Note di Matematica 21, n. 1, 2002, 93–106.

On a functional analytic approach for transition semigroups on $L^2(\mu)$

Abdelaziz Rhandi

Department of Mathematics, University of Marrakesh, B.P.: 2390, 40000-Marrakesh, Morocco rhandiQucam.ac.ma

Received: 18 September 2001; accepted: 15 January 2002.

Abstract. By using only analytic tools we prove the positivity of the transition semigroup associated formally with the stochastic differential equation

$$dX(t) = (AX(t) + F(X(t)))dt + Q^{\frac{1}{2}}dW(t), X(0) = x, t \ge 0, x \in H$$

in the case where $F \in UCB(H, H)$. As a consequence we obtain the existence of an invariant measure of the above stochastic equation.

Introduction

The Ornstein-Uhlenbeck semigroup, acting on measurable bounded functions $\varphi \colon H \to \mathbb{R}$, can be defined by the formula

$$(R_t\varphi)(x) := \mathbb{E}[\varphi(X(t,x))], \quad x \in H, t \ge 0,$$

where H is a separable Hilbert space and X is the Gaussian Markov process that solves the following differential stochastic equation

$$\begin{cases} dX(t) = AX(t)dt + Q^{\frac{1}{2}}dW(t), \quad t \ge 0, \\ X(0) = x \in H. \end{cases}$$
(1)

Here $A: D(A) \to H$ is the generator of a C₀-semigroup $(e^{tA})_{t\geq 0}$ on $H, W(t), t \geq 0$, is an *H*-valued cylindrical Wiener process and *Q* is a continuous, linear, self-adjoint and nonnegative operator in *H* satisfying

(H1) for each s > 0 the linear operator $e^{sA}Qe^{sA^*}$ is of trace-class, ker $Q = \{0\}$ and

$$\int_0^t Tr(e^{sA}Qe^{sA^*})ds < \infty \quad \text{ for all } t > 0.$$

For each $t \ge 0$, we set $Q_t := \int_0^t e^{sA} Q e^{sA^*} ds$. If (H1) holds, it is obvious that Q_t is a continuous, linear, self-adjoint and nonnegative operator on H which is of trace-class and ker $Q_t = \{0\}$.

We denote by $B_b(H)$ the Banach space of all bounded and Borel mappings from H into \mathbb{R} endowed with the norm

$$\|\varphi\|_{\infty} := \sup_{x \in H} |\varphi(x)|$$

and by UCB(H) the closed subspace of $B_b(H)$ of all uniformly continuous and bounded functions from H into \mathbb{R} . It can be proved that if (H1) holds then (R_t) is given by

$$(R_t\varphi)(x) = \int_H \varphi(y)\mathcal{N}(e^{tA}x, Q_t)(dy) = \int_H \varphi(e^{tA}x + y)\mathcal{N}(0, Q_t)(dy)$$

for $\varphi \in B_b(H), t \geq 0$ and $x \in H$ (see [3]). Here, $\mathcal{N}(e^{tA}x, Q_t)$ denotes the Gaussian measure with mean $e^{tA}x \in H$ and covariance Q_t . For more details concerning Gaussian measures on Banach spaces we refer to [6] and [12].

Consequently, (R_t) is strong Feller, i.e., $R_t \varphi \in UCB(H)$ for $\varphi \in B_b(H)$ and t > 0. Moreover, if A is not identically 0, the semigroup (R_t) on UCB(H) is not strongly continuous (see [1] and also [9]). By the type of (e^{tA}) we understand the number $\omega(A) := \lim_{t\to\infty} \frac{1}{t} \log ||e^{tA}||$. If $\omega(A) < 0$, we set

$$Q_{\infty} := \int_0^{\infty} e^{sA} Q e^{sA^*} ds$$

Using (H1) one can see that Q_{∞} is a continuous, linear, self-adjoint and nonnegative operator on H of trace-class. So we can define the Gaussian measure $\mu := \mathcal{N}(0, Q_{\infty})$ on H. The measure μ is the unique invariant measure for (R_t) (see [3]). This means that

$$\int_{H} (R_t \varphi)(x) \mu(dx) = \int_{H} \varphi(x) \mu(dx) \quad \text{for all } \varphi \in UCB(H).$$

We denote by $L^2(H,\mu)$ the space of all equivalence classes of real Borel functions φ on H such that

$$\int_{H} |\varphi(x)|^2 \mu(dx) < \infty$$

Endowed with the inner product

$$< \varphi, \psi >_{L^2} := \int_H \varphi(x) \psi(x) \mu(dx),$$

 $L^{2}(H,\mu)$ is a Hilbert space. Since μ is an invariant measure for (R_{t}) , one can see that (R_{t}) can be uniquely extended to a C₀-semigroup of contractions in

