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Departement Industriële Wetenschappen en Technologie,
Katholieke Hogeschool Brugge-Oostende,
Zeedijk 101, 8400 Oostende, Belgium

Radu Rosca
59 Avenue Emile Zola, 75015 Paris, France

Received: 22 February 2001; accepted: 8 November 2001.

Abstract. Geometrical and structural properties are proved for Riemannian manifolds which
are equipped with a T -parallel exterior recurrent connection.

Keywords: Exterior recurrent forms, T -parallel connection.

MSC 2000 classification: 53B20.

Introduction

Riemannian manifolds structured by a T -parallel connection have been de-
fined in [9] and have also been studied in [6]. Let M be a 2m-dimensional
C∞-manifold and ∇ be the Levi-Civita connection. We recall that if M carries
a globally defined vector field T (T A) and the connection forms satisfy

θAB =< T , eB ∧ eA >, (1)

where ∧ denotes the wedge product of vector fields, then one says that M
is structured by a T -parallel connection. In the present paper we assume in
addition that θAB are exterior recurrent forms [2], which means that

dθAB = 2α ∧ θAB, where α = T 8, (2)

having T 8 as recurrence form. This implies that the curvature forms ΘA
B are

also exterior recurrent. In consequence of this fact, we adopt the terminology
that M is structured by a T -parallel exterior recurrent connection.

For the above mentioned structures, we prove the following properties:

(i) T is a concurrent vector field and defines an infinitesimal conformal trans-
formation of θAB and ΘA

B and the differential system ∇eA corresponding
to the vector basis O = {eA} admits an infinitesimal transformation with
generator T ;
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(ii) ‖T ‖2 is an isoparametric function [13], and an eigenfunction of ∆ having
4(2m+ ‖T ‖2) as eigenvalue;

(iii) if V is any parallel vector field, one has by the Weitzenbock formula that

(∆T 8)V = −4m‖T ‖2g(T , V );

(iv) if
Θ(p)

u1,...,u2p = Θu2
u1
∧Θu3

u2
∧ · · · ∧Θ2p

2p−1

denotes the Bianchi forms (in the sense of Tachibana [12]), these forms
are exterior recurrent with 3(2m− 1)α as recurrence form;

(v) any vector field X such that

∇X = X ∧ T

is a skew symmetric Killing vector field [11] and X defines an infinitesimal
transformation of the conformal symplectic form Ω, i.e.

LXΩ = −2g(X, T )Ω.

In Section 4 we consider some properties of the tangent bundle manifold TM
having the manifold M , studied in Section 3, as basis. On TM the canonical
vector field V (V A) (A = 1, · · · 2m) is called the Liouville vector field [3], and
the complete lift [14] ΩC of the structure 2-form of rank 4m on TM is given by

ΩC =
∑

dV a ∧ ωa∗ + ωa∧ = dV a∗ , a = 1, · · ·m; a∗ = a+m. (3)

In Section 3, the following relation will be derived (see formula (24)):

dωA = α ∧ ωA.

By exterior differentiation of (3), and taking into account the above formula,
one gets

dΩC = α ∧ ΩC , (4)

and
LV ΩC = ΩC . (5)

The above equations express that the 2-form ΩC is a homogeneous 2-form of
class 1 [4] on TM . Next, the Liouville form µ (i.e. µ = V 8) is expressed by

µ =
∑

V AωA A = 1, · · · 2m (6)
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and one finds by exterior differentiation that

dµ = α ∧ µ+ ψ, (7)

where we have set
ψ =

∑
dV A ∧ ωA. (8)

One also derives that
LV ψ = ψ, (9)

and this shows that, like ΩC , the form ψ is a homogeneous 2-form of class 1.
Moreover, making use of the vertical operator iv of Godbillon [3], one calculates
that

ivψ = 0, (10)

which together with (9) proves that ψ is a Finslerian form. In addition, if T V

denotes the vertical lift of T , one also finds that

LT V ψ = 0,

which shows that T V defines an infinitesimal automorphism of ψ. Some other
properties regarding the principal almost symplectic form II = ‖T ‖2ψ are also
discussed.

