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1 Introduction and statement of the result

In this paper we study the behaviour near the boundary of the solution
of the Dirichlet problem in a bounded domain Q ⊂ Rn, n ≥ 2, with smooth
boundary ∂Q for an elliptic second-order equation

−
n∑

i,j=1

(aij(x)uxi)xj +
n∑

i=1

bi(x)uxi + c(x)u = f(x)− divF (x), x ∈ Q; (1)

u|∂Q = u0, (2)

where u0 ∈ L2(∂Q); the functions f and F = (f1, . . . , fn) belong to L2,loc(Q),
the symmetric matrix A(x) = (aij(x)), whose elements are real measurable
functions, satisfies the condition

γ1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj = (ξ, A(x)ξ) ≤ γ2|ξ|2 (3)

for all ξ = (ξ1, . . . , ξn) ∈ Rn and x ∈ Q, with positive constants γ1 and γ2, the
real coefficients B(x) and c(x) are measurable and bounded functions on each
strong inner subdomain of the domain Q.

The aim of this paper is to obtain conditions on the coefficients of the lower-
order terms of the equation for which the solution of the given problem has
the property of (n − 1)-dimensional continuity. The concept of s-dimensional
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continuity, which is a natural generalization of continuity on several variables,
was introduced by A. K. Gushchin in [1] and means the following.

Let µ and ν be probability measures on Rn with supports in Q satisfying
the condition:

there exist a constant C such that for all r > 0 and x0 ∈ Q the
measure of the ball Bx0(r) with radius r and centre x0 is less or
equal to Crs, where 0 < s < n; the smallest of such constants C
will be called the norm of the measure and denoted by ‖µ‖ (or ‖ν‖,
respectively).

Let φ be a measure on R2n with support in Q×Q such that µ(G) = φ(G×
Rn), ν(G) = φ(Rn ×G) for all Borel sets G ⊂ Q.

Following [1], a function v will be called s-dimensionally continuous if for
any positive number ε there exists a number δ > 0, such that

1
‖µ‖+ ‖ν‖

∫
R2n

[v(x)− v(y)]2dφ(x, y) < ε

(the distance between values of the function v on these measures along φ is less
than ε) as only ∫

R2n

|x− y|dφ(x, y) < δ

(the distance between the measures µ and ν along φ is less than δ).
Note, that if arbitrary measures are taken in the definition, i.e. s = 0, then

one gets the classical defintion of uniform continuity on Q.
The set of all s-dimensionally continuous functions on Q forms the Banach

space Cs(Q), which is the completion of the space C(Q) w.r. to the norm gen-
erated by the functional

E(v) =

∞∫
0

Ms({x ∈ Q : |v(x)|2 > λ})dλ, v ∈ C(Q),

where

Ms(E) = inf

{ ∞∑
i=1

rsi ,
∞⋃
i=1

B(ri) ⊃ E
}
,

and the infimum is taken over all coverings of the E by means of balls B(ri) of
radius ri; for s = 0 and s = n we have the special cases C0(Q) = C(Q) and
Cn(Q) = L2(Q), see [1]. The (n−1)-dimensional continuity of the solution of the



On the behaviour of solutions of the Dirichlet problem for elliptic equations 101

Dirichlet problem with boundary function u0 in L2(∂Q) for the equation without
lower-order terms (i.e. bi = 0, c = 0) and with right-hand side f ∈W−1

2 (F = 0)
was established in paper [1]. There it was assumed that the unit inner normal
ν to the boundary ∂Q satisfies Dini’s condition

|ν(x)− ν(y)| ≤ w(|x− y|) (4)

for all x and y in ∂Q, where w is a monotone function such that∫
0

w(t)
t
dt <∞

and the coefficients are continous on the boundary in the sense of Dini:

|aij(x)− aij(y)| ≤ w(|x− y|) (5)

for all x ∈ ∂Q, y ∈ Q and i, j = 1, . . . , n; without loss of generality, of course
one can always assume that the function w is the same in (4) and (5). In [2] the
above mentioned result was generalized for a wider class of right-hand sides. In
this paper it was shown that the theorem holds for right-hand sides with

r
1
2 (x)(1 + | ln r(x)|) 3

4 |F (x)| ∈ L2(Q) (6)

r
3
2 (x)(1 + | ln r(x)|) 3

4 |f(x)| ∈ L2(Q) (7)

where r(x) is the distance of a point x ∈ Q from the boundary ∂Q. In the sequel
we will in the same way assume that the conditions (4)–(7) are satisfied. By a
solution of problem (1), (2) we understand a function u in W 1

2,loc satisfying the

equation (1) in the sense of generalized functions, i.e. for all η ∈
◦
C∞(Q) the

integral identity∫
Q

(A(x)∇u,∇η)dx+
∫
Q

((B(x),∇u) + c(x)u)ηdx =
∫
Q

(fη + (F,∇η))dx (8)

is satisfied, and satisfying condition (2) in the following sense:

each point x0 ∈ ∂Q has a neighborhood Vx0 ⊂ ∂Q such that∫
Vx0

(u(x+ δν(x0))− u0(x))2ds −→ 0 as δ −→ +0. (9)
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The concept of a solution in W 1
2,loc was introduced by V. P. Mikhailov in [3],

[8] for the case of a domain with twice smooth boundary, see also [5], [9], and [10].
Hereby, a solution attains its boundary value in the following sense∫

∂Q

(u(ϕδ(x))− u0(x))2ds −→ 0 as δ −→ +0

where ϕδ(x) = x+ δν(x).
In [3], [8] it was shown that in the case of an equation with smooth coeffi-

cients (aij(x), bi(x) ∈ C1(Q), i, j = 1, . . . , n, c(x) ∈ C(Q)) the problem (1), (2)
in the above mentioned framework is Fredholm and has the same spectrum as
the problem in theW 1

2 (Q)-framework; if the number zero does not belong to the
spectrum, then the problem is solvable for any boundary function u0 in L2(∂Q)
and for any right-hand side f(F = 0) such that∫

Q

rΘ(x)f2(x)dx <∞ with some Θ < 3.

A generalization of this result for domains with Lyapunov boundary was ob-
tained in [6] and [7]; in this context, the boundary condition (2) was formulated
in local terms - it was required that the condition (9) is satisfied. In this way
it could be shown that the map x −→ ϕδ(x), x ∈ ∂Q, attributing to the points
of the boundary points on a “parallel” surface, enables to get away from the
chosen before direction (i.e. “orthogonal” to the boundary) and take instead
the normal at a fixed point in a neighborhood under consideration.

The property of (n− 1)-dimensional continuity shows that the chosen direc-
tion of the normal can be abandoned completely: the values of the boundary
function u0 can be compared to the values of the solution u not only on surfaces
“parallel” to the boundary or near to such surfaces, but also on the images
of ∂Q under mappings in a fairly large class. In particular, the surface ∂Q
can be partitioned into sufficiently small parts, each of which can be moved
and turned (without leaving Q) so that the points are relocated “not too far”;
hereby, different points of the boundary may be mapped onto the same point,
but it cannot be allowed that there are “too many” such points. Furthermore,
this property allows to define a solution of the Dirichlet problem with square
summable boundary function, where the smoothness of the boundary is not
required (see [1] for more details).

In this paper we shall establish when a solution in W 1
2,loc of the Dirichlet

problem for a general second-order equation belongs to Cn−1(Q). We assume,
that the coefficients B(x) and c(x) satisfy the conditions
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there exist a constant K > 0 such that

|B(x)| ≤ K

r(x)(1 + | ln r(x)|) 3
4

, x ∈ Q, (10)

there exist a monotone function C(t) such that

|c(x)| ≤ C(r(x)), x ∈ Q, and
∫
0

t3| ln t| 32C2(t)dt <∞. (11)

Now we exhibit the main result of the article.
Theorem. Assume that the conditons (3) - (7), (10) and (11) are satisfied.

Then any solution in W 1
2,loc of the Dirichlet problem (1), (2) belongs to the

Gushchin space Cn−1(Q).

2 Proof of the Theorem

The proof of the theorem is based on the following
Lemma. Under the assumptions of the theorem, let u be a solution inW 1

2,loc

of the Dirichlet problem (1), (2). Then the function r(x)|∇u(x)|2 is integrable
over Q, i.e. ∫

Q

r(x)|∇u(x)|2dx <∞. (12)

This result is well known in the case of an equation with smooth coefficients
and Lyapunov domain, see [3]–[10]. In [1] this result was established for an
equation without lower-order terms (bi = 0, c = 0) and under the assumption
that the conditions (3) - (5) are satisfied. Moreover, the condition (12) is not
only necessary but also sufficient for any solution of the equation (1) to be a
solution of the Dirichlet problem with some boundary function u0 in L2(∂Q),
see [4], [2].

Proof of the Lemma. We will follow the scheme of the proof of lemma
1 of the article [1].

Let x0 ∈ ∂Q be an arbitrary point of the boundary ∂Q of the domain Q
and (x′, xn) is a local coordinate system with the origin x0 and the xn-axis is
directed along the inner normal ν(x0) to ∂Q at the point x0. Since ∂Q is of the
class C1, there exist a positive number rx0 > 0 and a function ϕx0 ∈ C1(Rn−1)
with

ϕx0(0) = 0,∇ϕx0(0) = 0 and |∇ϕx0(x′)| ≤ 1
2
for all x′ ∈ Rn−1
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such that the intersection of the domain Q with the ball U (rx0)

x0 = {x : |x−x0| <
rx0} of radius rx0 about x0 has the form

Q ∩ U (rx0)

x0 = U (rx0)

x0 ∩ {(x′, xn) : xn > ϕx0(x′)}.