 $L^2(H,\mu)$. We denote by \mathcal{A} the generator of (R_t) in $L^2(H,\mu)$. If we denote by (e_k) a complete orthonormal system of eigenvectors of Q and by $D_k\varphi$ the derivative of φ in the direction e_k , then it is well known that D_k is closable. We shall still denote by D_k its closure. We recall now the definition of Sobolev spaces. We denote by $W^{1,2}(H,\mu)$ the linear space of all functions $\varphi \in L^2(H,\mu)$ such that $D_k\varphi \in L^2(H,\mu)$ for all $k \in \mathbb{N}$ and

$$\int_{H} |D\varphi(x)|^{2} \mu(dx) = \sum_{k=1}^{\infty} \int_{H} |D_{k}\varphi(x)|^{2} \mu(dx) < \infty.$$

The space $W^{1,2}(H,\mu)$ endowed with the inner product

$$<\varphi,\psi>_{W^{1,2}}:=\int_{H}\varphi(x)\psi(x)\mu(dx)+\int_{H}< D\varphi(x), D\psi(x)>\mu(dx),$$
$$\varphi,\psi\in W^{1,2}(H,\mu)$$

is a Hilbert space.

For $F \in UCB(H, H)$ we consider the linear operator (B, D(B)) on $L^2(H, \mu)$ defined by

$$D(B) = W^{1,2}(H,\mu)$$
 and $B\varphi(x) := \langle F(x), D\varphi(x) \rangle$

for $\varphi \in D(B)$ and $x \in H$.

In the sequel we will need another assumption.

(H2) For all t > 0 we have $e^{tA}(H) \subset Q_t^{\frac{1}{2}}(H)$ and there exists C > 0 and $\nu \in (0,1)$ such that $\|Q_t^{-\frac{1}{2}}e^{tA}\| \leq Ct^{-\nu}$

We note that (H2) is satisfied with $\nu = \frac{1}{2}$ if Q = Id (see [3, Corollary 9.22]).

Using a Miyadera perturbation theorem (see [7], [15]), we show that $\mathcal{A} + B$ generates a compact C₀-semigroup (P_t) on $L^2(H, \mu)$ if $\omega(A) < 0$ and (H1) and (H2) are satisfied. The semigroup (P_t) is given by a Dyson–Phillips series and this permits to derive some regularity results. The positivity of (P_t) is also proved. As a consequence we obtain the existence of an invariant measure for the following stochastic differential equation

$$\begin{cases} dX(t) = (AX(t) + F(X(t)))dt + Q^{\frac{1}{2}}dW(t), & t \ge 0, \\ X(0) = x \in H. \end{cases}$$
(2)

We note here that only analytic tools will be used.

The paper is organized as follows. In Section 1 we recall the Miyadera perturbation theorem and give some well-known properties of the Ornstein–Uhlenbeck semigroup (R_t) that we will need. In Section 2 we prove that $(\mathcal{A} + B, D(\mathcal{A}))$ generates a compact C₀-semigroup (P_t) on $L^2(H, \mu)$ and give some smoothing properties of (P_t) . This semigroup will be called *transition semigroup*. In Section 3 we show, by using purely analytic methods, that (P_t) is a positive semigroup on $L^2(H, \mu)$. From the positivity of (P_t) we obtain the existence of an invariant measure for (2).

1 Preliminaries

In this section we recall several results that we will use in the sequel. Let $(\mathcal{A}, D(\mathcal{A}))$ and (B, D(B)) be two linear operators. Recall that B is \mathcal{A} -bounded if $D(\mathcal{A}) \subset D(B)$ and $||B\varphi|| \leq a||\varphi|| + b||\mathcal{A}\varphi||$ for $\varphi \in D(\mathcal{A})$ and constants $a, b \geq 0$. Observe that if there exists $\lambda \in \rho(\mathcal{A})$ then B is \mathcal{A} -bounded if and only if $D(\mathcal{A}) \subset D(B)$ and $BR(\lambda, \mathcal{A})$ is closed (and hence bounded).

We will need the following Miyadera perturbation theorem (see [7] or [15, Theorem 1]).

Theorem 1. Let (R_t) be a C_0 -semigroup on a Banach space E with generator $(\mathcal{A}, D(\mathcal{A}))$. Consider an \mathcal{A} -bounded linear operator (B, D(B)) such that there are constants $\alpha > 0, \gamma \in [0, 1)$ and

$$\int_{0}^{\alpha} \|BR_{t}\varphi\| dt \leq \gamma \|\varphi\| \quad \text{for } \varphi \in D(\mathcal{A})$$
(3)

holds. Then the following assertions hold.

