Riemannian manifolds structured by a \mathcal{T}-parallel exterior recurrent connection

Filip Defever

Departement Industriële Wetenschappen en Technologie, Katholieke Hogeschool Brugge-Oostende, Zeedijk 101, 8400 Oostende, Belgium

Radu Rosca
59 Avenue Emile Zola, 75015 Paris, France

Received: 22 February 2001; accepted: 8 November 2001.

Abstract

Geometrical and structural properties are proved for Riemannian manifolds which are equipped with a \mathcal{T}-parallel exterior recurrent connection.

Keywords: Exterior recurrent forms, \mathcal{T}-parallel connection.
MSC 2000 classification: 53B20.

Introduction

Riemannian manifolds structured by a \mathcal{T}-parallel connection have been defined in [9] and have also been studied in [6]. Let M be a $2 m$-dimensional C^{∞}-manifold and ∇ be the Levi-Civita connection. We recall that if M carries a globally defined vector field $\mathcal{T}\left(\mathcal{T}^{A}\right)$ and the connection forms satisfy

$$
\begin{equation*}
\theta_{B}^{A}=<\mathcal{T}, e_{B} \wedge e_{A}> \tag{1}
\end{equation*}
$$

where \wedge denotes the wedge product of vector fields, then one says that M is structured by a \mathcal{T}-parallel connection. In the present paper we assume in addition that θ_{B}^{A} are exterior recurrent forms [2], which means that

$$
\begin{equation*}
d \theta_{B}^{A}=2 \alpha \wedge \theta_{B}^{A}, \quad \text { where } \quad \alpha=\mathcal{T}^{b} \tag{2}
\end{equation*}
$$

having \mathcal{T}^{b} as recurrence form. This implies that the curvature forms Θ_{B}^{A} are also exterior recurrent. In consequence of this fact, we adopt the terminology that M is structured by a \mathcal{T}-parallel exterior recurrent connection.

For the above mentioned structures, we prove the following properties:
(i) \mathcal{T} is a concurrent vector field and defines an infinitesimal conformal transformation of θ_{B}^{A} and Θ_{B}^{A} and the differential system $\nabla_{e_{A}}$ corresponding to the vector basis $\mathcal{O}=\left\{e_{A}\right\}$ admits an infinitesimal transformation with generator \mathcal{T};
(ii) $\|\mathcal{T}\|^{2}$ is an isoparametric function [13], and an eigenfunction of Δ having $4\left(2 m+\|\mathcal{T}\|^{2}\right)$ as eigenvalue;
(iii) if V is any parallel vector field, one has by the Weitzenbock formula that

$$
\left(\Delta \mathcal{T}^{b}\right) V=-4 m\|\mathcal{T}\|^{2} g(\mathcal{T}, V)
$$

(iv) if

$$
\Theta_{u^{1}, \ldots, u^{2 p}}^{(p)}=\Theta_{u_{1}}^{u_{2}} \wedge \Theta_{u_{2}}^{u_{3}} \wedge \cdots \wedge \Theta_{2 p-1}^{2 p}
$$

denotes the Bianchi forms (in the sense of Tachibana [12]), these forms are exterior recurrent with $3(2 m-1) \alpha$ as recurrence form;
(v) any vector field X such that

$$
\nabla X=X \wedge \mathcal{T}
$$

is a skew symmetric Killing vector field [11] and X defines an infinitesimal transformation of the conformal symplectic form Ω, i.e.

$$
\mathcal{L}_{X} \Omega=-2 g(X, \mathcal{T}) \Omega
$$

In Section 4 we consider some properties of the tangent bundle manifold $T M$ having the manifold M, studied in Section 3, as basis. On $T M$ the canonical vector field $V\left(V^{A}\right)(A=1, \cdots 2 m)$ is called the Liouville vector field [3], and the complete lift [14] Ω^{C} of the structure 2 -form of rank $4 m$ on $T M$ is given by

$$
\begin{equation*}
\Omega^{C}=\sum d V^{a} \wedge \omega^{a^{*}}+\omega^{a} \wedge=d V^{a^{*}}, \quad a=1, \cdots m ; a^{*}=a+m \tag{3}
\end{equation*}
$$

