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THE LINEAR NATURAL OPERATORS LIFTING 2-VECTOR FIELDS TO SOME
WEIL BUNDLLES

WELODZIMIERZ M. MIKULSKI

Abstract. All linear naiural operators lifting 2-vector fields to some product preserving
bundle functors are classified.
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0. Let £ A — 7 M be a product preserving bundle functor and let A = F(R) be its
Weil algebra, [4]. We assume the following property.

(0.1) There exist a basis ag.....a; € A and elements by. . ... b & A such that:

()a,b, € A\ spaniay,.... aipptorv=20..... k.

(i) ayb, € spaniap....a; [ foru# v =0.... .k

For example. the tangent bundle functor 7% of order k satisfies (0.1) for a, = jyt'. b, =
Jott VU IE Fyand By satisfy (0.1) for (af b)) and (a7,.b7,). then so does Fy o F> for (a), ®
a; bl xb; ). (FloF(R) = F (R} & F>(R). see [4])

~In this short note we prove that if # > 2 and F satisfies (0.1), then the vector space of all

linear natural operators T AT 5, ~= (T AT)F lifting 2-vector tields from n-manifolds to £ in
the sense of [4]. has dimension dim(F{R}). Moreover, we construct explicitly all elements
from this vector space.

Thus this note is a next contribution to the theory of natural operators in differential
geometry. [4].

Troughout this note the usual coordinates on R" are denoted by vl and 0 =
P=1.....n.

All manifolds and maps are assumed to be of class €.

1. The crucial point in our consideration is the following lemma.

Lemma | Under the assumption (0.1) the vector space of all linear natural operators T /\
Ty, ~= (T NT)F has dimension < dim(F(R}).

Proof. Let L : T'AT 5 ~~ (T AT)F be alinear natural operator. Let ag. . ... a; and bg.....b;
be as in (0.1). Assume that n > 2.
At first we prove that there exist the real numbers A, € R such that

Lldy Ndy) = Z ;*-".J[“.a'l']ﬂwﬂaljﬂr'. (1.1)

=0



214 Wiodzimier M. Mikulski

where for a given a € A the operation () is the (a)-lift of vector fields to F in the sense of
[1].

For proving this we write L(d| Ad2) = ZBy; ) (j) aE“"} hajﬂ"} for some uniquely de-
termined smooth functions B(; ) (;,) : #(R") = R, where the sum is over all (i,u), (j,v) €
{1,....n} x{0,....k} with (i,) < (j.v). (The 8% fori=1,...nand u=0, ...k form a
basis of vector fields on F(R"), see [1]). By the linearity and the naturality of £ with re-
spect to the homotheties tidgn, t # 0, we get L(d) Ady) = Z By; ) (j.v) © }mﬂmaﬂ""} A 85,-”"}.
Then By; ) (;,) are constants. Next, by the naturality with respect to the diffeomorphisms
(x!x%, 17, ....0x"), t # 0, we deduce B =0ifie{3,.. n} or j € {3,...,n}. Finally,
by the Il&tl.ll'ﬂlltj" with respect to the diffeomorphisms (rx!,x*,...,x") (or (x', .i,'u:t:2 X0 X)),
1 # 0, we deduce By ) (1) =0 (or Ba ) 2.,) = 0), as well.

Next, we prove that for any ¢ € A

[
Y Ay nd™ =o. (1.2)

pv=0

We can assume that ¢ # 0. Let cg = ¢, ¢),...,cx € A be a basis of A. Let ¢j,...,c; be the
dual basis. In [ 1] we proved that (x'9,)l%) = E;B:D(Il )(ep) ag‘ff’““} forany u =0, ...k, where
()™ is the (A)-lift of functions to F for a linear map A : A — R. Since [9] +x'9,,0,] =0

‘there exists a diffeomorphism 1 : R” — R” such that 1,0 = d; +x'd> and 1,0 = d> near 0.
Now, applying (1.1) and the invariancy of £ with respect to 1, we have

LOIAR) = L@ +x'02) Ad) = XE o Aw(dr +x'92) %) Ao =
= LO1AR)+TE oo Aw(x!) PP ASS

i.e. Ef:._v,p:ﬂ Ay (x! ){Cﬁagﬂ“ ) A 8{;"} = () over some neighbourhood of 0. Taking a point v €
F(R") over this neighbourhood with (x!)<0)(y) # 0 and (x1)<D(y) = ... = (x")%) (y) =
we obtain (1.2) at y. Since the vector fields BEH} are invariant with respect to the translations
T.:A" = A" forz € A" = F(R"), we have (1.2).