(a) The operator $G := \mathcal{A} + B$ with $D(G) = D(\mathcal{A})$ generates a C_0 -semigroup (P_t) on E given by the Dyson-Phillips series

$$P_t = \sum_{n=0}^{\infty} U_n(t), \quad t \ge 0, \tag{4}$$

where $U_0(t) := R_t$ and $U_{n+1}(t)\varphi := \int_0^t U_n(t-s)BR_s\varphi ds$ for $t \ge 0$ and $\varphi \in D(\mathcal{A})$. The series in (4) converges in the operator norm for $t \ge 0$.

(b) For $\varphi \in D(\mathcal{A})$ and $t \geq 0$, we have

$$P_t \varphi = R_t \varphi + \int_0^t P_{t-s} B R_s \varphi ds, \qquad (5)$$

$$P_t \varphi = R_t \varphi + \int_0^t R_{t-s} B P_s \varphi ds.$$
 (6)

Moreover, (P_t) is the only C_0 -semigroup satisfying (5) for $\varphi \in D(\mathcal{A})$.

Remark 1. The last assertion in (a) is shown in [11, Proposition 2.3]. Equation (6) follows from [10, Theorem 3.1 (c)].

We denote by $UCB^k(H)$, $k \in \mathbb{N}$, the subspace of UCB(H) of all functions $\varphi \colon H \to \mathbb{R}$ which are k-times Fréchet differentiable, with a bounded uniformly continuous k-derivative $D^k \varphi$.

The following regularity results of the Ornstein-Uhlenbeck semigroup (R_t) on UCB(H) and $L^2(H, \mu)$ (see [4, Theorem 2.7]) are relevant.

Theorem 2. Assume that (H1) and (H2) hold. Then for all $\varphi \in B_b(H)$ and t > 0, $R_t \varphi \in UCB^{\infty}(H)$ (:= $\cap_{k \in \mathbb{N}} UCB^k(H)$) and

$$|D(R_t\varphi)(x)| \le Ct^{-\nu} \|\varphi\|_{\infty}, \quad x \in H.$$
(7)

Theorem 3. If $\omega(A) < 0$ and (H1) and (H2) hold, then for any $\varphi \in L^2(H,\mu)$ and t > 0, we have $R_t \varphi \in W^{1,2}(H,\mu)$ and

$$\|D(R_t\varphi)\|_{L^2} \le Ct^{-\nu} \|\varphi\|_{L^2}.$$
(8)

The following description of the generator $(\mathcal{A}, D(\mathcal{A}))$ of (R_t) is shown in [3].

Proposition 1. If $\omega(A) < 0$ and (H1) are satisfied, then the subspace $\mathcal{D}_A := lin\{\varphi_h(\cdot) := e^{i < h, \cdot >}, h \in D(A^*)\}$ of $L^2(H, \mu)$ is a core for (R_t) . Moreover \mathcal{A} is the closure of \mathcal{A}_0 , where \mathcal{A}_0 is defined by

$$\mathcal{A}_0\varphi(x) := \frac{1}{2}Tr[QD^2\varphi(x)] + \langle Ax, D\varphi(x) \rangle \quad \text{for } \varphi \in \mathcal{D}_A.$$

2 A Miyadera perturbation of the Ornstein-Uhlenbeck semigroup on L^2

In this and the next section we suppose that $\omega(A) < 0$ and that (H1) and (H2) hold. By $(\mathcal{A}, D(\mathcal{A}))$ we denote the generator of the Ornstein-Uhlenbeck semigroup (R_t) on $L^2(H, \mu)$ and (B, D(B)) the operator defined by

$$D(B) := W^{1,2}(H,\mu)$$
 and $B\varphi(x) := \langle F(x), D\varphi(x) \rangle, x \in H$,

where $F \in UCB(H, H)$.

First of all we establish the following auxiliary result.

Lemma 1. For any $\lambda > 0$ and $\varphi \in L^2(H, \mu)$ we have $R(\lambda, \mathcal{A})\varphi \in W^{1,2}(H, \mu)$ and $BR(\lambda, \mathcal{A}) \in \mathcal{L}(L^2(H, \mu))$. In particular, $D(\mathcal{A}) \subset W^{1,2}(H, \mu)$ holds.