In Section 3, the following relation will be derived (see formula (24)):

$$
d \omega^{A}=\alpha \wedge \omega^{A}
$$

By exterior differentiation of (3), and taking into account the above formula, one gets

$$
\begin{equation*}
d \Omega^{C}=\alpha \wedge \Omega^{C} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{V} \Omega^{C}=\Omega^{C} \tag{5}
\end{equation*}
$$

The above equations express that the 2 -form Ω^{C} is a homogeneous 2 -form of class 1 [4] on $T M$. Next, the Liouville form μ (i.e. $\mu=V^{b}$) is expressed by

$$
\begin{equation*}
\mu=\sum V^{A} \omega^{A} \quad A=1, \cdots 2 m \tag{6}
\end{equation*}
$$

and one finds by exterior differentiation that

$$
\begin{equation*}
d \mu=\alpha \wedge \mu+\psi \tag{7}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
\psi=\sum d V^{A} \wedge \omega^{A} \tag{8}
\end{equation*}
$$

One also derives that

$$
\begin{equation*}
\mathcal{L}_{V} \psi=\psi \tag{9}
\end{equation*}
$$

and this shows that, like Ω^{C}, the form ψ is a homogeneous 2 -form of class 1 . Moreover, making use of the vertical operator i_{v} of Godbillon [3], one calculates that

$$
\begin{equation*}
i_{v} \psi=0 \tag{10}
\end{equation*}
$$

which together with (9) proves that ψ is a Finslerian form. In addition, if \mathcal{T}^{V} denotes the vertical lift of \mathcal{T}, one also finds that

$$
\mathcal{L}_{\mathcal{T} V} \psi=0
$$

which shows that \mathcal{T}^{V} defines an infinitesimal automorphism of ψ. Some other properties regarding the principal almost symplectic form $I I=\|\mathcal{T}\|^{2} \psi$ are also discussed.

1 Preliminaries

Let (M, g) be a Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection of g. Let $\Gamma T M=\Xi(M)$ be the set of sections of the tangent bundle, and

$$
\begin{equation*}
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \quad \sharp: T M \stackrel{\sharp}{\rightleftarrows} T^{*} M \tag{11}
\end{equation*}
$$

the classical isomorphisms defined by g (i.e. ${ }^{b}$ is the index lowering operator, and $\#$ is the index raising operator).

Following [8], we denote by

$$
\begin{equation*}
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right) \tag{12}
\end{equation*}
$$

the set of vector valued q-forms $(q<\operatorname{dim} M)$, and we write for the covariant derivative operator with respect to ∇

$$
\begin{equation*}
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M) \tag{13}
\end{equation*}
$$

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=d \circ d=0$. We denote by $I \in A^{1}(M, T M)$ the canonical vector valued 1-form of M, which is also called the soldering form of $M[2]$. Since ∇ is symmetric one has that $d^{\nabla}(I)=0$.

A vector field $Z \in \Xi(M)$ which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla Z)=\nabla^{2} Z=\pi \wedge I \in A^{2}(M, T M) ; \quad \pi \in \Lambda^{1} M \tag{14}
\end{equation*}
$$

is defined to be an exterior concurrent vector field [9] (see also [6]). The 1-form π in (14) is called the concurrence form and is defined by

$$
\begin{equation*}
\pi=\lambda Z^{b}, \quad \lambda \in \Lambda^{0} M . \tag{15}
\end{equation*}
$$

Let $\mathcal{O}=\left\{e_{A} \mid A=1, \cdots 2 m\right\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}\right\}$ be its associated coframe. Then E. Cartan's structure equations can be written in indexless manner as

$$
\begin{align*}
\nabla e & =\theta \otimes e \tag{16}\\
d \omega & =-\theta \wedge \omega \tag{17}\\
d \theta & =-\theta \wedge \theta+\Theta \tag{18}
\end{align*}
$$

In the above equations θ (respectively Θ) are the local connection forms in the tangent bundle $T M$ (respectively the curvature 2-forms on M).

