap V \ni u \neq 0$. Thus we conclude that ψ is not an embedding by Lemma 3.

Conversely, assume that ψ is not an embedding. Then by Lemma 3, there exists a 3 dimensional vector subspace $V \subset \mathbf{K}^{n+1}$ spanned by three elements α , β and γ of \mathbf{k}^{n+1} , such that $U \cap V \neq \{0\}$. Hence there exists a non-zero $u = a\alpha^{\theta} + b\beta^{\theta} + c\gamma^{\theta} \in U$ with a, b and c in \mathbf{K} . Thus we have $\dim_{\mathbf{k}^{\theta}} V(u) \leq 3$, since $V(u) \subset \mathbf{k}^{\theta}a + \mathbf{k}^{\theta}b + \mathbf{k}^{\theta}c$.

Corollary 4 is a consequense of Theorem 1 and Theorem 2.

Corollary 4 Let ψ be an embedding of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$ for $m \geq 2$ and $l \geq 1$, and θ an isomorphism from \mathbf{k} into \mathbf{K} as in Theorem 1. Then we have $\dim_{\mathbf{k}^{\theta}} \mathbf{K} \geq 4$.

3 A numerical bound

As for the relations among n, m and $\dim_{\mathbf{k}^{\theta}} \mathbf{K}$, we show the following result.

Theorem 5 Let ψ be an embedding of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$ for $m \geq 2$ and $l \geq 1$, and θ an isomorphism from \mathbf{k} into \mathbf{K} as in Theorem 1. Then we have $m \geq \lceil \frac{3l}{r-3} \rceil - 1$, where $r = \dim_{\mathbf{k}^{\theta}} \mathbf{K}$.

Remark 6 By Corollary 4, we have $r \ge 4$.

Proof. Assume that $m < \lceil \frac{3l}{r-3} \rceil - 1$ and that $\psi(PG(m+l,\mathbf{k}))$ spans $PG(m,\mathbf{K})$ as **K**-vector spaces. Let B be the matrix given in the expression (*) of ψ in Theorem 1. Then rank B = m+1. Hence if we put $U = \{x \in \mathbf{K}^{m+l+1} | xB = \mathbf{0}\}$, then we have $\dim_{\mathbf{K}} U = l$, and therefore, $\dim_{\mathbf{k}^{\theta}} U = rl$. Let $\{e_1, e_2, \ldots, e_r\}$ be a basis of \mathbf{K} over \mathbf{k}^{θ} and $\{g_1, g_2, \ldots, g_{rl}\}$ a basis of U over \mathbf{k}^{θ} , and let us express g_k for $1 \le k \le rl$ as

$$g_{k} = (e_{1}, \dots, e_{r}) \begin{pmatrix} a_{1,k}^{\theta} & \dots & a_{m+l+1,k}^{\theta} \\ a_{m+l+2,k}^{\theta} & \dots & a_{2(m+l+1),k}^{\theta} \\ \vdots & \ddots & \vdots \\ a_{(r-1)(m+l+1)+1,k}^{\theta} & \dots & a_{r(m+l+1),k}^{\theta} \end{pmatrix},$$

where $a_{1,k}, a_{2,k}, \ldots, a_{r(m+l+1),k}$ are elements of **k**. We define \mathbf{k}^{θ} -vector spaces W_i for $1 \le i \le r(m+l+1)$ as

$$W_{i} = \{ x_{1}g_{1} + x_{2}g_{2} + \dots + x_{rl}g_{rl} \mid x_{k} \in \mathbf{k}^{\theta} \text{ for } 1 \leq k \leq rl \\ \text{with } x_{1}a_{i,1}^{\theta} + x_{2}a_{i,2}^{\theta} + \dots + x_{rl}a_{i,rl}^{\theta} = 0 \},$$

where $a_{i,1}, a_{i,2}, \ldots, a_{i,rl}$ are elements of **k** which appear in the expression of g_k for $1 \le k \le rl$. It is obvious that $W_i \subset U$ and $\dim_{\mathbf{k}^{\theta}} W_i \ge \dim_{\mathbf{k}^{\theta}} U - 1$. We define a \mathbf{k}^{θ} -vector space W' as $W' = W_1 \cap W_2 \cap \cdots \cap W_{rl-2} \cap W_{rl-1} \subset U$. Then, since $m < \lceil \frac{3l}{r-3} \rceil - 1$, we have $m < \frac{3l}{r-3} - 1$, which implies $(r-3)(m+l+1) \le rl-1$. Since $\dim_{\mathbf{k}^0} U = rl$, it is easy to see that there exists a non-zero element $u \in W' \subset U$. If we express u as $u = x_1g_1 + x_2g_2 + \cdots + x_{rl}g_{rl}$, then, since $x_1a_{i,1}^0 + x_2a_{i,2}^0 + \cdots + x_{rl}a_{i,rl}^0 = 0$ for $1 \le i \le rl-1$, we have