From (1.2) for ¢ = 1 it follows A,,, = A,

Of course, the proof of Lemma will be complete after proving the following implication.
IfA; =0forv=0,...,k then £L =0,

Assume that Ay, =0 forv =20, ...,k

[fu,=0,...k—land A =0forv=0,...,k, then by (1.2) for c = b,,, we have Z” =0

A a{&“ﬂ"”’ ﬂaiﬂ"} = (0. By (0.1), the left side of this equality is Zk_ﬂ Oy, Apyy 05 ) ﬁ.aiﬂ"} +..

for some o, # 0, where the dots is the element from span{a{ A B(H"} TR — 1}
Hence A, , =0forv=0,... k-1

Then L(d; Ad>) =0 because of (1.1).

Let o,...,a, € NU{0} be numbers. There is a diffeomorphism ¢ : R — R such that
(@ x idgn-1)+ 01 = 01 + (x')* 9 near 0. From L(d; Ada) = 0 it follows that £((d; + (x!)*
d1) Ad2) = 0 over 0. Then L{(x')* 9, Ad>) = 0 over 0. There is a diffeomorphism  :
R"™! — R"! such that (idg x ).0> = dr + (x*)%2 ... (x")% 9, near 0. Then L ((x')*
I A (D2 + (x*)% ... ()% 9,)) = 0 over 0. Thus £L{(x" )% ... (x")%9; Ad2) = 0 over 0.
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Now, by the symmetries permuting the coordinates on R", we have L((x!')®1 .. (x")%
diNdj) =0 over O for any 0,,...,a, € N U{0} and any i,j = 1,...,n with i < j. Hence
L =0 over 0 because of the base extending version of Peetre theorem (see Th. 19.9 in [4]).
Therefore £ = ( because of the naturality. O

2. To present examples of linear natural operators T AT |4, ~+ (T'AT)F for F satisfying
(0.1) we need the following facts from [2] helding for arbitrary product preserving bundle
functors F.

(i) If m: E — M is a vector bundle, then F(xt) : F(E) — F(M) is a vector bundle and an
A-module bundle.

(11) Given a vector bundle E — M. we have a fibre skew-R-bilinear map F(A) : F(E) x F (M)
F(E)=F(E xyE)— F(EAE) and (by the universal factorization property) a vector bundle
epimorphism F(A) : F(E)AF(E) — F(E AE) covering idp (), where At E xy E — EANE
1s the standard fibre skew-bilinear map.

(1) Given a vector bundle E — M, we have an A-module bundle isomorphism F(E*) —
(F(E))*™W .= Uyery Homa(F(E)y,A) covering idp(yy and corresponding to the fibre A-
bilinear map F(<,>) : F(E) Xpu F(E") = F(E xy E*) =+ A = F(R), where <, >: E x
E* — R is the usual pairing.

(iv) Given an R-linear map A : A — R and a vector bundle £ — M, we have a vector
bundle homomorphism m?_,,} : F(E") — F(E)" covering idp(y given by the composition of
F(E*) = F(E)*"W with the vector bundle homomorphism F(E)*%) — F(E)*, o — hoo. If
the R-bilinear symmetric form A x A 3 (a,b) — A(ab) € R is non-singular, then mt- is an
isomorphism.