Then, of course,

∂Q ∩ U (rx0 )

x0 = U (rx0 )

x0 ∩ {(x′, xn) : xn = ϕx0(x′)}.

We assume that rx0 be such that ∂Q∩U (rx0)

x0 belongs to the neighbourhood
Vx0 in condition (9) (this can be achived by decreasing rx0). Then∫
{
x′∈Rn−1:|x′|< 2√

5
rx0

} [u(x
′, ϕx0(x′) + δ)− u0(x′, ϕx0(x′))]2dx′ → 0 as δ → +0.

Let Ex0 = rx0/
√
2; from the covering {U (Ax0 )

x0 , x0 ∈ ∂Q} of the boundary ∂Q

select a finite subcovering U (Axm )
xm ,m = 1, . . . , p; following [1], for brevity denote

the balls U (rxm)
xm ,m = 1, . . . , p, by Um, rxm by rm, Exm by Em, and ϕxm by ϕm.

Set

h =
1
3

( 2√
5
−
√
2
2

)
min(1, r1, . . . , rp);

Then, each of the curvilinear cylinders

ΠAm+h,h
m = {(x′, xn) : |x′| < Em + h, ϕm(x′) < xn < ϕm(x′) + h}

lies in the corresponding ball Um, and also in Um ∩ Q (recall that (x′, xn) are
here the coordinates of a point in a local system of coordinates with origin at
xm). Let E0 ∈ (0, h/4) be such that the complement of the domain Q3A0 = {x ∈
Q : r(x) = dist(x, ∂Q) > 3E0} in Q lies in the union of the “cylinders”

ΠAm,h
m = {(x′, xn) : |x′| < Em, ϕm(x′) < xn < ϕm(x′) + h},m = 1, . . . , p;

Q3A0 = {x ∈ Q : r(x) = dist(x, ∂Q) ≤ 3E0} ⊂
p⋃

m=1

ΠAm,h.

Put

Πh
m = ΠAm+l0,h

m ⊂ ΠAm+h,h
m ⊂ Um ∩Q, Qm = (Q \Q2A0) ∪Πh

m,

Q′
m = (Q \Q3l0) ∪ΠAm,h

m .
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It is easily seen that for all x = (x′, xn) ∈ Πh
m,m = 1, . . . , p

r(x) ≤ xn − ϕm(x′) ≤
√
5
2
r(x) <

4
3
r(x). (13)

We fix an index m, 1 ≤ m ≤ p, and take a local coordinate system with
origin at xm; in the sequel the dependence of the function ϕm on the number
m will not be indicated: ϕ = ϕm.

We define a mapping L of the space Rn onto itself by the relation L(x) =
(x′, xn − ϕ(x′)), where x = (x′, xn); L−1(y) = (y′, yn + ϕ(y′)).

The image of a set under the mapping L will be denoted by the same letter
with∼ on top; in particular L(Q) = Q̃, L(Qm) = Q̃m, L(Πh

m) = Π̃h
m, L(Π

Am,h
m ) =

Π̃Am,h
m .
Let u(x) be a solution inW 1

2,loc of the problem (1), (2). We take an arbitrary
function η̃ in W 1

2 (Q̃) with support in Q̃. Then, the function η(x) = η̃(x′, xn −
ϕ(x′)), x = (x′, xn) ∈ Q, belongs to W 1

2 (Q) and its support is contained in Q.
Denoting u(y′, yn + ϕ(y′)) by ũ(y), f(y′, yn + ϕ(y′)) by f̃(y) and c(y′, yn +

ϕ(y′)) by c̃(y), we get from the integral identity (8)∫
Q̃

n∑
i,j=1

ãij(y)ũyi(y)η̃yj (y)dy +
∫
Q̃

( n∑
i=1

b̃i(y)ũyi(y) + c̃(y)ũ(y)
)
η̃(y)dy =

∫
Q̃

f̃(y)η̃(y)dy +
∫
Q̃

n∑
i=1

f̃i(y)η̃yi(y)dy, (8̃)

where the matrix Ã(y) = (ãij(y)) and the vectors B̃(y) = (b̃1(y), . . . , b̃n(y)),
F̃ (y) = (f̃1(y), . . . , f̃n(y)) have the form:

ãij(y) = aij(y′, yn + ϕ(y′)) for i < n, j < n,

ãni(y) = ãin(y) = ani(y′, yn + ϕ(y′))−
n−1∑
k=1

aki(y′, yn + ϕ(y′))
∂ϕ(y′)
∂yk

for i < n,

ãnn(y) =
n−1∑

k,m=1

∂ϕ(y′)
∂yk

akm(y′, yn + ϕ(y′))
∂ϕ(y′)
∂ym

− 2
n−1∑
k=1

ank(y′, yn + ϕ(y′))
∂ϕ(y′)
∂yk

+ ann(y′, yn + ϕ(y′)),

b̃i(y) = bi(y′, yn + ϕ(y′)) for i < n,

b̃n(y) = bn(y′, yn + ϕ(y′))−
n−1∑
k=1

bk(y′, yn + ϕ(y′))
∂ϕ(y′)
∂yk

,
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f̃i(y) = fi(y′, yn + ϕ(y′)) for i < n,

f̃n(y) = fn(y′, yn + ϕ(y′))−
n−1∑
k=1

fk(y′, yn + ϕ(y′))
∂ϕ(y′)
∂yk

.

This means, that the function ũ(y) (in W 1
2,loc(Q̃)) is a solution of the equation

− div(Ã(y),∇ũ(y)) + (B̃(y),∇ũ(y)) + c̃(y)ũ(y) = f̃(y) − div F̃ (y). (1̃)

The matrix Ã(y) is positive-definite uniformly with respect to y ∈ Q̃ and the
coefficient ãnn(y) satisfies the inequalities

γ1 ≤ γ1(1 + |∇ϕ(y′)|2) ≤ ãnn(y) ≤ γ2(1 + |∇ϕ(y′)|2) ≤
5
4
γ2.

Denote by A0(y) = (a0
ij(y)) the matrix, the elements of which are defined

on Π̃h
m and have the following form:

a0
ij(y) = ãij(y) for i < n, j < n,

a0
ni(y) = a

0
in(y) = a

0
in(y

′, yn)

=
1

mesn−1{ξ ∈ Rn−1 : |ξ| < yn}

∫
{ξ∈Rn−1:|ξ−y′|<yn}

ãin(ξ, 0)dξ for i < n,

a0
nn(y) = ãnn(y

′, 0).

It was established in [1] that in Π̃h
m[

n∑
i=1

|a0
in(y)− ãin(y)|2

] 1
2

≤ w̃(yn), (14)

and ∣∣∣∣∂a0
in(y)
∂yi

∣∣∣∣ ≤ w̃(yn)
yn

, i = 1, . . . , n− 1, (15)

where w̃(t) = Cw(2
√
2t) (w(t) comes from the conditions (4) and (5)); the

constant C depends only on n and γ2.
Let δ0 < A0

2 be a fixed positive number; in the sequel the dependence on the
chosen and fixed numbers p, rm, Em, m = 1, . . . , p, E0, n, γ1, γ2, δ0 will not be
indicated in the notation.
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For an arbitrary δ ∈ (0, δ0) we define the function Nδ(y) on the domain Q̃m

by

Nδ(y) =


0 for |y′| < Em + E0, 0 < yn < δ,
yn − δ for |y′| < Em + E0, δ ≤ yn ≤ 4δ0,
4δ0 − δ for the remaining points y in Q̃m.

The function Nδ satisfies the inequalities

rδ(x) ≤ Nδ(L(x)) ≤
4
3
r 3

4
δ(x) for all x ∈ Qm, (16)

where rδ(x) = min{3δ0,max{0, r(x)−δ}}, see [1]. Moreover ‖|∇Nδ|‖L∞(Q̃m) ≤ 1.
We fix a function ψ ∈ C1(Q) such that ψ(x) = 1 for x ∈ Q′

m, ψ = 0 for

x ∈ Q 5
2
A0 \ ΠAm+ 1

2
A0,h

m , and 0 ≤ ψ(x) ≤ 1 for all x ∈ Q; it will also be assumed
that for |y′| < Em + E0 and 0 < yn < 2E0 the function ψ̃(y) = ψ(L−1(y)) does
not depend on yn.

Taking in the integral identity (8̃) the function η̃(y) as Nδ(y)ψ̃(y)ũ(y) we get∫
Q̃m

Nδψ̃(∇ũ, Ã∇ũ)dy +
∫
Q̃m

Nδũ(∇ψ̃, Ã∇ũ)dy

+
∫
Q̃m

ψ̃ũ(∇Nδ, Ã∇ũ)dy +
∫
Q̃m

Nδψ̃ũ(B̃,∇ũ)dy +
∫
Q̃m

Nδψ̃c̃ũ
2dy

=
∫
Q̃m

Nδψ̃ũf̃dy +
∫
Q̃m

Nδψ̃(F̃ ,∇ũ)dy

+
∫
Q̃m

Nδũ(F̃ ,∇ψ̃)dy +
∫
Q̃m

ψ̃ũ(F̃ ,∇Nδ)dy (17)

In view of (13)

Ĩ
(m)
1 (δ) =

∫
Q̃m

Nδ(y)ψ̃(y)(∇ũ(y), Ã(y)∇ũ(y))dy

≥
∫
Q′

m

rδ(x)(∇u(x), A(x)∇u(x))dx ≥ γ1

∫
Q′

m

rδ(x)|∇u(x)|2dx.

we are going to obtain upper estimates for the remaining terms of equality (17).
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The estimation of the integral

Ĩ
(m)
2 (δ) =

∫
Q̃m

Nδ(y)ũ(y)(∇ψ̃(y), Ã(y)∇ũ(y))dy.