1 Preliminaries

Let (M, g) be a Riemannian C∞-manifold and let ∇ be the covariant dif-
ferential operator with respect to the metric tensor g. We assume that M is
oriented and ∇ is the Levi-Civita connection of g. Let ΓTM = Ξ(M) be the set
of sections of the tangent bundle, and

O : TM 8→ T ∗M and L : TM
9← T ∗M (11)

the classical isomorphisms defined by g (i.e. 8 is the index lowering operator,
and 9 is the index raising operator).

Following [8], we denote by

Aq(M,TM) = ΓHom(ΛqTM, TM), (12)

the set of vector valued q-forms (q < dimM), and we write for the covariant
derivative operator with respect to ∇

d∇ : Aq(M,TM)→ Aq+1(M,TM). (13)
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It should be noticed that in general d∇
2
= d∇ ◦ d∇ �= 0, unlike d2 = d ◦ d = 0.

We denote by I ∈ A1(M,TM) the canonical vector valued 1-form of M , which
is also called the soldering form of M [2]. Since ∇ is symmetric one has that
d∇(I) = 0.

A vector field Z ∈ Ξ(M) which satisfies

d∇(∇Z) = ∇2Z = π ∧ I ∈ A2(M,TM); π ∈ Λ1M (14)

is defined to be an exterior concurrent vector field [9] (see also [6]). The 1-form
π in (14) is called the concurrence form and is defined by

π = λZ8, λ ∈ Λ0M. (15)

Let O = {eA | A = 1, · · · 2m} be a local field of orthonormal frames over M
and let O∗ = covect{ωA} be its associated coframe. Then E. Cartan’s structure
equations can be written in indexless manner as

∇e = θ ⊗ e, (16)
dω = −θ ∧ ω, (17)
dθ = −θ ∧ θ +Θ. (18)

In the above equations θ (respectively Θ) are the local connection forms in the
tangent bundle TM (respectively the curvature 2-forms on M).

2 Manifolds with T -parallel exterior recurrent con-
nection

LetM(Ω, T , g) be a 2m-dimensional manifold with almost symplectic 2-form
Ω and with structure vector field T (T A) (A = 1, · · · 2m). Now, by reference to [9]
(see also [6]), we assume that (M, g) is structured by a T -parallel connection,
which means that the connection forms satisfy

θAB =< T , eB ∧ eA >, (19)

where ∧ stands for the wedge product of vector fields. In addition, we also
assume that the connection forms θAB are exterior recurrent [2] with 2T 8 as
recurrence forms, which means that

dθAB = 2T 8 ∧ θAB. (20)

Since
θAB = T BωA − T AωB,
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it follows that
dT A = T Aα, (21)

where we have set α := T 8. Now, in view of the structure equations (17) and
invoking the curvature forms ΘA

B, one derives

ΘA
B = ‖T ‖2ωB ∧ ωA + α ∧ θAB. (22)

Since one has
d‖T ‖2 = 2‖T ‖2α, (23)

then by (21) one gets
dωA = α ∧ ωA. (24)

By exterior differentiation of (22), one derives that

dΘA
B = 3α ∧ΘA

B. (25)

The above equation expresses the fact that the connection forms being exterior
recurrent implies the same property for the curvature forms ΘA

B also. Taking
moreover the Lie derivatives of θAB and ΘA

B with respect to the structure vector
field T , and using (23), one finds

LT θAB = 2‖T ‖2θAB,
LT ΘA

B = 3‖T ‖2ΘA
B.

(26)

Hence, T defines an infinitesimal conformal transformation of both the connec-
tion forms and the curvature forms.

On the other hand, by (19) one finds that

∇eA = T AI − ωA ⊗ T , (27)

and in this way one gets by (21) also that

∇T = ‖T ‖2I. (28)

This shows that T is a concurrent vector field (it is well known [1] that concur-
rency is of conformal nature). From (27) and (28) it follows that

[T , eA] = −‖T ‖2eA, (29)

and this proves that the differential system {eA} corresponding to the vector
basis admits an infinitesimal transformation with generator T . We also notice
that operating on (28) with ∇ (the operator ∇ acts inductively) one gets

∇(∇T ) = ∇2T = ‖T ‖4α ∧ I. (30)
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This shows that T is an exterior concurrent vector field [10] (see also [7]). In
consequence of (30) one may now also write

R(T , Z) = −(2m− 1)‖T ‖4g(T , Z), Z ∈ Ξ(M), (31)

whereRmeans the Ricci tensor field of∇. In the same way one can also calculate
that

∇3eA = ