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Introduction

The first author (Johnson [3]) constructs a class of parallelisms in PG(3,K),
where K is an arbitrary field which admits a quadratic extension. The construc-
tion involves the use of a central collineation group G of a Pappian spread lying
in the parallelism so that G also acts as a collineation group of the parallelism.
The authors have recently enumerated isomorphism classes for the finite exam-
ples. Furthermore, there is the following classification.

Theorem 1. (see Johnson and Pomareda [2]) Let K be a skewfield, Σ a
spread in PG(3,K) and P a partial parallelism of PG(3,K) containing Σ.
If P admits as a collineation group the full central collineation group G of Σ

with a given axis U that acts two-transitive on the remaining spread lines then
(1) Σ is Pappian,
(2) P is a parallelism,
(3) the spreads of P − {Σ} are Hall, and
(4) G acts transitively on the spreads of P − {Σ}.
(5) Moreover, P is one of the parallelisms of the construction of Johnson.
Furthermore, in Johnson [1], this general idea was used to construct a variety

of parallelisms admitting a subgroup G− of the full central collineation group
of a finite Desarguesian spread Σ where G− acts transitively on the remaining
spreads of the parallelism.
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Theorem 2. (Johnson [1]) Let q be odd equal to p2bz where z is an odd inte-
ger > 1. Assume that 2a ‖ (q− 1) then there exists a nonidentity automorphism
σ of GF (q) such that 2a | (σ − 1).
Let γ2 and γ1 be nonsquares of GF (q) such that the equation γ2t

σ = γ1t
implies that t = 0.
(1) Then, there exists a parallelism Pγ2,σ of derived Knuth type with q2 + q

derived Knuth planes and one Desarguesian plane.
(2) The collineation group of this parallelism contains the central collineation

group of the Desarguesian plane with fixed axis U of order q22a(q + 1).

Actually, all of these examples stem from a general construction process, we
will list as follows:

Let Σ be any Pappian spread in PG(3,K) and let Σ′ any spread which
shares a regulus R with Σ such that Σ′ is derivable with respect to R. Assume
that there exists a subgroup G− of the central collineation group G with fixed
axis L with the following properties:

(0) : Σ and Σ′ share exactly R,

(i) : Every line skew to L and not in Σ is in Σ′G−,
(ii) : G− is transitive on the reguli that share L and
(iii) : a collineation g of G− such that for L′ ∈ Σ′ then L′g ∈ Σ′

implies that g is a collineation of Σ′.
Let (Rg)∗ denote the opposite regulus to Rg.

Theorem 3. Under the above assumptions, Σ∪{(Σ′g−Rg)∪ (Rg)∗ for all
g ∈ G− is a parallelism of PG(3,K) consisting of one Pappian spread Σ and
the remaining spreads derived Σ′-spreads.

Moreover, there are some related parallelisms, called the ‘derived paral-
lelisms’.

Theorem 4. (see Johnson [1]) Assume that Σ ∪ {(Σ′g − Rg) ∪ (Rg)∗for
all g ∈ G−} is a parallelism.Then {Σ − R} ∪ R∗ ∪ Σ′ ∪ {(Σ′g − Rg) ∪ (Rg)∗

for all g ∈ G− − {1}} is a parallelism. In this case, the spreads are Hall, Σ′

(undetermined) and derived Σ′ type spreads.

As mentioned above, the application of this construction technique has been
applied most successfully when the spreads other than the Pappian spread are
derived conical flock spreads and when the group contains a large normal sub-
group that is a central collineation group. (By ‘conical flock spreads’, we intend
to mean those spreads that correspond to flocks of quadratic cones.)

Actually, there is a classification of sorts of such parallelisms.
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Theorem 5. (see Johnson [1]) Let P be a parallelism in PG(3,K), for K
a field, that admits a Pappian spread Σ and a collineation group G− fixing a
line U of Σ that acts transitively on the remaining spreads of P.
(1) If K is finite and if G− contains the full elation group with axis U then

the spreads of P − {Σ} are derived conical flock spreads.
(2) If G− contains the full elation group with axis U and for ρ a spread of

P − {Σ}, G−
ρ contains a non-trivial homology (i.e. homology in Σ) then the

spreads of P − {Σ} are derived conical flock spreads.
So, we see that good candidates for the initial spreads involved in the con-

struction of such parallelisms are (derived) conical flock spreads.
In this article, we ask if the above construction can be considered over infinite

fields and we isolate on the question when the field is the field of real numbers.
Here we are able to show that there are a vast number of parallelisms depending
on the class of strictly increasing functions f on the reals that define a class of
conical flock spreads. We point out that our construction process constructs not
only parallelisms but (proper) maximal partial parallelisms, and such form the
first known classes of such objects.