Again in view of (13)

|Ĩ(m)
2 (δ)| ≤ 4

3

∫
Qm

r 3
4
δ(x)|u(x)||(∇ψ(x), A(x)∇u(x))|dx

≤ 4
3
‖ψ‖C1(Q)γ2

∫
Qm

r 3
4
δ(x)|u(x)||∇u(x)|dx

≤ 4
3
‖ψ‖C1(Q)γ2

{∫
Qm

r 3
4
δ(x)u

2(x)dx
} 1

2

·

·
{ ∫
(
Q\Q

5�0
2

)
∪Π

�m+
�0
2 ,h

m

r 3
4
δ(x)|∇u(x)|2dx

} 1
2

≤ 4
3
‖ψ‖C1(Q)γ2

{∫
Q

r(x)u2(x)dx
} 1

2

·

·
{
δ

2

∫
(

Π
�m+

�0
2 ,h

m ∩Q 5δ
4

)
\Q 3δ

4

|∇u(x)|2dx+ 2
∫
Q

rδ(x)|∇u(x)|2dx
} 1

2

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+
εδ

4

∫
(

Π
�m+

�0
2 ,h

m ∩Q 5δ
4

)
\Q 3δ

4

|∇u(x)|2dx

+
C ′

2

ε

∫
Q

r(x)u2(x)dx,

where 0 < ε < 1 is to be chosen later.
Since the estimate is valid for solutions of the elliptic equation (1) (see [11])

∫
G′

|∇u(x)|2dx ≤ C0(γ1, γ2)

( 1
σ2

+
‖B‖L∞(G)

σ
+ ‖B‖2

L∞(G)

)∫
G

u2(x)dx
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+σ2

∫
G

f2(x)dx+
∫
G

|F (x)|2dx+
∫
G

|c(x)|u2(x)dx

 (18)

where G′ ⊂ G and σ = dist(G′, ∂G), then in view of (10) and (11) it follows
that

δ

∫
(

Π
�m+

�0
2 ,h

m ∩Q 5δ
4

)
\Q 3δ

4

|∇u(x)|2dx

≤ C0δ

[(
16
δ2

+
4
δ
‖B‖

L∞
(
Q δ

2
\Q 3

2 δ

) + ‖B‖2

L∞
(
Q δ

2
\Q 3

2 δ

)) ·
·

∫
(

Π
�m+�0,h
m ∩Q 3δ

2

)
\Q δ

2

u2(x)dx+
δ2

16

∫
(

Π
�m+�0,h
m ∩Q 3δ

2

)
\Q δ

2

f2(x)dx

+
∫

(
Π

�m+�0,h
m ∩Q 3δ

2

)
\Q δ

2

|F (x)|2dx+
∫

(
Π

�m+�0,h
m ∩Q 3δ

2

)
\Q δ

2

|c(x)|u2(x)dx

]

≤ C ′′
2

[(
1 +

1

(1 + | ln δ|) 3
4

+
1

(1 + | ln δ|) 3
2

+ δ

3δ
2∫

3δ
8

C(t)dt

)
·

· max
δ
2
≤yn≤2δ

∫
|y′|<Am+A0

ũ2(y′, yn)dy′

+
1

(1 + | ln 3
2δ|)

3
2

∫
(

Π
�m+�0,h
m ∩Q 3δ

2

)
\Q δ

2

r3(x)(1 + | ln r(x)|) 3
2 f2(x)dx

+
1

(1 + | ln 3
2δ|)

3
2

∫
(

Π�m+�0,h∩Q 3δ
2

)
\Q δ

2

r(x)(1 + | ln r(x)|) 3
2 |F (x)|2dx

]
.

We introduce the notation

M = max
0≤yn≤h

∫
|y′|<Am+A0

ũ2(y′, yn)dy′,

‖f‖2 =
∫
Q

r3(x)(1 + |Enr(x)|) 3
2 f2(x)dx,
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‖F‖2 =
∫
Q

r(x)(1 + |Enr(x)|) 3
2 |F (x)|2dx.