$$u = (e_1, \dots, e_r) \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \\ b_{(r-3)(m+l+1)+1}^{\theta} & \dots & b_{(r-2)(m+l+1)}^{\theta} \\ b_{(r-2)(m+l+1)+1}^{\theta} & \dots & b_{(r-1)(m+l+1)}^{\theta} \\ b_{(r-1)(m+l+1)+1}^{\theta} & \dots & b_{r(m+l+1)}^{\theta} \end{pmatrix},$$

where $b_j \in \mathbf{k}$ for $(r-3)(m+l+1)+1 \le j \le r(m+l+1)$. Thus we have $u = (u_0, u_1, \dots, u_{m+l}) \in U \subset \mathbf{K}^{m+l+1}$ with

$$u_{j-1} = b^{\theta}_{(r-3)(m+l+1)+j} e_{r-2} + b^{\theta}_{(r-2)(m+l+1)+j} e_{r-1} + b^{\theta}_{(r-1)(m+l+1)+j} e_r$$

for $1 \le j \le m+l+1$. Hence $\dim_{\mathbf{k}^{\theta}} V(u) \le 3$, which contradicts that ψ is an embedding by Theorem 2.

4 Existence of an embedding in case $\dim_{\mathbf{k}^0} \mathbf{K} = 4$

In this section, we prove that the converse of Theorem 3 is true in case $\dim_{\mathbf{k}^{\theta}} \mathbf{K} = 4$.

Theorem 7 Let m be an integer not less than 2 and l an integer not less than 1. Let θ be an isomorphism from \mathbf{k} into \mathbf{K} such that $\dim_{\mathbf{k}^{\theta}} \mathbf{K} = 4$, and assume that $m \geq 3l - 1$. Then there exists an embedding $\mathbf{\psi}$ of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$ defined as in Theorem 2.

Note that, if $r = \dim_{\mathbf{k}^{\theta}} \mathbf{K} = 4$, then $\lceil \frac{3l}{r-3} \rceil - 1 = 3l - 1$.

Proof. Let $\{e_1, e_2, e_3, e_4\}$ be a basis of **K** over \mathbf{k}^{θ} . For $1 \le i \le l$, let f_i be an element of \mathbf{K}^{m+l+1} defined by

Since $m \ge 3l - 1$, we have $m + l + 1 \ge 4l$, hence we can define f_1, f_2, \dots, f_l . Notice that, for any non-zero $\lambda \in \mathbf{K}$, there exists a 4×4 matrix $M_{i\lambda}$ of rank 4 with entries in \mathbf{k}^{θ} such that

$$\lambda f_i = (e_1, e_2, e_3, e_4)(0, \dots, 0, M_{i\lambda}, 0, \dots, 0).$$

Therefore, it is easy to see that $f_1, f_2, ..., f_l$ are linearly independent over **K**. Let U be the l-dimensional **K**-vector subspace of \mathbf{K}^{m+l+1} spanned by $\{f_1, f_2, ..., f_l\}$. Then for any

non-zero element u of U, it is also easy to see that $\dim_{\mathbf{k}^{\theta}} V(u) = 4$. We define an $(m+l+1) \times (m+1)$ matrix $B = (b_{ij})$ with $b_{ij} \in \mathbf{K}$ by $U = \{x \in \mathbf{K}^{m+l+1} | xB = \mathbf{0}\}$. Then by Theorem 2, the mapping ψ from $PG(m+l,\mathbf{k})$ to $PG(m,\mathbf{K})$ defined by $\psi([(x_0,x_1,\ldots,x_{m+l})]) = [(x_0^{\theta},x_1^{\theta},\ldots,x_{m+l}^{\theta})B]$ is an embedding. \square

5 Existence of an embedding in case K be a cyclic extension with $\dim_{\mathbf{k}^{\theta}} \mathbf{K} > 4$

In connection with the converse of Theorem 3 in case $\dim_{\mathbf{k}^{\theta}} \mathbf{K} > 4$, we prove the following Theorem 8.