2 Manifolds with \mathcal{T}-parallel exterior recurrent connection

Let $M(\Omega, \mathcal{T}, g)$ be a $2 m$-dimensional manifold with almost symplectic 2-form Ω and with structure vector field $\mathcal{T}\left(\mathcal{T}^{A}\right)(A=1, \cdots 2 m)$. Now, by reference to [9] (see also [6]), we assume that (M, g) is structured by a \mathcal{T}-parallel connection, which means that the connection forms satisfy

$$
\begin{equation*}
\theta_{B}^{A}=<\mathcal{T}, e_{B} \wedge e_{A}> \tag{19}
\end{equation*}
$$

where \wedge stands for the wedge product of vector fields. In addition, we also assume that the connection forms θ_{B}^{A} are exterior recurrent [2] with $2 \mathcal{T}^{b}$ as recurrence forms, which means that

$$
\begin{equation*}
d \theta_{B}^{A}=2 \mathcal{T}^{b} \wedge \theta_{B}^{A} \tag{20}
\end{equation*}
$$

Since

$$
\theta_{B}^{A}=\mathcal{T}^{B} \omega^{A}-\mathcal{T}^{A} \omega^{B}
$$

it follows that

$$
\begin{equation*}
d \mathcal{T}^{A}=\mathcal{T}^{A} \alpha \tag{21}
\end{equation*}
$$

where we have set $\alpha:=\mathcal{T}^{b}$. Now, in view of the structure equations (17) and invoking the curvature forms Θ_{B}^{A}, one derives

$$
\begin{equation*}
\Theta_{B}^{A}=\|\mathcal{T}\|^{2} \omega^{B} \wedge \omega^{A}+\alpha \wedge \theta_{B}^{A} \tag{22}
\end{equation*}
$$

Since one has

$$
\begin{equation*}
d\|\mathcal{T}\|^{2}=2\|\mathcal{T}\|^{2} \alpha \tag{23}
\end{equation*}
$$

then by (21) one gets

$$
\begin{equation*}
d \omega^{A}=\alpha \wedge \omega^{A} \tag{24}
\end{equation*}
$$

By exterior differentiation of (22), one derives that

$$
\begin{equation*}
d \Theta_{B}^{A}=3 \alpha \wedge \Theta_{B}^{A} \tag{25}
\end{equation*}
$$

The above equation expresses the fact that the connection forms being exterior recurrent implies the same property for the curvature forms Θ_{B}^{A} also. Taking moreover the Lie derivatives of θ_{B}^{A} and Θ_{B}^{A} with respect to the structure vector field \mathcal{T}, and using (23), one finds

$$
\begin{align*}
\mathcal{L}_{\mathcal{T}} \theta_{B}^{A} & =2\|\mathcal{T}\|^{2} \theta_{B}^{A} \tag{26}\\
\mathcal{L}_{\mathcal{T}} \Theta_{B}^{A} & =3\|\mathcal{T}\|^{2} \Theta_{B}^{A}
\end{align*}
$$

Hence, \mathcal{T} defines an infinitesimal conformal transformation of both the connection forms and the curvature forms.

On the other hand, by (19) one finds that

$$
\begin{equation*}
\nabla e_{A}=\mathcal{T}^{A} I-\omega^{A} \otimes \mathcal{T} \tag{27}
\end{equation*}
$$

and in this way one gets by (21) also that

$$
\begin{equation*}
\nabla \mathcal{T}=\|\mathcal{T}\|^{2} I \tag{28}
\end{equation*}
$$

This shows that \mathcal{T} is a concurrent vector field (it is well known [1] that concurrency is of conformal nature). From (27) and (28) it follows that

$$
\begin{equation*}
\left[\mathcal{T}, e_{A}\right]=-\|\mathcal{T}\|^{2} e_{A} \tag{29}
\end{equation*}
$$

and this proves that the differential system $\left\{e_{A}\right\}$ corresponding to the vector basis admits an infinitesimal transformation with generator \mathcal{T}. We also notice that operating on (28) with ∇ (the operator ∇ acts inductively) one gets

$$
\begin{equation*}
\nabla(\nabla \mathcal{T})=\nabla^{2} \mathcal{T}=\|\mathcal{T}\|^{4} \alpha \wedge I \tag{30}
\end{equation*}
$$

This shows that \mathcal{T} is an exterior concurrent vector field [10] (see also [7]). In consequence of (30) one may now also write

$$
\begin{equation*}
\mathcal{R}(\mathcal{T}, Z)=-(2 m-1)\|\mathcal{T}\|^{4} g(\mathcal{T}, Z), \quad Z \in \Xi(M) \tag{31}
\end{equation*}
$$

where \mathcal{R} means the Ricci tensor field of ∇. In the same way one can also calculate that

$$
\begin{equation*}
\nabla^{3} e_{A}=\|\mathcal{T}\|^{4}\left(\alpha \wedge \omega^{A}\right) \wedge I, \tag{32}
\end{equation*}
$$

and consequently one can conclude that the elements of the vector basis $\left\{e_{A}\right\}$ are exterior concurrent vector fields; in the sequel we will use the terminology of a 2 -exterior vector basis for this case.

We recall that a function $f: \mathbb{R}^{2 m} \rightarrow \mathbb{R}$ is called isoparametric [13] if both $\|\operatorname{grad} f\|^{2}$ and $\operatorname{div}(\operatorname{grad} f)$ are functions of f. In the case under discussion, one has first of all that

$$
\begin{equation*}
\operatorname{grad}\|\mathcal{T}\|^{2}=\|\mathcal{T}\|^{2} \mathcal{T} \tag{33}
\end{equation*}
$$

from which there follows that

$$
\begin{equation*}
\|\operatorname{grad}\| \mathcal{T}\left\|^{2}\right\|^{2}=\|\mathcal{T}\|^{4} \tag{34}
\end{equation*}
$$

Next, one also derives that

$$
\begin{equation*}
\operatorname{div} \operatorname{grad}\|\mathcal{T}\|^{2}=4\left(2 m+\|\mathcal{T}\|^{2}\right)\|\mathcal{T}\|^{2} \tag{35}
\end{equation*}
$$

from which one may conclude that $\|\mathcal{T}\|^{2}$ is an isoparametric function. Next, by the general formula

$$
\Delta \mu=-\operatorname{div} \nabla \mu, \quad \mu \in \Lambda^{0} M
$$

where Δ denotes the Laplacian, and in virtue of (33), we see that $\|\mathcal{T}\|^{2}$ is an eigenfunction of Δ, having $4\left(2 m+\|\mathcal{T}\|^{2}\right)$ as eigenvalue of Δ. Recall now that if Z is any vector field, one has

$$
\operatorname{tr} \nabla^{2} Z=\sum \nabla_{e_{A}}\left(\nabla_{e_{A}} Z\right)
$$

Then, by (30) one derives

$$
\begin{equation*}
\operatorname{tr} \nabla^{2} \mathcal{T}=2\|\mathcal{T}\|^{2} \mathcal{T} \tag{36}
\end{equation*}
$$

With \mathcal{R} denoting the Ricci tensor field, one now has

$$
\begin{equation*}
\mathcal{R}(\mathcal{T}, V)=-2(2 m-1)\|\mathcal{T}\|^{2} g(\mathcal{T}, V), \quad V \in \Xi(M) \tag{37}
\end{equation*}
$$