1 Constructions over the Reals

We work over the field of real numbers K = R.
We consider a Pappian spread Σ1 defined as follows:

x = 0, y = x

[
u −t
t u

]
∀u, t ∈ R.

We let Σ2 be a spread in PG(3,R), defined by a function f :

x = 0, y = x

[
u −f(t)
t u

]
∀u, t ∈ R

where f is a function such that f(t) = t implies that t = 0 and f(0) = 0.
Thus, if a spread exists then the two spreads Σ1 and Σ2 share exactly the

regulus D with partial spread:

x = 0, y = x

[
u 0
0 u

]
∀u ∈ R.

Lemma 1. Let f be any continuous strictly increasing function on the field
of real numbers such that limx �−→±∞ f(t) = ±∞.
(1) Then Σ2 is a spread.
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(2) Let G− = EH− where H− denotes the homology group of Σ1 (or rather
the associated affine plane) whose elements are given by

〈
u −t 0 0
t u 0 0
0 0 1 0
0 0 0 1

 ;u2 + t2 = 1

〉
.

and where E denotes the full elation group with axis x = 0.
(2) Then G− is transitive on the set of reguli of Σ1 that share x = 0.
Proof. The proof of (1) is in Johnson and Liu [4].
We consider part (2). Since E is transitive on the components of Σ1 not

equal to x = 0, then first assume that there is a regulus D1 which shares exactly
x = 0 with D. Then there is an elation subgroup ED1 which acts transitively
on the components not equal x = 0. It follows easily that ED1 = ED and this
group induces a partition of the components of Σ1 into a unique set of reguli that
mutually share x = 0. (In this context, the set of ‘elation-base’ reguli determine
a flock of a quadratic cone in PG(3,R).)

Since ED is a normal subgroup of E, these elation-base reguli are permuted
transitively by E.

Now assume that a regulus D2 shares two components with D which we may
take without loss of generality to be x = 0 and y = 0. Now there is a unique
set of reguli sharing x = 0 and y = 0 which cover the components of Σ1. These
reguli have the property that there is a collineation group H1 of the full central
collineation group with axis x = 0 and coaxis y = 0 with the property that H1

acts transitively on the non-fixed components of each regulus. (Here the set of
‘homology-base’ reguli determine a flock of a hyperbolic quadric in PG(3,R).)

The group H1 has the following form:

〈
u 0 0 0
0 u 0 0
0 0 1 0
0 0 0 1

 ;u ∈ R−{0}
〉
.

We note that this is the form for the group due to the form of D.
Hence, D2 has the following basic form:

x = 0, y = x

[
w −s
s w

]
vI2 ∀ nonzero v ∈ R

where w and s are fixed elements of R.
It remains to show that a determinant 1 homology maps D onto D2. We note

that, since we are dealing with reguli, if y = x of D maps to some component
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of D2 then D must map to D2. Hence, equivalently, for a given w, s does there
exist elements u and t such that u2 + t2 = 1 and a nonzero element v of R such
that[

w −s
s w

]
v−1I2 =

[
u −t
t u

]
.

The determinant 1 group determines a circle of radius 1 and center (0, 0)
in the real 2-dimensional plane. Since (uv)2 + (tv)2 = v2 determine a circle of
radius v in the real 2-dimensional plane, then any affine point (w, s) lines on
one of these circles. Considering that the mapping (x, y) �−→ (xv, yv) for v fixed
and nonzero is a bijective mapping, it follows that if (w, s) is on the circle of
radius v and center (0, 0) then w2 + s2 = v2 if and only if (w/v, s/v) is a point
on the circle of radius 1 and equal to some (u, t) such that u2 + t2 = 1.