Theorem 8 Let m be an integer not less than 2 and l an integer not less than 1. Let θ be an isomorphism from \mathbf{k} into \mathbf{K} such that \mathbf{K} is a cyclic extension of \mathbf{k}^{θ} , and that $\dim_{\mathbf{k}^{\theta}} \mathbf{K} = r > 4$. Let $m_0 = \lceil \frac{3l}{r-3} \rceil - 1$, and assume that $l \equiv t-3 \pmod{r-3}$, where $r > t \geq 3$. Then there exists an embedding $\mathbf{\psi}$ from $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$ if one of the following conditions is satisfied.

- 1. t-3=0 or (2/3)(r-3) < t-3, and $m \ge m_0$.
- 2. $(1/3)(r-3) < t-3 \le (2/3)(r-3)$, and $m \ge m_0 + 1$.
- 3. $0 < t 3 \le (1/3)(r 3)$, and $m \ge m_0 + 2$.

The following two lemmas are some variations of Theorem 1 of [2]. Thus we omit the proofs.

Lemma 9 Let $\{e_1, e_2, \dots, e_r\}$ be a basis of \mathbf{K} over \mathbf{k}^{θ} . Let σ be a generator of the Galois group of \mathbf{K} over \mathbf{k}^{θ} , and let $s \geq 1$. We define a mapping ψ from $PG(rs-1,\mathbf{k})$ to $PG(3s-1,\mathbf{K})$ as follows:

$$\Psi([(x_1^1, \dots, x_1^r, x_2^1, \dots, x_2^r, \dots, x_s^1, \dots, x_s^r)])
= [(a_1, a_1^{\sigma}, a_1^{\sigma^2}, a_2, a_2^{\sigma}, a_2^{\sigma^2}, \dots, a_s, a_s^{\sigma}, a_s^{\sigma^2})],$$

where $a_i = (x_i^1)^{\theta} e_1 + \dots + (x_i^r)^{\theta} e_r$ for $1 \le i \le s$. Then ψ is an embedding.

Lemma 10 We assume the same conditions of Lemma 9. Let t be $4 \le t < r$ and $s \ge 0$. If we define a mapping ψ from $PG(rs + t - 1, \mathbf{k})$ to $PG(3s + 2, \mathbf{K})$ as

$$\psi([(x_1^1,\ldots,x_1^r,x_2^1,\ldots,x_2^r,\ldots,x_s^1,\ldots,x_s^r,x_{s+1}^1,\ldots,x_{s+1}^r)])
= [(a_1,a_1^{\sigma},a_1^{\sigma^2},a_2,a_2^{\sigma},a_2^{\sigma^2},\ldots,a_s,a_s^{\sigma},a_s^{\sigma^2},a_{s+1},a_{s+1}^{\sigma},a_{s+1}^{\sigma^2})],$$

where $a_i = (x_i^1)^{\theta} e_1 + \dots + (x_i^r)^{\theta} e_r$ for $1 \le i \le s$, and $a_{s+1} = (x_{s+1}^1)^{\theta} e_1 + \dots + (x_{s+1}^r)^{\theta} e_t$, then ψ is an embedding.

Lemma 11 If there exists an embedding ψ of $PG(m_0 + l, \mathbf{k})$ into $PG(m_0, \mathbf{K})$, then, for any $m \ge m_0$, there exists an embedding ψ' of $PG(m+l, \mathbf{k})$ into $PG(m, \mathbf{K})$.

Proof. By Theorem 1, there exists an isomorphism θ from \mathbf{k} into \mathbf{K} and an $(m_0 + l + 1) \times (m_0 + 1)$ matrix $B = (b_{ij})$ with $b_{ij} \in \mathbf{K}$, such that ψ can be expressed as: $\psi([(x_0, x_1, \dots, x_{m_0+l})])$

290 Hiroaki Taniguchi

 $=[(x_0^\theta,x_1^\theta,\ldots,x_{m_0+l}^\theta)B]$. If we put $U=\{x\in \mathbf{K}^{m_0+l+1}|xB=\mathbf{0}\}$, then, by Theorem 2, we have $\dim_{\mathbf{k}^\theta}V(u)\geq 4$ for any non-zero element $u\in U$. Let E be the identity matrix of or-

der
$$m - m_0$$
, i.e., $E = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}$, and let B' be the $(m+l+1) \times (m+1)$ matrix defined

by $B' = \begin{pmatrix} B & \mathbf{0} \\ \mathbf{0} & E \end{pmatrix}$. Let $U' = \{x \in \mathbf{K}^{n+m+1} | xB' = \mathbf{0}\}$. Then we have a \mathbf{k}^{θ} -isomorphism

 $U \simeq U'$, and hence, for any non-zero element $u' \in U'$, we have $\dim_{\mathbf{k}^{\theta}} V(u') \geq 4$. Thus, by Theorem 2, the mapping ψ' from $PG(m+l,\mathbf{k})$ to $PG(m,\mathbf{K})$ defined by $\psi'([(x_0,x_1,\ldots,x_{m+l})]) = [(x_0^{\theta},x_1^{\theta},\ldots,x_{m+l}^{\theta})B']$ is an embedding.