PROOF. From Theorem 3 we have for any $\varphi \in L^2(H,\mu)$ and $t > 0, R_t \varphi \in W^{1,2}(H,\mu)$ and

$$\begin{aligned} \|D(R_t\varphi) - D(R_s\varphi)\|_{L^2} &= \|DR_s(R_{t-s}\varphi - \varphi)\|_{L^2} \\ &\leq Cs^{-\nu} \|R_{t-s}\varphi - \varphi\|_{L^2} \end{aligned}$$

for t > s > 0. This implies that the function

$$0 < t \mapsto DR_t$$
 is strongly continuous.

Consequently, it follows from (8) that

$$\int_0^\infty e^{-\lambda t} \|D(R_t\varphi)\|_{L^2} dt < \infty \text{ for all } \varphi \in L^2(H,\mu) \text{ and } \lambda > 0.$$

Therefore, for each $\varphi \in L^2(H,\mu)$ and $\lambda > 0$, we have

$$R(\lambda, \mathcal{A})\varphi \in W^{1,2}(H, \mu) \text{ and } D(R(\lambda, \mathcal{A})\varphi) = \int_0^\infty e^{-\lambda t} D(R_t\varphi) dt.$$

Since, $F \in UCB(H, H)$, it is now easy to see that $BR(\lambda, \mathcal{A}) \in \mathcal{L}(L^2(H, \mu))$ for $\lambda > 0$.

We state now the main result of this section.

Theorem 4. Assume that $\omega(A) < 0$ and that (H1) and (H2) hold. Let $(\mathcal{A}, D(\mathcal{A}))$ and (B, D(B)) be defined as above. Then the operator $G := \mathcal{A} + B$ with $D(G) := D(\mathcal{A})$ generates a compact C_0 -semigroup (P_t) on $L^2(H, \mu)$ satisfying the following integral equation

$$P_t\varphi = R_t\varphi + \int_0^t P_{t-s}BR_s\varphi ds \tag{9}$$

for all $t \ge 0$ and $\varphi \in L^2(H,\mu)$. Moreover for each T > 0 there exists $C_T > 0$ such that

$$P_t \varphi \in W^{1,2}(H,\mu) \text{ and } \|D(P_t \varphi)\|_{L^2} \le C_T t^{-\nu} \|\varphi\|_{L^2}$$
 (10)

for $t \in (0,T]$ and $\varphi \in L^2(H,\mu)$. Further, (P_t) satisfies

$$P_t\varphi = R_t\varphi + \int_0^t R_{t-s}BP_s\varphi ds \tag{11}$$

for all $t \geq 0$ and $\varphi \in L^2(H,\mu)$. Finally, \mathcal{D}_A is a core for (P_t) and G is the closure of G_0 , where

$$G_0\varphi(x) := \frac{1}{2}Tr[QD^2\varphi(x)] + \langle Ax, D\varphi(x) \rangle + \langle F(x), D\varphi(x) \rangle$$

for $x \in H$ and $\varphi \in \mathcal{D}_A$.

Proof.

1. In order to apply Theorem 1 and by Lemma 1 it suffices to prove (3) for *B* and (R_t). From the proof of Lemma 1 one can see that the function $0 < t \mapsto BR_t \varphi \in L^2(H,\mu)$ is continuous and by (8) we have

$$\begin{aligned} \int_0^\alpha \|BR_t\varphi\|_{L^2} dt &\leq C \|F\|_\infty \|\varphi\|_{L^2} (\int_0^\alpha t^{-\nu} dt) \\ &= \left(\frac{C\|F\|_\infty}{1-\nu} \alpha^{1-\nu}\right) \|\varphi\|_{L^2} \end{aligned}$$

for all $\alpha > 0$ and $\varphi \in L^2(H,\mu)$. One can choose α sufficiently small such that $\gamma := \frac{C\|F\|_{\infty}}{1-\nu} \alpha^{1-\nu} \in (0,1)$ and thus (3) is satisfied for all $\varphi \in L^2(H,\mu)$. Therefore, $G := \mathcal{A} + B$ with $D(G) := D(\mathcal{A})$ generates a C_0 -semigroup (P_t) on $L^2(H,\mu)$ and (9), (11) hold for all $\varphi \in D(\mathcal{A})$. Since $D(\mathcal{A})$ is dense in $L^2(H,\mu)$, it follows from (8) and the dominated convergence theorem that (9) holds for all $\varphi \in L^2(H,\mu)$. From Proposition 1 and Lemma 1 follow that \mathcal{D}_A is a core for (P_t) and G is the closure of G_0 . On the other hand, since the embedding $W^{1,2}(H,\mu) \hookrightarrow L^2(H,\mu)$ is compact (see [2]), if we show that $P_t \varphi \in W^{1,2}(H,\mu)$ for t > 0 and $\varphi \in L^2(H,\mu)$, then (P_t) is compact.

2. We prove now (10) and (11) for all $\varphi \in L^2(H, \mu)$. By the same argument as above it follows from Theorem 1 and 3 that (P_t) is given by

$$P_t \varphi = \sum_{n=0}^{\infty} U_n(t) \varphi \quad \text{ for } t \ge 0 \text{ and } \varphi \in L^2(H,\mu),$$

where $U_0(t)\varphi := R_t\varphi$ and $U_{n+1}(t)\varphi := \int_0^t U_n(t-s)BR_s\varphi ds$ for all $t \ge 0$ and $\varphi \in L^2(H,\mu)$.

First we have, from Theorem 3, that $R_t \varphi \in W^{1,2}(H,\mu)$ and

$$\|D(R_t\varphi)\|_{L^2} \le Ct^{-\nu}\|\varphi\|_{L^2}$$

for all t > 0 and $\varphi \in L^2(H, \mu)$. For $U_1(\cdot)$ we also have $U_1(t)\varphi \in W^{1,2}(H, \mu)$

and

$$\begin{split} \|D(U_{1}(t)\varphi)\|_{L^{2}} &= \left\| D \int_{0}^{t} R_{(t-s)} B R_{s} \varphi ds \right\|_{L^{2}} \\ &\leq \int_{0}^{t} \|D(R_{(t-s)} B R_{s} \varphi)\|_{L^{2}} ds \\ &\leq C \int_{0}^{t} (t-s)^{-\nu} \|B R_{s} \varphi\|_{L^{2}} ds \\ &\leq C^{2} \|F\|_{\infty} t^{-\nu} \left[t^{1-\nu} \int_{0}^{1} (1-s)^{-\nu} s^{-\nu} ds \right] \|\varphi\|_{L^{2}} \\ &\leq (C^{2} \|F\|_{\infty} T^{1-\nu} K) t^{-\nu} \|\varphi\|_{L^{2}}, \end{split}$$

for $\varphi \in L^2(H,\mu)$ and $t \in (0,T]$, where $K := \int_0^1 (1-s)^{-\nu} s^{-\nu} ds$. By induction one can see that for each $\varphi \in L^2(H,\mu)$ and $t \in (0,T]$

$$U_n(t)\varphi \in W^{1,2}(H,\mu)$$

and

$$||D(U_n(t)\varphi)||_{L^2} \le C(C||F||_{\infty}T^{1-\nu}K)^n t^{-\nu}||\varphi||_{L^2}, n \in \mathbb{N}.$$

If we choose T sufficiently small, then $P_t \varphi \in W^{1,2}(H,\mu)$ and

$$\begin{aligned} \|D(P_t\varphi)\|_{L^2} &\leq \sum_{n=0}^{\infty} \|D(U_n(t)\varphi)\|_{L^2} \\ &\leq C_T t^{-\nu} \|\varphi\|_{L^2}, \end{aligned}$$

for $\varphi \in L^2(H,\mu)$ and $t \in (0,T]$. The semigroup property yields

$$P_t \varphi \in W^{1,2}(H,\mu) \text{ and } \|D(P_t \varphi)\|_{L^2} \le C_T t^{-\nu} \|\varphi\|_{L^2},$$

for all $\varphi \in L^2(H,\mu)$ and $t \in (0,T]$, where C_T is a constant depending on T. Now from the last inequality, the density of $D(\mathcal{A})$ in $L^2(H,\mu)$ and (6) it follows that (10) is satisfied for all $\varphi \in L^2(H,\mu)$ and the proof is finished.

QED

Remark 2. Let **1** be the constant function equal to 1. Since $R_t \mathbf{1} = \mathbf{1}$ for all $t \ge 0$, it follows from (9) that $P_t \mathbf{1} = \mathbf{1}$ for all $t \ge 0$. On the other hand, since the operator P_t , t > 0, is compact in $L^2(H, \mu)$, the same is true for its adjoint P_t^* , t > 0. Therefore, 1 is also an eigenvalue for P_t^* and $\text{Ker}(Id - P_t^*)$ is a finite dimensional non trivial subspace of $L^2(H, \mu)$.

~ ~

3 Positivity of the transition semigroup on $L^2(H, \mu)$

We denote by $Lip_b(H, H)$ the space of all bounded Lipschitz functions from H into H. It is proved in [14] and [13] that $Lip_b(H, H)$ is dense in UCB(H, H). Using this result, we prove the positivity of the transition semigroup (P_t) for $F \in UCB(H, H)$.

For the main result of this section we will use the following consequence of the Trotter-Kato theorem due to Voigt [16].