Hence, we must have
[
w −s
s w

]
v−1I2 =

[
u −t
t u

]
.

This completes the proof of part (2). QED

Theorem 6. Under the above assumptions, assume also that f is symmetric
with respect to the origin in the real Euclidean 2-space and f(to+ r) = f(to)+ r
for some to and r in the reals implies that r = 0.
Then Σ1 ∪ Σ∗

2g for all g ∈ G− and where Σ∗
2 denotes the derived spread of

Σ2 by derivation of D, is a partial parallelism Pf in PG(3,R).
Proof. By previous arguments, it suffices to show that the set of spreads

∪Σ2g for all g ∈ G− covers uniquely a line of PG(3,R) that does not lie in Σ1

and which is disjoint from x = 0 provided it covers it.
Assume that Σ2g and Σ2h share a component. Then so do Σ2gh

−1 and Σ2

share a component M . Let gh−1 = k and represent k as follows:

k =


1 0 m −r
0 1 r m
0 0 1 0
0 0 0 1




w −s 0 0
s w 0 0
0 0 1 0
0 0 0 1


such that w2 + s2 = 1.

Let M be

y = x

[
u∗ −f(t∗)
t∗ u∗

]
and let the preimage of k be

y = x

[
u −f(t)
t u

]
.
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Hence, we must have[
w −s
s w

] [
u∗ −f(t∗)
t∗ u∗

]
= [

u −f(t)
t u

]
+
[
m −r
r m

]
.

Equating the (1, 1) and (2, 2) entries, we must have:

wu∗ − st = wu∗ − sf(t∗).

However, by our conditions on f , we must have that s = 0. Since w2+s2 = 1,
this implies that w = ±1. Note that since f is symmetric with respect to the
origin then −f(−t) = f(t) for all t in the reals. This means that the homology
(x, y) �−→ (−x,−y) is a collineation of Σ2. Hence, we may assume that w = 1.

Equating the (1, 2) and (2, 1) entries above, we obtain:

−f(t∗) = −f(t)− r = f(−t)− r and
t∗ = t+ r.

Hence, we obtain:

f(t+ r) = −(f(−t)− r) = f(t) + r.

By our condition, this implies that r = 0.
In this case, we see that k is a collineation of Σ2. Hence, we have the proof

to our theorem. QED

Example 1. For examples of continuous, strictly increasing functions f
such that f(t) = t implies that t = 0 and f(to + r) = f(to) + r for some to
implies r = 0 which are also onto functions, we consider the following set of
examples:

Let f(t) = t+ at − 1 for a > 1 if t ≥ 0 and let
f(t) = t− a−t + 1 if t < 0.
Note that we are basically ‘defining’ the function so that −f(−t) = f(t).
Proof. Let f(t) = t = t+at−1 if and only if at = 1 if and only if t = 0. Now

assume that f(to+r) = f(to)+r. Without loss of generality, we may assume that
to is positive. If r is non-negative then we obtain to+r+ato+r−1 = to+ato−1+r
if and only if ato+r = ato so that r = 0. Hence, assume that r is non-positive
but to+ r is positive, the above proof applies. Hence, assume that to is positive,
r is negative and to + r is negative.

Hence, this implies that to+r−a−(to+r)+1 = to+ato−1+r. This equation
is valid if and only if a−(to+r) − 2 + ato = 0. Hence, we must have:
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a2to − 2ato + a−r = 0.

Hence, we must have

ato = (2±
√
4− 4a−r)/2 = 1±

√
1− a−r.

So, we must then have that 1− a−r ≥ 0 if and only if

1 ≥ a−r.