Since by (11) δ
∫ 3

2
δ

3
8
δ
C(t)dt ≤ C′′′

(1+|lnδ|) 3
4
, then we have

δ

∫
(

Π
�m+

�0
2 ,h

m ∩Q 5δ
4

)
\Q 3δ

4

|∇u(x)|2dx ≤ C̃0[M + ‖f‖2 + ‖F‖2] (19)

Consequently, the estimate is valid

|Ĩ(m)
2 (δ)| ≤ ε

∫
Q

rδ(x)|∇u(x)|2dx+ I(m)
2 (ε),

where I(m)
2 (ε) = C2(1

ε

∫
Q r(x)u

2(x)dx+ ε[M + ‖f‖2 + ‖F‖2]).

The estimation of the integral

Ĩ
(m)
3 (δ) =

∫
Q̃m

ψ̃(y)ũ(y)(∇Nδ(y), Ã(y)∇ũ(y))dy.

Ĩ
(m)
3 (δ) =

4δ0∫
δ

∫
|y′|<Am+A0

ψ̃(y′)ũ(y′, yn)

(∇Nδ(yn), (Ã(y′, yn)−A0(y′, yn))∇ũ(y′, yn))dy′dyn

− 1
2

4δ0∫
δ

∫
|y′|<Am+A0

ψ̃(y′)ũ2(y′, yn)
n−1∑
i=1

∂a0
in(y

′, yn)
∂yi

dy′dyn

− 1
2

4δ0∫
δ

∫
|y′|<Am+A0

ũ2(y′, yn)
n−1∑
i=1

a0
in(y

′, yn)
∂ψ̃(y′)
∂yi

dy′dyn

+
1
2

∫
|y′|<Am+A0

ãnn(y′, 0)ψ̃(y′)ũ2(y′, 4δ0)dy′

− 1
2

∫
|y′|<Am+A0

ãnn(y′, 0)ψ̃(y′)ũ2(y′, δ)dy′

= Ĩ(m)
31 (δ) + Ĩ(m)

32 (δ) + Ĩ(m)
33 (δ) + Ĩ(m)

34 (δ0) + Ĩ
(m)
35 (δ).
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In view of (13) and (14)

|Ĩ(m)
31 (δ)| ≤

4δ0∫
δ

∫
|y′|<Am+A0

ψ̃(y′)|ũ(y)||∇ũ(y)|ω̃(yn)dy′dyn ≤ I(m)′
31 (δ)+

ω̃(4δ0)

4δ0∫
δ0

∫
|y′|<Am+A0

ψ̃(y′)|ũ(y)||∇ũ(y)|dy′dyn,

where

I
(m)′
31 (δ) =

( δ0∫
δ

∫
|y′|<Am+A0

ψ̃(y′)yn|∇ũ(y)|2dy′dyn

) 1
2
(
M

δ0∫
0

ω̃2(yn)
yn

dyn

) 1
2

≤
(√

5
2

∫
Π

�m+
�0
2 ,h

m ∩Q 2δ√
5

r(x)|∇u(x)|2dx
) 1

2
(
M

δ0∫
0

ω̃2(yn)
yn

dyn

) 1
2

≤
(
4
√
5

∫
Π

�m+
�0
2 ,h

m

r 3
4
δ(x)|∇u(x)|2dx

) 1
2
(
M

δ0∫
0

ω̃2(yn)
yn

dyn

) 1
2

≤ ε

2

∫
Π

�m+
�0
2 ,h

m

r 3
4
δ(x)|∇u(x)|2dx+

8
√
5
ε
M

δ0∫
0

ω̃2(yn)
yn

dyn.

Next, in view of (19)

ε

2

∫
Π

�m+
�0
2 ,h

m

r 3
4
δ(x)|∇u(x)|2dx

≤ ε

2

[
δ

2

∫
(

Π
�m+

�0
2 ,h

m ∩Q 5δ
4

)
\Q 3δ

4

|∇u(x)|2dx+ 2
∫
Q

rδ(x)|∇u(x)|2dx
]

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+
ε

4
C̃0[M + ‖f‖2 + ‖F‖2].
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Thus

|Ĩ(m)
31 (δ)| ≤ ε

∫
Q

rδ(x)|∇u(x)|2dx+ I(m)
31 (δ0, ε),

where

I
(m)
31 (δ0, ε) =

ε

4
C̃0[M + ‖f‖2 + ‖F‖2] +

8
√
5
ε
M

δ0∫
0

ω̃2(yn)
yn

dyn+

ω̃(4δ0)

4δ0∫
δ0

∫
|y′|<Am+A0

ψ̃(y′)|ũ(y)||∇ũ(y)|dy′dyn.