Theorem 5. Let (R_t) be a C_0 -semigroup on a Banach space E, with generator $(\mathcal{A}, D(\mathcal{A}))$. Let B_n , B be \mathcal{A} -bounded operators, and suppose that there exist $\alpha \in (0, \infty]$ and $\gamma \in [0, 1)$ such that

$$\int_0^\alpha \|B_n R_t \varphi\| dt \le \gamma \|\varphi\| \quad \text{for all } \varphi \in D(\mathcal{A}) \text{ and } n \in \mathbb{N}.$$

Further assume

$$\int_0^\alpha \|(B_n - B)R_t\varphi\|dt \to 0 \quad (n \to \infty),$$

for all $\varphi \in D(\mathcal{A})$. Then

$$P_t\varphi = \lim_{n \to \infty} P_t^{(n)}\varphi \quad \text{for all } \varphi \in E$$

uniformly for t in bounded subsets of \mathbb{R}_+ , where (P_t) (resp. $(P_t^{(n)})$) is the semigroup generated by $\mathcal{A} + B$ (resp. $\mathcal{A} + B_n$).

We can now prove the main result of this section.

Theorem 6. Assume that $\omega(A) < 0$ and that (H1) and (H2) hold. Let $(\mathcal{A}, D(\mathcal{A}) \text{ and } (B, D(B))$ be defined as in Section 1 and 2. Then the transition semigroup (P_t) is positive. Therefore there exists an invariant measure σ for (P_t) which is absolutely continuous with respect to μ . Moreover,

$$\frac{d\sigma}{d\mu}(x) \in L^2(H,\mu).$$

PROOF. The proof is carried out in two steps.

Step 1. We first suppose that $F \in Lip_b(H, H)$.

By standard arguments one sees that there is T > 0 such that the nonlinear equation

$$\left\{ \begin{array}{ll} \frac{\partial}{\partial t}\eta(t,x) = F(\eta(t,x)), \quad t \in [0,T], x \in H \\ \eta(0,x) = x \in H \end{array} \right.$$

has a unique solution $\eta(\cdot, \cdot)$ satisfying

$$\eta(t,x) = x + \int_0^t F(\eta(s,x)) \, ds$$
 for $t \in [0,T]$ and $x \in H$.

Since F is bounded and so by the uniqueness it follows that

the function $[0,T] \ni t \mapsto \eta(t,x)$ is continuous uniformly in $x \in H$ (12)

and

$$\eta(s,\eta(t,x)) = \eta(t+s,x) \tag{13}$$

for $x \in H$ and $t, s \in [0, T]$ such that $t + s \in [0, T]$. We consider now the family of bounded operators $(S_t)_{t \in [0,T]}$ on UCB(H) defined by

$$S_t\varphi(x) := \varphi(\eta(t,x))$$

for $t \in [0, T]$, $x \in H$ and $\varphi \in UCB(H)$. By (13) we obtain $S_{t+s} = S_t S_s$ for $t, s \in [0, T]$ such that $t + s \in [0, T]$. The strong continuity of (S_t) on [0, T] follows from (12). For $t \geq 0$ there is $n \in \mathbb{N}$ such that $\frac{t}{n} \leq T$. With this n we define $S_t := (S_{\frac{t}{n}})^n$. One can see that this definition is unambiguous. Hence $(S_t)_{t\geq 0}$ is a positive C₀-semigroup of contractions on UCB(H). If we denote by $(\mathcal{B}, D(\mathcal{B}))$ its generator, then

$$UCB^{1}(H) \subset D(\mathcal{B})$$
 and
 $(\mathcal{B}\varphi)(x) = \langle F(x), D\varphi(x) \rangle = (B\varphi)(x) \text{ for } \varphi \in UCB^{1}(H)$

(cf. [8, B-II, Example 3.15]). Hence,

$$\lim_{m \to \infty} \mathcal{B}_m \varphi = B \varphi \text{ in } UCB(H) \quad \text{ for all } \varphi \in UCB^1(H),$$

where $\mathcal{B}_m := m\mathcal{B}(m-\mathcal{B})^{-1}$ is the Hille–Yosida approximation of \mathcal{B} . On the other hand, if we put

$$R(\lambda)\varphi(x) := \int_0^\infty e^{-\lambda t} (R_t \varphi)(x) \, dt$$

for $\lambda > 0$, $\varphi \in UCB(H)$ and $x \in H$, then by [1, Proposition 6.2 and 3.1], $R(\lambda) \in \mathcal{L}(UCB(H))$ and by a simple computation one can see that

$$R(\lambda)\varphi = R(\lambda, \mathcal{A})\varphi$$
 for $\varphi \in UCB(H)$ and $\lambda > 0$.