Then, by reference to [8], if V is a parallel vector field, one has the Weitzenbock formula:

$$
\begin{equation*}
\left(\Delta \mathcal{T}^{b}\right) V=\mathcal{R}(V, \mathcal{T})-<\operatorname{tr} \nabla^{2} \mathcal{T}, V>=-4 m\|\mathcal{T}\|^{2} g(\mathcal{T}, V) \tag{38}
\end{equation*}
$$

On the other hand, regarding the almost symplectic form Ω, one writes with standard notation

$$
\begin{equation*}
\Omega=\sum \omega^{a} \wedge \omega^{a^{*}}, \quad a=1, \cdots m, a^{*}=a+m . \tag{39}
\end{equation*}
$$

Taking the exterior derivative of Ω, and in view of (24), one finds that

$$
\begin{equation*}
d \Omega=2 \alpha \wedge \Omega, \quad \alpha=\mathcal{T}^{b} . \tag{40}
\end{equation*}
$$

This affirms the fact that Ω defines a locally conformal symplectic structure on M having α as covector of Lee. Then, as is known from [5], calling the mapping $Z \rightarrow-i_{Z} \Omega={ }^{b} Z$ the symplectic isomorphism, one has

$$
\begin{equation*}
-{ }^{b} \mathcal{T}=i_{\mathcal{T}} \Omega=\sum\left(\mathcal{T}^{a} \omega^{a^{*}}-\mathcal{T}^{a^{*}} \omega^{a}\right) \tag{41}
\end{equation*}
$$

and by (21) and (24) one finds that

$$
\begin{equation*}
\mathcal{L}_{\mathcal{T}} \Omega=2\|\mathcal{T}\|^{2} \Omega \tag{42}
\end{equation*}
$$

Hence, following a known definition [5], the above equation means that \mathcal{T} defines a infinitesimal conformal transformation of Ω. On the other hand, regarding the curvature forms, we recall that the Bianchi forms in the sense of Tachibana [12] are defined by

$$
\begin{equation*}
\Theta_{u^{1}, \ldots, u^{2 p}}^{(p)}=\Theta_{u_{1}}^{u_{2}} \wedge \Theta_{u_{2}}^{u_{3}} \wedge \cdots \wedge \Theta_{2 p-1}^{2 p} . \tag{43}
\end{equation*}
$$

Then, by exterior differentiation one gets from (43)

$$
\begin{equation*}
d\left(\Theta_{u^{1}, \ldots, u^{2 p}}^{(p)}\right)=3(2 m-1) \alpha \wedge \Theta_{u^{1}, \ldots, u^{2 p}}^{(p)} \tag{44}
\end{equation*}
$$

and we may consequently observe that the Bianchi forms $\Theta_{u^{1}, \ldots, u^{2 p}}^{(p)}$ are exterior recurrent, with $3(2 m-1) \alpha$ as recurrence form.

In another perspective, let X be any vector field on M; if the covariant differential of X is the wedge product of X with the structure vector field \mathcal{T}, this means that X is a skew symmetric Killing vector field (in the sense of [11]), i.e.

$$
\begin{equation*}
\nabla X=X \wedge \mathcal{T}=\alpha \otimes X-X^{b} \otimes \mathcal{T} \tag{45}
\end{equation*}
$$

One may also remark that the above relation is indeed in correspondence with Rosca's lemma [11] concerning skew-symmetric Killing and conformal skewsymmetric Killing vector fields.

$$
d X^{b}=2 X \wedge X^{b}
$$

In this case, the differentials of the components of X, i.e. $d X^{A}$ satisfy

$$
\begin{equation*}
d X^{A}=-g(X, \mathcal{T}) \omega^{A}+X^{A} \alpha \tag{46}
\end{equation*}
$$

In view of the mentioned facts, and taking the Lie derivative of Ω with respect to X, one calculates that

$$
\begin{equation*}
\mathcal{L}_{X} \Omega=-2 g(X, \mathcal{T}) \Omega \tag{47}
\end{equation*}
$$

This proves the property that any skew symmetric Killing vector field X, having the structure vector field \mathcal{T} as generative, defines an infinitesimal conformal transformation of the conformal symplectic form Ω.

