THE LINEAR NATURAL OPERATORS LIFTING 2-VECTOR FIELDS TO SOME WEIL BUNDLES

WŁODZIMIERZ M. MIKULSKI

Abstract. All linear natural operators lifting 2-vector fields to some product preserving bundle functors are classified.

Key words: product preserving bundle functors, linear natural operators

A M S Classification: 58 A 20, 53 A 55

- **0.** Let $F: \mathcal{M} \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and let $A = F(\mathbf{R})$ be its Weil algebra, [4]. We assume the following property.
 - (0.1) There exist a basis $a_0, \ldots, a_k \in A$ and elements $b_0, \ldots, b_k \in A$ such that:
 - (i) $a_{\nu}b_{\nu} \in A \setminus span\{a_0, ..., a_{k-1}\}\$ for $\nu = 0, ..., k$,
 - (ii) $a_{\mu}b_{\nu} \in span\{a_0, \dots a_{k-1}\}\$ for $\mu \neq \nu, \nu = 0, \dots, k$.

For example, the tangent bundle functor T^k of order k satisfies (0.1) for $a_v = j_0^k t^v$, $b_v = j_0^k t^{k-v}$. If F_1 and F_2 satisfy (0.1) for $(a_{v_1}^1, b_{v_1}^1)$ and $(a_{v_2}^2, b_{v_2}^2)$, then so does $F_1 \circ F_2$ for $(a_{v_1}^1 \otimes a_{v_2}^2, b_{v_2}^1)$, $(F_1 \circ F_2(\mathbf{R}) = F_1(\mathbf{R}) \otimes F_2(\mathbf{R})$, see [4])

In this short note we prove that if $n \ge 2$ and F satisfies (0.1), then the vector space of all linear natural operators $T \wedge T_{|\mathcal{M}_n} \leadsto (T \wedge T)F$ lifting 2-vector fields from n-manifolds to F, in the sense of [4], has dimension $dim(F(\mathbf{R}))$. Moreover, we construct explicitly all elements from this vector space.

Thus this note is a next contribution to the theory of natural operators in differential geometry, [4].

Troughout this note the usual coordinates on \mathbb{R}^n are denoted by x^1, \dots, x^n and $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, \dots, n$.

All manifolds and maps are assumed to be of class C^{∞} .

1. The crucial point in our consideration is the following lemma.

Lemma 1 Under the assumption (0.1) the vector space of all linear natural operators $T \wedge T_{|\mathcal{M}_n} \leadsto (T \wedge T)F$ has dimension $\leq \dim(F(\mathbf{R}))$.

Proof. Let $\mathcal{L}: T \wedge T_{|\mathcal{M}_n} \leadsto (T \wedge T)F$ be a linear natural operator. Let a_0, \ldots, a_k and b_0, \ldots, b_k be as in (0.1). Assume that $n \geq 2$.

At first we prove that there exist the real numbers $A_{\mu\nu} \in \mathbf{R}$ such that

$$\mathcal{L}(\partial_1 \wedge \partial_2) = \sum_{\mu,\nu=0}^k A_{\mu\nu} \partial_1^{(a_\mu)} \wedge \partial_2^{(a_\nu)}, \tag{1.1}$$

214 Włodzimier M. Mikulski

where for a given $a \in A$ the operation $()^{(a)}$ is the (a)-lift of vector fields to F in the sense of [1].

For proving this we write $\mathcal{L}(\partial_1 \wedge \partial_2) = \Sigma B_{(i,\mu),(j,\nu)} \ \partial_i^{(a_u)} \wedge \partial_j^{(a_v)}$ for some uniquely determined smooth functions $B_{(i,\mu),(j,\nu)}: F(\mathbf{R}^n) \to \mathbf{R}$, where the sum is over all $(i,\mu), (j,\nu) \in \{1,\dots,n\} \times \{0,\dots,k\}$ with $(i,\mu) < (j,\nu)$. (The $\partial_i^{(a_\mu)}$ for $i=1,\dots n$ and $\mu=0,\dots k$ form a basis of vector fields on $F(\mathbf{R}^n)$, see [1]). By the linearity and the naturality of \mathcal{L} with respect to the homotheties $tid_{\mathbf{R}^n}, t \neq 0$, we get $\mathcal{L}(\partial_1 \wedge \partial_2) = \Sigma B_{(i,\mu),(j,\nu)} \circ \frac{1}{t} id_{F(\mathbf{R}^n)} \partial_j^{(a_u)} \wedge \partial_j^{(a_v)}$. Then $B_{(i,\mu),(j,\nu)}$ are constants. Next, by the naturality with respect to the diffeomorphisms $(x^1,x^2,tx^3,\dots,tx^n), t\neq 0$, we deduce $B_{(i,\mu),(j,\nu)} = 0$ if $i\in \{3,\dots,n\}$ or $j\in \{3,\dots,n\}$. Finally, by the naturality with respect to the diffeomorphisms (tx^1,x^2,\dots,t^n) (or (t^1,tt^2,t^2,\dots,t^n)), $t\neq 0$, we deduce $B_{(1,\mu),(1,\nu)} = 0$ (or $B_{(2,\mu),(2,\nu)} = 0$), as well.

Next, we prove that for any $c \in A$

$$\sum_{\mu,\nu=0}^{k} A_{\mu\nu} \partial_2^{(ca_{\mu})} \wedge \partial_2^{(a_{\nu})} = 0. \tag{1.2}$$

We can assume that $c \neq 0$. Let $c_0 = c$, $c_1, \ldots, c_k \in A$ be a basis of A. Let c_0^*, \ldots, c_k^* be the dual basis. In [1] we proved that $(x^1\partial_2)^{(a_\mu)} = \sum_{\rho=0}^k (x^1)^{(c_\rho^*)} \partial_2^{(c_\rho a_\mu)}$ for any $\mu=0,\ldots,k$, where $()^{(\lambda)}$ is the (λ) -lift of functions to F for a linear map $\lambda: A \to \mathbf{R}$. Since $[\partial_1 + x^1\partial_2, \partial_2] = 0$, there exists a diffeomorphism $\eta: \mathbf{R}^n \to \mathbf{R}^n$ such that $\eta_*\partial_1 = \partial_1 + x^1\partial_2$ and $\eta_*\partial_2 = \partial_2$ near 0. Now, applying (1.1) and the invariancy of \mathcal{L} with respect to η , we have

$$\mathcal{L}(\partial_1 \wedge \partial_2) = \mathcal{L}((\partial_1 + x^1 \partial_2) \wedge \partial_2) = \sum_{\mu,\nu=0}^k A_{\mu\nu} (\partial_1 + x^1 \partial_2)^{(a_\mu)} \wedge \partial_2^{(a_\nu)} =$$

$$= \mathcal{L}(\partial_1 \wedge \partial_2) + \sum_{\mu,\nu,\rho=0}^k A_{\mu\nu} (x^1)^{(c_\rho^*)} \partial_2^{(a_\mu c_\rho)} \wedge \partial_2^{(a_\nu)},$$

i.e. $\sum_{\mu,\nu,\rho=0}^k A_{\mu\nu}(x^1)^{(c_p^*)} \partial_2^{(a_\mu c_\rho)} \wedge \partial_2^{(a_\nu)} = 0$ over some neighbourhood of 0. Taking a point $y \in F(\mathbf{R}^n)$ over this neighbourhood with $(x^1)^{(c_0^*)}(y) \neq 0$ and $(x^1)^{(c_1^*)}(y) = \ldots = (x^1)^{(c_k^*)}(y) = 0$, we obtain (1.2) at y. Since the vector fields $\partial_i^{(a)}$ are invariant with respect to the translations $\tau_z : A^n \to A^n$ for $z \in A^n = F(\mathbf{R}^n)$, we have (1.2).

From (1.2) for c = 1 it follows $A_{\mu\nu} = A_{\nu\mu}$:

Of course, the proof of Lemma will be complete after proving the following implication. If $A_{vk} = 0$ for v = 0, ..., k, then $\mathcal{L} = 0$.

Assume that $A_{vk} = 0$ for $v = 0, \dots, k$.

If $\mu_o = 0, \ldots k-1$ and $A_{vk} = 0$ for $v = 0, \ldots, k$, then by (1.2) for $c = b_{\mu_o}$, we have $\sum_{\mu,\nu=0}^{k-1} A_{\mu\nu} \, \partial_2^{(b_{\mu_o} a_{\mu})} \wedge \partial_2^{(a_{\nu})} = 0$. By (0.1), the left side of this equality is $\sum_{\nu=0}^{k-1} \alpha_{\mu_o} A_{\mu_o \nu} \, \partial_2^{(a_k)} \wedge \partial_2^{(a_{\nu})} + \ldots$ for some $\alpha_{\mu_o} \neq 0$, where the dots is the element from $span\{\partial_2^{(a_{\mu})} \wedge \partial_2^{(a_{\nu})} \mid \mu, \nu = 0, \ldots, k-1\}$. Hence $A_{\mu_o \nu} = 0$ for $\nu = 0, \ldots, k-1$.

Then $\mathcal{L}(\partial_1 \wedge \partial_2) = 0$ because of (1.1).

Let $\alpha_1, \ldots, a_n \in \mathbb{N} \cup \{0\}$ be numbers. There is a diffeomorphism $\varphi : \mathbb{R} \to \mathbb{R}$ such that $(\varphi \times id_{\mathbb{R}^{n-1}})_* \ \partial_1 = \partial_1 + (x^1)^{\alpha_1} \partial_1$ near 0. From $\mathcal{L}(\partial_1 \wedge \partial_2) = 0$ it follows that $\mathcal{L}((\partial_1 + (x^1)^{\alpha_1} \partial_1) \wedge \partial_2) = 0$ over 0. Then $\mathcal{L}((x^1)^{\alpha_1} \partial_1 \wedge \partial_2) = 0$ over 0. There is a diffeomorphism $\psi : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ such that $(id_{\mathbb{R}} \times \psi)_* \partial_2 = \partial_2 + (x^2)^{\alpha_2} \dots (x^n)^{\alpha_n} \partial_2$ near 0. Then $\mathcal{L}((x^1)^{\alpha_1} \partial_1 \wedge (\partial_2 + (x^2)^{\alpha_2} \dots (x^n)^{\alpha_n} \partial_2)) = 0$ over 0. Thus $\mathcal{L}((x^1)^{\alpha_1} \dots (x^n)^{\alpha_n} \partial_1 \wedge \partial_2) = 0$ over 0.

Now, by the symmetries permuting the coordinates on \mathbb{R}^n , we have $\mathcal{L}((x^1)^{\alpha_1} \dots (x^n)^{\alpha_n} \partial_i \wedge \partial_j) = 0$ over 0 for any $\alpha_1, \dots, \alpha_n \in \mathbb{N} \cup \{0\}$ and any $i, j = 1, \dots, n$ with i < j. Hence $\mathcal{L} = 0$ over 0 because of the base extending version of Peetre theorem (see Th. 19.9 in [4]). Therefore $\mathcal{L} = 0$ because of the naturality.

- 2. To present examples of linear natural operators $T \wedge T|_{\mathcal{M}_n} \leadsto (T \wedge T)F$ for F satisfying (0.1) we need the following facts from [2] holding for arbitrary product preserving bundle functors F.
- (i) If $\pi: E \to M$ is a vector bundle, then $F(\pi): F(E) \to F(M)$ is a vector bundle and an A-module bundle.
- (ii) Given a vector bundle $E \to M$, we have a fibre skew-**R**-bilinear map $F(\land) : F(E) \times_{F(M)} F(E) = F(E \times_M E) \to F(E \land E)$ and (by the universal factorization property) a vector bundle epimorphism $F(\land) : F(E) \land F(E) \to F(E \land E)$ covering $id_{F(M)}$, where $\land : E \times_M E \to E \land E$ is the standard fibre skew-bilinear map.
- (iii) Given a vector bundle $E \to M$, we have an A-module bundle isomorphism $F(E^*) \to (F(E))^{*(A)} := \bigcup_{y \in F(M)} Hom_A(F(E)_y, A)$ covering $id_{F(M)}$ and corresponding to the fibre A-bilinear map $F(<,>) : F(E) \times_{F(M)} F(E^*) = F(E \times_M E^*) \to A = F(\mathbf{R})$, where $<,>: E \times_M E^* \to \mathbf{R}$ is the usual pairing.
- (iv) Given an **R**-linear map $\lambda: A \to \mathbf{R}$ and a vector bundle $E \to M$, we have a vector bundle homomorphism $\omega_E^{\lambda}: F(E^*) \to F(E)^*$ covering $id_{F(M)}$ given by the composition of $F(E^*) \stackrel{\sim}{=} F(E)^{*(A)}$ with the vector bundle homomorphism $F(E)^{*(A)} \to F(E)^*$, $\alpha \to \lambda \circ \alpha$. If the **R**-bilinear symmetric form $A \times A \ni (a,b) \to \lambda(ab) \in \mathbf{R}$ is non-singular, then ω_E^{λ} is an isomorphism.

Example. Let $\lambda_o: A \to \mathbf{R}$ be a linear map such that the **R**-bilinear symmetric form $A \times A \ni (a,b) \to \lambda_o(ab) \in \mathbf{R}$ is non-singular. For example, let $\lambda_o = a_k^*$, where a_0, \ldots, a_k is the basis as in (0.1), and a_0^*, \ldots, a_k^* is the dual basis. (Then $\omega_E^{\lambda_o}$ is an isomorphism for a vector bundle E, see above). Let $\lambda: A \to \mathbf{R}$ be a linear map. Given a 2-vector field Λ on an *n*-manifold M we define a 2-vector field $\Lambda^{(\lambda,\lambda_o)}$ on F(M) to be the composition of $F(\Lambda):F(M)\to F(TM\wedge TM)=F((TM\wedge TM)^{**})$ and the following vector bundle homomorphisms covering $id_{F(M)}$

```
 \begin{aligned} & \omega_{(TM \wedge TM)^*}^{\lambda} : F((TM \wedge TM)^{**}) \to (F((TM \wedge TM)^*))^*, \\ & \Phi : (F((TM \wedge TM)^*))^* \to (F((TM)^*))^* \wedge (F((TM)^*))^*, \\ & \Phi^{\lambda_o} : (F((TM)^*))^* \wedge (F((TM)^*))^* \to (F(TM))^{**} \wedge (F(TM))^{**}, \\ & \Psi : (F(TM))^{**} \wedge (F(TM))^{**} \to T(F(M)) \wedge T(F(M)). \end{aligned}
```

Here Φ is dual to $F(\wedge): F((TM)^*) \wedge F((TM)^*) \to F((TM)^* \wedge (TM)^*) \stackrel{\sim}{=} F((TM \wedge TM)^*)$ modulo $(F((TM)^*))^* \wedge (F((TM)^*))^* \stackrel{\sim}{=} (F((TM)^*) \wedge F((TM)^*))^*$, Φ^{λ_o} is induced by $((\omega_{TM}^{\lambda_o})^*)^{-1}$: $(F((TM)^*))^* \to (F(TM))^{**}$ and Ψ is given by the (described in [4]) flow isomorphism $F(TM) \stackrel{\sim}{=} T(F(M))$ and $(F(TM))^{**} = F(TM)$.

Clearly, under the condition on λ_o , the mapping $((\omega_{TM}^{\lambda_o})^*)^{-1}$ is defined.

The correspondence $\Lambda \to \Lambda^{(\lambda,\lambda_o)}$ is a linear natural operator $T \wedge T|_{\mathcal{M}_n} \leadsto (T \wedge T)F$ in the sense of [4]. We denote this operator by $\mathcal{L}^{(\lambda,\lambda_o)}$.

216 Włodzimier M. Mikulski

Since $\Phi, \Phi^{\lambda_o}, \Psi$ are monomorphisms, the correspondence $\lambda \to \mathcal{L}^{(\lambda, \lambda_o)}$ is a linear monomorphism. Then from the lemma it follows the following theorem.

Theorem 2 Let $F: \mathcal{M} \to \mathcal{F} \mathcal{M}$ be a product preserving bundle functor satisfying the condition (0.1) and let A be its Weil algebra.

If $n \ge 2$, then the vector space of all linear natural operators $T \wedge T_{\mathcal{M}_n} \leadsto (T \wedge T)F$ is of dimension $dim(F(\mathbf{R}))$.

Moreover, if $\lambda_o: A \to \mathbf{R}$ is a linear map such that the corresponding bilinear symmetric form $A \times A \ni (a,b) \to \lambda_o(ab) \in \mathbf{R}$ is non-singular (an example of such λ_o is given in Example) and $n \ge 2$, then each linear natural operator $T \wedge T|_{|\mathcal{M}_n} \leadsto (T \wedge T)F$ is equal to $\mathcal{L}^{(\lambda,\lambda_o)}$ for some linear $\lambda: A \to \mathbf{R}$.

In [3], the authors introduced the vertical lift $d_V(\Lambda)$ and the tangent lift $d_T(\Lambda)$ of a skew-symmetric multivector field Λ on M to the tangent bundle TM. Since $dim(T\mathbf{R}) = 2$, from the theorem we have

Corollary 3 If $n \ge 2$, then all linear natural operators $T \wedge T|_{\mathcal{M}_n} \leadsto (T \wedge T)T$ are the linear combinations of d_V and d_T with real coefficients.

3. We give an example of a product preserving bundle functor $F: \mathcal{M} \to \mathcal{F}\mathcal{M}$ satisfying (0.1) which is not a finite composition of higher order tangent bundle functors. We also give an example of a product preserving bundle functor $F: \mathcal{M} \to \mathcal{F}\mathcal{M}$ not satisfying (0.1).

Example. (a) Let $k \ge 3$ be such that k + 1 is a prime number.

Let $C_0^{\infty}(\mathbf{R}^{k-1})$ be the algebra of germs at 0 of maps $\mathbf{R}^{k-1} \to \mathbf{R}$ and let y^1, \dots, y^{k-1} be the usual generators of $C_0^{\infty}(\mathbf{R}^{k-1})$. Let $A = C_0^{\infty}(\mathbf{R}^{k-1})/\underline{A}$ be the factor algebra, where \underline{A} is the ideal in $C_0^{\infty}(\mathbf{R}^{k-1})$ generated by the germs $y^i y^j$ for $i, j = 1, \dots, k-1$ with $i \neq j$, the $(y^1)^2 - (y^l)^2$ for $l = 2, \dots k-1$ and the $y^i y^j y^l$ for $i, j, l = 0, \dots, k-1$. Then A is a Weil algebra. The elements $a_0 = [1]_{\underline{A}} \ a_1 = [y^1]_{\underline{A}}, \dots, a_{k-1} = [y^{k-1}]_{\underline{A}}, a_k = [(y^1)^2]_{\underline{A}}$ form a basis of A. More, the elements a_0, \dots, a_k and $b_0 = [(y^1)^2]_{\underline{A}}, b_1 = [y^1]_{\underline{A}}, \dots, b_{k-1} = [y^{k-1}]_{\underline{A}}, b_k = [1]_{\underline{A}}$ satisfy (i) and (ii) of the condition (0.1). The Weil algebra A is not isomorphic to $T^k(\mathbf{R})$ because the length of $T^k(\mathbf{R})$ is $k \geq 3$ and the length of A is 2. Since k+1 is prime, A is not a tensor product of two non-trivial Weil algebra. Then the Weil bundle functor $T_A : \mathcal{M} \to \mathcal{F} \mathcal{M}$, cf. [4], satisfies (0.1) and it is not a composition of higher order tangent bundle functors.

(b) In [1] we proved that if a Weil algebra A posses a linear map $\lambda : A \to \mathbf{R}$ such that the symmetric bilinear map $A \times A \ni (a,b) \to \lambda(ab) \in \mathbf{R}$ is non-singular, then its nilpotent ideal N is such that $dim(N^h) = 1$ for some $h \in \mathbf{N}$. Hence for $p \ge 2$ the bundle functors T_p^r of p^r -velocities do not satisfy (0.1).

References

- [1] J. Gancarzewicz, W. Mikulski, Z. Pogoda, Lifts of some tensor fields and linear connections to product preserving functors, "Nagoya Math. J.", 135 (1994), 1-41.
- [2] J. Gancarzewicz, W. Mikulski, Z. Pogoda, Product preserving functors and vector bundles, IM UJ Preprint 1997/24.
- [3] J. Grabowski, P. Urbański, Tangent lifts of Poisson and related structures, "J. Phys." A 28 (1995), 6743-6777.
- [4] I. Kolár, P.W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin 1993.

Received October 10, 1998 and in revised form April 28, 1999
WŁODZIMIERZ M. MIKULSKI
Institute of Mathematics
Jagellonian University
Kraków, Reimonta 4
POLAND