Hence from Theorem 2 it follows that $R(\lambda, \mathcal{A})\varphi \in UCB^{\infty}(H)$ and there is $\lambda_0 > 0$ such that

$$\|BR(\lambda, \mathcal{A})\varphi\|_{\infty} \le \frac{1}{2}\|\varphi\|_{\infty}$$
(14)

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. This implies that

$$Id - BR(\lambda, \mathcal{A}) \colon UCB(H) \to UCB(H)$$

is invertible and $(Id - BR(\lambda, \mathcal{A}))^{-1} = \sum_{n=0}^{\infty} [BR(\lambda, \mathcal{A})]^n$ for $\lambda > \lambda_0$. Hence,

$$R(\lambda, \mathcal{A} + B)\varphi = R(\lambda, \mathcal{A})\sum_{n=0}^{\infty} [BR(\lambda, \mathcal{A})]^n \varphi \in UCB^{\infty}(H)$$
(15)

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. Since $R(\lambda, \mathcal{A})\mathbf{1} = \frac{1}{\lambda}$ and $R(\lambda, \mathcal{A}) \ge 0$ on UCB(H), it follows that

$$||R(\lambda, \mathcal{A})||_{\infty} \le \frac{1}{\lambda} \quad \text{for } \lambda > 0.$$

On the other hand, the estimate in (14) implies that

$$\|\mathcal{B}_m R(\lambda, \mathcal{A})\|_{\infty} = \|m(m - \mathcal{B})^{-1} B R(\lambda, \mathcal{A})\|_{\infty} \le \frac{1}{2}$$

for $\lambda > \lambda_0$. So from the dissipativity of \mathcal{B}_m on UCB(H), and since $||R(\lambda, \mathcal{A})||_{\infty} \leq \frac{1}{\lambda}$ for $\lambda > 0$, follows that

$$(\lambda_0, \infty) \subset \rho(\mathcal{A} + \mathcal{B}_m) \text{ and } \|R(\lambda, \mathcal{B}_m + \mathcal{A})\|_{\infty} \leq \frac{1}{\lambda}$$
 (16)

for $\lambda > \lambda_0$ and $m \in \mathbb{N}$. So by (16) we obtain

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. It remains to show that

$$R(\lambda, \mathcal{B}_m + \mathcal{A})\varphi \ge 0$$
 for all $\varphi \in UCB(H)_+, m \in \mathbb{N}$ and $\lambda > \lambda_0$.

The positivity of $e^{t\mathcal{B}_m}$ follows from that of S_t . Moreover, from [8, Theorem C-II.1.11] we have $T_m := \mathcal{B}_m + ||\mathcal{B}_m||Id \ge 0$ for $m \in \mathbb{N}$. Hence,

$$R(\lambda, \mathcal{B}_m + \mathcal{A}) = R(\lambda + \|\mathcal{B}_m\|, T_m + \mathcal{A})$$
$$= R(\lambda + \|\mathcal{B}_m\|, \mathcal{A}) \sum_{n=0}^{\infty} [T_m R(\lambda + \|\mathcal{B}_m\|, \mathcal{A})]^n \ge 0$$

for all $\lambda > \|\mathcal{B}_m\|$. We fix now $m \in \mathbb{N}$ and consider the set

$$M := \{\lambda > \lambda_0 \mid R(\lambda, \mathcal{B}_m + \mathcal{A}) \ge 0\}.$$

Then M is a closed and open subset of (λ_0, ∞) . In fact, let $\lambda \in M$. Then for small $\varepsilon > 0$ one has $R(\lambda - \varepsilon, \mathcal{B}_m + \mathcal{A}) = \sum_{n=0}^{\infty} \varepsilon^n R(\lambda, \mathcal{B}_m + \mathcal{A})^{n+1} \ge 0$. On the other hand, since $R(\lambda, \mathcal{B}_m + \mathcal{A}) = R(\lambda + \|\mathcal{B}_m\|, T_m + \mathcal{A}) \ge 0$, it follows from [17, Theorem 1.1] that $r(T_m R(\lambda + \|\mathcal{B}_m\|, \mathcal{A})) < 1$. Furthermore, we have

$$0 \le T_m R(\lambda + \varepsilon + \|\mathcal{B}_m\|, \mathcal{A}) \le T_m R(\lambda + \|\mathcal{B}_m\|, \mathcal{A}).$$

Therefore, $r(T_m R(\lambda + \varepsilon + ||\mathcal{B}_m||, \mathcal{A})) < 1$ and hence,

$$0 \le R(\lambda + \varepsilon + \|\mathcal{B}_m\|, T_m + \mathcal{A}) = R(\lambda + \varepsilon, \mathcal{B}_m + \mathcal{A}).$$

The claim "*M* is a closed subset of (λ_0, ∞) " follows from the resolvent equation and (16). Thus,

$$R(\lambda, \mathcal{B}_m + \mathcal{A}) \ge 0$$

on UCB(H) and by density on $L^2(H,\mu)$ for all $\lambda > \lambda_0$. This proves the positivity of (P_t) on $L^2(H,\mu)$.