However, since −r is positive or zero and a > 1, this implies that r = 0.
Clearly, f(t) is strictly increasing since f ′(t) = 1 + at ln a > 0 for t > 0 and

f ′(t) = 1+a−t ln(−t) > 0 for t negative. Moreover, limt�−→∞ f(t) = limt�−→∞ t+
at − 1 =∞. QED

Remark 1. Note that the same proof works for f(t) = t + ag(t) − 1 for t
positive and f(t) = t− a−g(t) + 1 for t negative provided we have the following
conditions:

g(0) = 0, g(t) is differentiable and g′(t) > 0,
Proof. It suffices to show that

a−g(to+r) − 2 + ag(to) = 0

for to > 0 and to + r < 0 cannot have a real solution.
If r < 0, since g is strictly increasing, we have g(to+ r) < g(to) if to > 0. Let

g(to + r) + so = g(to) for so > 0 if r < 0. Then

a−g(to+r) − 2 + ag(to) = 0

is
a−g(to)+so − 2 + ag(to) = 0

has a solution only if 1−aso ≥ 0 and since so is positive this forces so = 0 which
is a contradiction. QED

Theorem 7. The above construction produces a parallelism if and only if
f(t)− t is surjective.

Proof. We have the group E as a collineation group of the partial paral-

lelism. Any line disjoint from x = 0 has the form y = x

[
a b
c d

]
. A typical

element of E has the following form:

τm,r =


1 0 m −r
0 1 r m
0 0 1 0
0 0 0 1

 .
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Hence, the given line is covered if and only if an image is covered. If we let
r = b and m = −d, we see that it suffices to consider lines with b = d = 0.

Hence, we consider y = x

[
a 0
c 0

]
.

First assume that a = 0. Since t − f(t) is onto, there is an element to

such that c = to − f(to). Apply τ0,−f(to) to y = x

[
0 −f(to)
to 0

]
to obtain

y = x

[
0 0

to − f(to) = c 0

]
. Conversely, if the element y = x

[
0 0
c 0

]
is covered

then t− f(t) is forced to be onto.
Now assume that a �= 0.
Consider the element

σw,s,m,r =


w −s m −r
s w r m
0 0 1 0
0 0 0 1


where w2+s2 = 1. We consider the image of y = x

[
0 −f(t)
t 0

]
under σw,s,m,r.

Such an image will cover y = x

[
a 0
c 0

]
if and only if

[
w −s
s w

] [
a 0
c 0

]
=

[
wa− sc 0
sa+ wc 0

]
[

m −f(t)− r
t− r m

]
.

Hence, we must have:

f(t) = r,m = 0, wa = sc, sa+ wc = t− f(t).

Hence,
t− f(t) = s(a2 + c2)/a

and since w2 + s2 = 1, we have s2(c2 + a2)/a2 so that

s = ±a
√
1/(c2 + a2).

Thus, the requirement is that

t− f(t) = ±
√

a2 + c2.

This is so if and only if t− f(t) is surjective. QED
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Remark 2. To see examples of functions f such that f(t)− t is not surjec-
tive, we note that the projection of y = − tan t onto the lines y = x or y = −x
is surjective. Thus, rotate y = − tan t thru π/4 to find a continuous function on
(0,∞), which is bounded between y = x and y = x+π/

√
2. The function is con-

tinuous and strictly increasing and is bijective. Furthermore, since y = x+π/
√
2

is an asymptote and the function is concave down when x is positive, it follows
that f(t+ r) = f(t) + r if and only if r = 0.

In this case, |f(t)− t| ≤ π/
√
2. Hence, a partial parallelism which is not a

parallelism is constructed which has the property that for each regulus R of Σ1

(the Pappian spread) containing a fixed line U, the opposite regulus R∗ is in a
unique spread of the parallelism.

We assert that when the function f produces a partial parallelism, it must
be a maximal partial parallelism.

To see this, suppose there is an another spread ρ which is not in the con-
structed partial parallelism P. We have noted that none of the lines of ρ can
intersect x = 0, the axis of the central collineation group G−, since we have
a covering of such lines by P. However, this means that we have a spread ρ
which covers the points of our unique Pappian spread Σ without intersecting
the axis x = 0, a contradiction. Hence, the partial parallelism is a maximal
partial parallelism.

Theorem 8. When the function f produces a partial parallelism P and
f(t)− t is not an onto function then P is a proper maximal partial parallelism.

Corollary 1. If P is a proper maximal partial parallelism then so is any
derived partial parallelism P∗.

Proof. All lines which nontrivially intersect the Baer subplane πo corre-
sponding to the axis of the central collineation group must be covered. So, any
spread extra to the parallelism P∗ must have its lines such that they are all
disjoint from πo, a contradiction. QED
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