In view of (15)

|Ĩ(m)
32 (δ)| ≤ n− 1

2

4δ0∫
0

∫
|y′|<Am+A0

ψ̃(y′)ũ2(y′, yn)
ω̃(yn)
yn

dy′dyn

≤Mn− 1
2

4δ0∫
0

ω̃(yn)
yn

dyn = I(m)
32 (δ0)

|Ĩ(m)
33 (δ)| ≤ 1

2

4δ0∫
0

∫
|y′|<Am+A0

ũ2(y′, yn)
∣∣∣ n−1∑
i=1

a0
in(y

′, yn)
∂ψ̃(y′)
∂yi

∣∣∣dy′dyn = I(m)
33 (δ0)

|Ĩ(m)
35 (δ)| ≤ 5

8
γ2M = I(m)

35 .

Thus, we get

|Ĩ(m)
3 (δ)| ≤ ε

∫
Q

rδ(x)|∇u(x)|2dx+ I(m)
3 (ε),

where

I
(m)
3 (ε) = I(m)

31 (δ0, ε) + I
(m)
32 (δ0) + I

(m)
33 (δ0) + Ĩ

(m)
34 (δ0) + I

(m)
35 .

The estimation of the integral

Ĩ
(m)
4 (δ) =

∫
Q̃m

Nδ(y)ψ̃(y)ũ(y)(B̃(y),∇ũ(y))dy.
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In view of (16)

|Ĩ(m)
4 (δ)| ≤ 4

3

∫
Qm

r 3
4
δ(x)ψ(x)|u(x)||B(x)||∇u(x)|dx

≤
(
2

∫
Qm∩Q 3

4 δ

r(x)ψ(x)u2(x)|B(x)|2dx
) 1

2
( ∫

Qm∩Q 3
4 δ

ψ(x)r 3
4
δ(x)|∇u(x)|2dx

) 1
2

≤ ε

2

∫
(
Q\Q

5�0
2

)
∪Π

�m+
�0
2 ,h

m

r 3
4
δ(x)|∇u(x)|2dx+

1
ε

∫
Qm∩Q 3

4 δ

K2u2(x)

r(x)(1 + | ln r(x)|) 3
2

dx

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+
ε

4
C̃0[M + ‖f‖2 + ‖F‖2]+

K2

ε

( ∫
Q\Q2�0

u2(x)

r(x)(1 + | ln r(x)|) 3
2

dx+
∫

Π
�m+

�0
2 ,h

m ∩Q 3δ
4

u2(x)

r(x)(1 + | ln r(x)|) 3
2

dx
)

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+
ε

4
C̃0[M + ‖f‖2 + ‖F‖2] +

K2

2εE0
‖u‖2

L2(Q)+

√
5
2
K2

ε

h∫
3δ
4

∫
|y′|<Am+A0

ũ2(y)

yn(1 + | ln yn|)
3
2

dy′dyn

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+ I(m)
4 (ε),

where

I
(m)
4 (ε) =

ε

4
C̃0[M+‖f‖2+‖F‖2]+

K2

2εE0
‖u‖2

L2(Q)+
√
5
2
K2

ε
M

h∫
0

dyn

yn(1 + |Enyn|)
3
2

.

The estimation of the integral

Ĩ
(m)
5 (δ) =

∫
Q̃m

Nδ(y)ψ̃(y)c̃(y)ũ2(y)dy.
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In view of (11)

|Ĩ(m)
5 (δ)| ≤ 4

3

∫
Qm

r 3
4
δ(x)ψ(x)|c(x)|u2(x)dx

≤ 4
3

∫
Qm∩Q 3

4 δ

r(x)C(r(x))ψ(x)u2(x)dx

≤ 4
3

( ∫
Q\Q2�0

r(x)C(2E0)u2(x)dx+
∫

Π
�m+�0,h
m ∩Q 3δ

4

r(x)C(r(x))u2(x)dx

)

≤ 4
3

(
C(2E0)

∫
Q

r(x)u2(x)dx+

h∫
3δ
4

∫
|y′|<Am+A0

ynC
( 2√

5
yn

)
ũ2(y′, yn)dy′dyn

)

≤ C5

(∫
Q

r(x)u2(x)dx+M

h∫
0

ynC
( 2√

5
yn

)
dyn

)
= I(m)

5 .

The estimation of the integral

Ĩ
(m)
6 (δ) =

∫
Q̃m

Nδ(y)ψ̃(y)ũ(y)f̃(y)dy.

|Ĩ(m)
6 (δ)| ≤ 4

3

∫
Qm

r(x)u(x)f(x)dx

≤ C6

(
‖u‖2

L2(Q) + ‖f‖2 +M

h∫
0

dyn

yn(1 + | ln yn|)
3
2

)
= I(m)

6

The estimation of the integral

Ĩ
(m)
7 (δ) =

∫
Q̃m

Nδ(y)ψ̃(y)(F̃ (y),∇ũ(y))dy.
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Analogously to the estimations of Ĩ(m)
2 (δ) and Ĩ(m)

4 (δ)

|Ĩ(m)
7 (δ)| ≤ 4

3

∫
Qm

r 3
4
δ(x)|F (x)||∇u(x)|dx

≤ ε

2

∫
Qm

ψ(x)r 3
4
δ(x)|∇u(x)|2dx+

16
9ε
‖F‖2

≤ ε
∫
Q

rδ(x)|∇u(x)|2dx+
ε

4
C̃0[M + ‖f‖2 + ‖F‖2] +

16
9ε
‖F‖2

= ε
∫
Q

rδ(x)|∇u(x)|2dx+ I(m)
7 (ε).