Summing up, we state the following
Theorem 1. Let $M(\Omega, \mathcal{T}, \alpha)$ be a $2 m$-dimensional Riemannian manifold structured by a \mathcal{T}-parallel exterior recurrent connection. In this case, the structure vector field \mathcal{T} is concurrent and defines an infinitesimal conformal transformation of the connection forms θ_{B}^{A}, of the curvature forms Θ_{B}^{A} and of the conformal symplectic form Ω. In addition, one has the following properties:
(i) $\|\mathcal{T}\|^{2}$ is an isoparametric function;
(ii) the differential system $\left\{e_{A}\right\}$ admits an infinitesimal transformation with generator \mathcal{T}, i.e.

$$
\left[\mathcal{T}, e_{A}\right]=\|\mathcal{T}\|^{2} e_{A}
$$

(iii) all the basis vector fields e_{A} are 2-exterior concurrent vector fields, i.e.

$$
\nabla^{3} e_{A}=2\|\mathcal{T}\|^{2}\left(\alpha \wedge \omega^{A}\right) \wedge I, \quad \alpha=\mathcal{T}^{b}
$$

(iv) $\|\mathcal{T}\|^{2}$ is an eigenfunction of Δ having $4\left(2 m+\|\mathcal{T}\|^{2}\right)$ as eigenvalue of Δ;
(v) if V denotes any parallel vector field, then one has the Weitzenbock formula

$$
\Delta \alpha(V)=\mathcal{R}(V, \mathcal{T})-<t r \nabla^{2} \mathcal{T}, V>=-4 m\|\mathcal{T}\|^{2} g(\mathcal{T}, V)
$$

(vi) if $\Theta_{u_{1}, \ldots, u_{2 p}}^{(p)}=\Theta_{u_{1}}^{u_{2}} \wedge \Theta_{u_{2}}^{u_{3}} \wedge \cdots \wedge \Theta_{2 p-1}^{2 p}$ means the Bianchi form of type $(2 p, 2 p)$, in the sense of Tachibana, then $\Theta_{u_{1}, \ldots, u_{2 p}}^{(p)}$ is exterior recurrent with $3(2 m-1) \alpha$ as recurrence form;
(vii) any skew symmetric Killing vector field X, having \mathcal{T} as generative, defines an infinitesimal conformal transformation of Ω, i.e.

$$
\mathcal{L}_{X} \Omega=-2 g(X, \mathcal{T}) \Omega
$$

3 Geometry of the tangent bundle

In this section we will discuss some properties of the tangent bundle manifold $T M$ having as basis manifold M studied in Section 3. Denote by $V\left(V^{A}\right)(A=$ $1, \cdots 2 m$) the Liouville vector field (or the canonical vector field on $T M[4]$). Accordingly, one may consider the set

$$
B^{*}=\left\{\omega^{A}, d V^{A} \mid A=1, \cdots 2 m\right\}
$$

as an adapted cobasis in $T M$ (see also [6]). Let T_{s}^{r} be the set of all tensor fields of type (r, s) on M. It is well known [14] that the vertical and complete lifts are linear mappings of $T_{s}^{r} M$ into $T_{s}^{r}(T M)$, and one has

$$
\begin{equation*}
\left(\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)^{C}=\mathcal{T}_{1}{ }^{V} \otimes \mathcal{T}_{2}^{C}+\mathcal{T}_{1}^{C} \otimes \mathcal{T}_{2}^{V} \tag{48}
\end{equation*}
$$

Hence, in the case under discussion we may define the complete lift Ω^{C} of the structure conformal 2 -form Ω of M to be the 2 -form of rank $4 m$ on $T M$ given by

$$
\begin{equation*}
\Omega^{C}=\sum\left(d V^{a} \wedge \omega^{a^{*}}+\omega^{a} \wedge d V^{a^{*}}\right), \quad a=1, \cdots m ; a^{*}=a+m \tag{49}
\end{equation*}
$$