Step 2. For $F \in UCB(H, H)$ there is $F_n \in Lip_b(H, H)$ such that

$$\lim_{n \to \infty} \|F_n - F\|_{\infty} = 0.$$

We associated with F_n the operator defined by

$$D(B_n) = D(B) = W^{1,2}(H,\mu)$$

and $B_n\varphi(x) := \langle F_n(x), D\varphi(x) \rangle, \varphi \in W^{1,2}(H,\mu), x \in H$ and $n \in \mathbb{N}$. So by Theorem 3 and Lemma 1 we obtain that B and B_n satisfy the assumptions of Theorem 5. Hence,

$$P_t \varphi = \lim_{n \to \infty} P_t^{(n)} \varphi$$
 for all $\varphi \in L^2(H, \mu)$ and $t \ge 0$.

From Step 1 we have the positivity of (P_t) on $L^2(H, \mu)$.

We prove now the last statement of the theorem.

From Remark 2 and the spectral mapping theorem for the point spectrum (cf. [5, IV-3.6]) it follows that there is $\psi \in D(G^*), \psi \neq 0$ such that $G^*\psi = 0$, where $(G^*, D(G^*))$ denotes the generator of (P_t^*) . Hence,

$$P_t^* \psi - \psi = \int_0^t P_s^*(G^* \psi) \, ds = 0 \quad \text{for all } t \ge 0.$$

Since (P_t) is positive it follows that $|\psi| = |P_t^*\psi| \le P_t^*|\psi|$ and from

$$< P_t^* |\psi|, \mathbf{1}> = < |\psi|, P_t \mathbf{1}> = < |\psi|, \mathbf{1}> = < |P_t^*\psi|, \mathbf{1}>$$

we obtain

 $|P_t^*\psi| = P_t^*|\psi| = |\psi| \quad \text{ for all } t \ge 0.$

If we put $\psi_0 := \frac{1}{\|\psi\|_{L^2}} |\psi|$ then the measure $\sigma(dx) := \psi_0(x) \mu(dx)$ has the asserted properties.

QED

Remark 3. The above result generalizes the one given in [4, Theorem 3.1].

Acknowledgements. The author is indebted to G. Da Prato for bringing the approximation result in [14] and [13] to his knowledge.

References

- S. CERRAI: A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum 49 (1994), 349–367.
- G. DA PRATO, P. MALLIAVIN, D. NUALART: Compact families of Wiener functionals, C.R.A.S. Paris 315 (1992), 1287–1291.
- [3] G. DA PRATO, J. ZABCZYK: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
- G. DA PRATO, J. ZABCZYK: Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (1995), 427–449.
- [5] J. K. ENGEL, R. NAGEL: One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., Springer-Verlag 2000.
- [6] H. H. Kuo: Gaussian measures in Banach spaces, Lecture Notes in Math. 463, Springer-Verlag 1975.
- [7] I. MIYADERA: On perturbation theory for semi-groups of operators, Tôhoku Math. J. 18 (1966), 299–310.
- [8] R. NAGEL (ed.): One-Parameter Semigroups of Positive Operators, Lecture Notes Math. 1184, Springer-Verlag 1986.
- [9] J. M. A. M. VAN NEERVEN, J. ZABCZYK: Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum 59 (1999), 389–403.
- [10] F. RÄBIGER, A. RHANDI, R. SCHNAUBELT, J. VOIGT: Non-autonomous Miyadera perturbation, Diff. Integ. Equat. 13 (2000), 341–368.
- [11] A. RHANDI: Dyson-Phillips expansion and unbounded perturbations of linear C₀-semigroups, J. Comp. Applied Math. 44 (1992), 339–349.
- [12] A. V. SKOROHOD: Integration in Hilbert Space, Springer-Verlag 1974.

- [13] I. G. TSAR'KOV: Smoothing of uniformly continuous mapping in L_p spaces, Math. Notes 54 (1993), 957–967.
- [14] F. A. VALENTINE: A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93.
- [15] J. VOIGT: On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977), 163–171.
- J. VOIGT: Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 67 (1986), 167–205.
- [17] J. VOIGT: On resolvent positive operators and positive C_0 -semigroups on AL-spaces, Semigroup Forum **38** (1989), 263–266.