The estimation of the integral

Ĩ
(m)
8 (δ) =

∫
Q̃m

Nδ(y)ũ(y)(F̃ (y),∇ψ̃(y))dy.

|Ĩ(m)
8 (δ)| ≤ 4

3

∫
Qm

r 3
4
δ(x)|u(x)||F (x)||∇ψ(x)|dx

≤ 4
3
‖ψ‖C1(Q)

(∫
Q

r(x)u2(x)dx+ ‖F‖2

)
= I(m)

8 .

And finally, the estimation of the integral

Ĩ
(m)
9 (δ) =

∫
Q̃m

ψ̃(y)ũ(y)(F̃ (y),∇Nδ(y))dy.

|Ĩ(m)
9 (δ)| ≤

∫
Qm

|u(x)||F (x)|dx

≤
∫
Qm

u2(x)dx

r(x)(1 + | ln r(x)|) 3
2

+ ‖F‖2

≤ 1
2E0

∫
Q

u2(x)dx+
√
5
2
M

h∫
0

dyn

yn(1 + | ln yn|)
3
2

+ ‖F‖2 = I(m)
9 .
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Substituting the above obtained estimates in the equality (17) we get

γ1

∫
Q′

m

rδ(x)|∇u(x)|2dx ≤ Ĩ(m)
1 (δ) ≤

9∑
k=2

|Ĩ(m)
k (δ)|

≤ 4ε
∫
Q

rδ(x)|∇u(x)|2dx+ I(m)(ε),

where I(m)(ε) =
∑9

k=2 I
(m)
k .

Next, summing over all m with 1 ≤ m ≤ p we get

γ1

∫
Q

rδ(x)|∇u(x)|2dx ≤ γ1

p∑
m=1

∫
Q′

m

rδ(x)|∇u(x)|2dx

≤ 4εp
∫
Q

rδ(x)|∇u(x)|2dx+
p∑

m=1

I(m)(ε).

Choosing ε < γ1

8p we get

∫
Q

rδ(x)|∇u(x)|2dx ≤
2
γ1

p∑
m=1

I(m)(ε). (20)

Since the right-hand side of the last inequality (20) does not depend on δ, it
obviously follows that the function r(x)|∇u(x)|2 is integrable overQ. The lemma
is proved. QED

Proof of the Theorem. Let u(x) be a solution in W 1
2,loc of the problem

(1), (2). Then, by lemma, the integral (10) is bounded. On the other hand, it
is clear, that the function u(x) will be also a solution in W 1

2,loc of the Dirichlet
problem:

−div(A(x),∇v(x)) = f(x)− (B(x),∇u(x))− c(x)u(x)− divF (x),
v|∂Q = u0, (1’)

Therefore, as follows from the results of the article [2], for obtaining (n−1)-
dimentional continuity (i.e. the belonging to Cn−1(Q)) of the solution v(x) =
u(x) of the problem (1′), it is sufficient to show that the function g(x) = f(x)−
(B(x),∇u(x))− c(x)u(x) satisfies an analogous condition to (7), that is

r
3
2 (x)(1 + | ln r(x)|) 3

4 g(x) ∈ L2(Q) (7′)
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(the function F (x) satisfies the conditon (6)).
In view of the lemma and conditions (7), (10) it immediately follows that

r
3
2 (x)(1 + | ln r(x)|) 3

4 (f(x)− (B(x),∇u(x))) ∈ L2(Q).

In view of (11)∫
Q

r3(x)(1 + | ln r(x)|) 3
2 c2(x)u2(x)dx

≤ C2(2E0)
∫

Q2�0

r3(x)(1 + | ln r(x)|) 3
2u2(x)dx

+
p∑

m=1

∫
Π�m,h

m

r3(x)(1 + | ln r(x)|) 3
2C2(r(x))u2(x)dx

≤ C ′‖u‖2
L2(Q) +

p∑
m=1

∫
Π̃�m,h

m

y3
n(1 + | ln

2√
5
yn|)

3
2C2(

2√
5
yn)ũ2(y′, yn)dy′dyn

<∞.

Thus, the function g(x) satisfies the condition (7′) and consequently u ∈
Cn−1(Q).

The theorem is proved. QED
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