On the other hand, the Liouville vector field V is expressed by

$$
\begin{equation*}
V=\sum V^{A} \frac{\partial}{\partial V^{A}} \tag{50}
\end{equation*}
$$

it is also known that the associated basic 1-form

$$
\begin{equation*}
\mu=\sum V^{A} \omega^{A} \tag{51}
\end{equation*}
$$

is called the Liouville form. (Alternatively, one can also write that $\mu=V^{b}$.)
Next, taking the Lie differential of Ω^{C} with respect to the Liouville vector field V and taking into account (24), one finds that

$$
\begin{equation*}
\mathcal{L}_{V} \Omega^{C}=\Omega^{C} \tag{52}
\end{equation*}
$$

Hence, with reference to [4], the above equation proves that Ω^{C} is a homogeneous 2 -form of class 1 on $T M$.

Taking moreover the Lie differential of Ω^{C} with respect to the structure vector field \mathcal{T}, one also derives that

$$
\begin{equation*}
\mathcal{L}_{\mathcal{T}} \Omega^{C}=\|\mathcal{T}\|^{2} \Omega^{C} \tag{53}
\end{equation*}
$$

The above equation shows that \mathcal{T} defines also for Ω^{C} an infinitesimal conformal transformation.

By exterior derivation of the Liouville form μ defined by (51), and taking into account (24), one gets that

$$
\begin{equation*}
d \mu=\alpha \wedge \mu+d V^{A} \wedge \omega^{A} . \tag{54}
\end{equation*}
$$

Introducing the notation

$$
\begin{equation*}
\psi=\sum d V^{a} \wedge \omega^{a} \tag{55}
\end{equation*}
$$

and by reference to (24), it follows that

$$
\begin{equation*}
d \psi=\alpha \wedge \psi \tag{56}
\end{equation*}
$$

which shows that ψ is an exterior recurrent form with α as recurrence form. Then, since one first calculates that

$$
\begin{equation*}
i_{V} \psi=\mu, \quad \alpha(V)=0 \tag{57}
\end{equation*}
$$

one finally gets that

$$
\begin{equation*}
\mathcal{L}_{V} \psi=\psi \tag{58}
\end{equation*}
$$

which shows that, as Ω^{c}, the form ψ is also a homogeneous 2 -form of class 1 .
We remind that the vertical operator i_{v} in the sense of [3] possesses by definition the following properties:

$$
\begin{equation*}
i_{v} \lambda=0, \quad i_{v} \omega^{A}=0, \quad i_{v} d V^{A}=\omega^{A} \tag{59}
\end{equation*}
$$

from which one calculates that

$$
\begin{equation*}
i_{v} \psi=0 . \tag{60}
\end{equation*}
$$

On behalf of (58) and (60) we conclude from this that ψ is a Finslerian form [3].
In another order of ideas, we recall that the vertical lift Z^{V} [14] of any vector field Z on M with components Z^{A} is expressed by

$$
Z^{V}=\binom{0}{Z^{A}}=Z^{A} \frac{\partial}{\partial v^{A}}, \quad(A=1, \cdots 2 m)
$$

Therefore, in the case under consideration, the vertical lift \mathcal{T}^{V} of \mathcal{T} is given by

$$
\begin{equation*}
\mathcal{T}^{V}=\sum \mathcal{T}^{A} \frac{\partial}{\partial V^{A}}, \quad A \in\{1, \cdots 2 m\} \tag{61}
\end{equation*}
$$

and by (55) one finds respectively that

$$
\begin{equation*}
i_{\mathcal{T}^{V}} \psi=\alpha, \quad \text { and } \quad \mathcal{L}_{\mathcal{T}^{V}} \psi=0 \tag{62}
\end{equation*}
$$

On behalf of the above, one may conclude that \mathcal{T}^{V} defines an infinitesimal automorphism of the 2 -form ψ.