Proof. [Proof of Theorem 8] Since l = s(r-3) + t - 3 for some $s \ge 0$, we have $m_0 + l + 1 = rs + t + \lceil \frac{3(t-3)}{r-3} \rceil - 3$ and $m_0 + 1 = 3s + \lceil \frac{3(t-3)}{r-3} \rceil$.

(1) The case that t - 3 = 0 or (2/3)(r - 3) < t - 3.

If (2/3)(r-3) < t-3, then we have r > t > 3 and hence $\lceil \frac{3(t-3)}{r-3} \rceil = 3$. Thus, we have $m_0 + l = rs + t - 1$ and $m_0 = 3s + 2$. If t - 3 = 0, then we have $\lceil \frac{3(t-3)}{r-3} \rceil = 0$, which induces that $m_0 + l = rs - 1$ and $m_0 = 3s - 1$. Note that, if t - 3 = 0, then $s \ge 1$ by $l \ge 1$. Hence, by Lemma 10 and Lemma 9, there exists an embedding ψ of $PG(m_0 + l, \mathbf{k})$ into $PG(m_0, \mathbf{K})$. Therefore, by Lemma 11, $m \ge m_0 = \lceil \frac{3l}{r-3} \rceil - 1$ implies that there exists an embedding ψ' of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$.

(2) The case that $(1/3)(r-3) < t-3 \le (2/3)(r-3)$.

In this case, we have $\lceil \frac{3(t-3)}{r-3} \rceil = 2$, and therefore $m_0 + l + 1 = rs + t - 1$ and $m_0 + 1 = 3s + 2$. Consequently, by Lemma 10, there exists an embedding ψ of $PG(m_0 + 1 + l, \mathbf{k})$ into $PG(m_0 + 1, \mathbf{k})$, and hence by Lemma 11, if $m \ge m_0 + 1 = \lceil \frac{3l}{r-3} \rceil$, there exists an embedding ψ' of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$.

(3) The case that $0 < t - 3 \le (1/3)(r - 3)$.

In this case, we have $\lceil \frac{3(t-3)}{r-3} \rceil = 1$, which implies that $m_0 + 2 + l = rs + t - 1$ and $m_0 + 2 = 3s + 2$. Hence by Lemma 10, there exists an embedding $\psi : PG(m_0 + 2 + l, \mathbf{k}) \to PG(m_0 + 2, \mathbf{K})$, and therefore, by Lemma 11, if $m \ge m_0 + 2 = \lceil \frac{3l}{r-3} \rceil + 1$, there exists an embedding ψ' of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$. Thus we complete the proof of Theorem 8.

In relation to the above results, the author conjectures that there always exists an embedding ψ of $PG(m+l,\mathbf{k})$ into $PG(m,\mathbf{K})$ if $m \ge \lceil \frac{3l}{r-3} \rceil - 1$ and if \mathbf{K} is a cyclic extension of \mathbf{k}^{θ} with $\dim_{\mathbf{k}^{\theta}} \mathbf{K} > 4$.

References

- [1] Limbos, M.: "A characterization of the embeddings of PG(m,q) into $PG(n,q^r)$ ", Journal of Geometry, Vol. 16 (1981), 50–55.
- [2] Taniguchi, H.: "On embeddings of projective spaces", Utilitas Mathematica, Vol.54 (1998), 25–31
- [3] Taniguchi, H.: "On the embedding of an affine space into a projective space", Geometriae Dedicata, Vol. 80 (2000), 99–123
- [4] Thas, J. A.: "Connection between the n-dimensional affine space $A_{n,q}$ and the curve C, with equation $y = x^q$, of the affine plane A_{2,q^n} ", Rend. ist. di Matem. Univ. di Trieste, Vol. II, fasc. II (1970), 146–151.

Received September 29, 1998 and in revised form September 9, 1999 HIROAKI TANIGUCHI 72-3-202, Kounami Wakayama City 649-6315 JAPAN

E-mail address: NBF03137@nifty.ne.jp