Example. Let A, : A — R be a linear map such that the R-bilinear symmetric form A x A 3
(a.b) — Ao(ab) € R is non-singular. For example, let A, = a;, where ay,...,a; is the basis

as in (0.1), and ay, ... .a; is the dual basis. (Then {ﬂ?g’ 1s an isomorphism for a vector bundle
E, see above). Let A : A — R be a linear map. Given a 2-vector field A on an n-manifold
M we define a 2-vector field A'**) on F(M) to be the composition of F(A) : F(M) —
F(TMATM)=F((TMATM)*) and the following vector bundle homomorphisms covering

Oy ygnran  FATMATM)™) = (F(TMATM)"))",

@ (F(TMATM)"))" = (F((TM)"))" AF((TM)?))",

@ (F((TM)*)" A(F((TM)*))* = (F(TM))"* A (F(TM))*™,
W (F(TM))™ AF(TM))*™ — T(F(M))AT(F(M)).

Here ® is dual to F(A) : F((TM)*) AF((TM)*) — F((TM)* A(TM)*) = F((TM ATM)")

modulo (F({TM)*))* A(F((TM)*))* = (F((TM)*YAF((TM)*))*, ®" is induced by {{(x)?ﬁi"'“)*]"'

(F((TM)"))" = (F(TM))™ and ¥ is given by the (described in [4]) flow isomorphism
F(TM)=T(F(M))and (F(TM))** = F(TM).

Clearly, under the condition on A,, the mapping ({m‘}-’:w “)71is defined.

(hho

The correspondence A — Al**<) is a linear natural operator T A Tla ~ (T AT)F in the

sense of [4]. We denote this operator by £ o),
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Since @, D™, ¥ are monomorphisms, the correspondence A = £**%) is a linear monomor-
phism. Then from the lemma it follows the following theorem.

Theorem 2 Let F : M — F M be a product preserving bundle functor satisfying the condi-
tion (0.1) and let A be its Weil algebra.

If n > 2, then the vector space of all linear natural operators T ATyy ~+ (T AT)F is of
dimension dim(F(R)).

Moreover, if A, : A — R is a linear map such that the corresponding bilinear symmetric
form A x A3 (a,b) = A,(ab) € Ris non-singular (an example of such A, is given in Example)
and n > 2, then each linear natural operator T NT |3y ~+ (T AT)F is equal to LAHo) for
some linear . : A — R.

In [3], the authors introduced the vertical lift dy (A) and the tangent lift d7(A) of a skew-
symmetric multivector field A on M to the tangent bundle TM. Since dim(TR) = 2, from the
theorem we have

Corollary 3 If n > 2, then all linear natural oprators T AT |y ~» (T AT)T are the linear
combinations of dy and dr with real coefficients.

3. We give an example of a product preserving bundle functor F : M — F M satisfying
(0.1) which 1s not a finite composition of higher order tangent bundle functors. We also give
an example of a product preserving bundle functor F : M — F M not satisfying (0.1).

Example. (a) Let k > 3 be such that £+ 1 is a prime number.

Let C5'(R*~!) be the algebra of germs at 0 of maps R*~! — Randlety',...,y*~! be the usual
generators of Cg (R*"!). Let A = C5(R*"1) /A be the factor algebra, where A is the ideal in
CF(R¥1) generated by the germs y'y/ fori, j =1, ...,k — 1 with i # j, the (y')* — (') for
| =2,...k—1and the y'y/y! fori,j,I =0,...,k— 1. Then A is a Weil algebra. The elements
ap = [1]a a1 = y'a,...,ar—1 = [* V4, ax = [(y')?]4 form a basis of A. More, the elements

ap,...,ar and by = [(y')*]a, b1 = 4y - bro1 = ¥4, by = [1]4 satisfy (i) and (ii) of
the condition (0.1). The Weil algebra A is not 1somorphic to Tk[R} because the length of
T*(R) is k > 3 and the length of A is 2. Since k + 1 is prime, A is not a tensor product of two
non-trivial Weil algebra. Then the Weil bundle functor Ty : M — F M, cf. [4], satisfies (0.1)
and 1t 1s not a composition of higher order tangent bundle functors.

(b) In [1] we proved that if a Weil algebra A posses a linear map A : A — R such that
the symmetric bilinear map A x A 3 (a,b) — A{ab) € R is non-singular, then its nilpotent
ideal N is such that dim(N") = 1 for some 4 € N. Hence for p > 2 the bundle functors I, of

p"-velocities do not satisfy (0.1).
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