Finally, consider the 2-form

$$
\begin{equation*}
I I=f \psi ; \tag{63}
\end{equation*}
$$

following [4], f is called the energy scalar. Now, in view of (23), one has

$$
\begin{equation*}
d I I=f\left(\frac{d f}{f}+\frac{d\|\mathcal{T}\|^{2}}{2\|\mathcal{T}\|^{2}}\right) \wedge I I . \tag{64}
\end{equation*}
$$

By reference to [4] and in case that

$$
\frac{d f}{f}+\frac{d\|\mathcal{T}\|^{2}}{2\|\mathcal{T}\|^{2}}=0
$$

this shows that $I I$ can then be seen as the canonical symplectic form of the $4 m$-dimensional manifold $T M$. Finally, we set

$$
r=f \mathrm{v},
$$

where $\mathrm{v}=\frac{1}{2} \sum\left(V^{A}\right)^{2}$ denotes the Liouville function; then, by reference to [4], the pair ($r, I I$) defines a regular mechanical system (in the sense of Klein) having r as kinetic energy.

Theorem 2. Let TM be the tangent bundle manifold having as basis the conformal symplectic manifold $M(\Omega, \mathcal{T}, \alpha)$ structured by a \mathcal{T}-parallel connection and having $\alpha=\mathcal{T}^{b}$ as covector of Lee. Let V, μ, and v , be the Liouville vector field, the Liouville form, and the Liouville function of TM respectively. One has the following properties:
(i) the complete lift Ω^{C} on $T M$ of the conformally symplectic form Ω of M, is a homogeneous 2-form of class 1, i.e.

$$
\mathcal{L}_{V} \Omega^{C}=\Omega^{C}
$$

(ii) the vertical lift \mathcal{T}^{V} of \mathcal{T} defines an infinitesimal automorphism of the 2form $\psi=\sum d V^{A} \wedge \omega^{A},(A=1, \cdots 2 m) ;$
(iii) if f stands for the energy function of M, then the 2 -form $I I=f \psi$ is the canonical symplectic form on $T M\left(\frac{d f}{f}+\frac{d\|\mathcal{T}\|^{2}}{2\|\mathcal{T}\|^{2}}=0\right)$, and the pair $(r, I I)$, consisting of the scalar $r=f \vee$ and the 2-form $f \psi$, defines a regular mechanical system (in the sense of Klein) on TM.

References

[1] B. Y. Chen: Geometry of Submanifolds, M. Dekker, New York (1973)
[2] D. K. Datta: Exterior recurrent forms on manifolds, Tensor NS 36 (1982) 115-120.
[3] C. Godbillon: Géometrie différentielle et mécanique analytique, Herman, Paris (1969).
[4] J. Klein: Espaces variationnels et mécanique, Ann. Inst. Fourier 4 (1962) 1-124.
[5] P. Libermann, C. M. Marle: Géométrie Symplectique, Bases Théorétiques de la Mécanique, U.E.R. Math. du C.N.R.S. 7 (1986).
[6] I. Mihai, R. Rosca, L. Verstraelen: On a class of exact locally conformal cosymplectic manifolds, Internat. J. Math. and Math. Sci. 19 (1996) 267-278.
[7] M. Petrovic, R. Rosca, L. Verstraelen: Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989) 179-187.
[8] W. A. Poor: Differential Geometric Structures, Mc Graw Hill, New York (1981).
[9] R. Rosca: On parallel conformal connections, Kodai Math. J. 2 (1979) 1-9.
[10] R. Rosca: Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986) 167-174.
[11] R. Rosca: On exterior concurrent skew symmetric Killing vector fields, Rend. Mat. Messina 2 (1993) 131-145.
[12] S. Tachibana: On contact structures of real and complex manifolds, Tohoku Math. J. $\mathbf{5}$ (1963) 123-130.
[13] A. West: Isoparametric systems, Geometry and Topology of Submanifolds 1 (1989) 222230.
[14] K. Yano, S. Ishihara: Differential Geometry of Tangent and Cotangent Bundles, M. Dekker, New York (1973).

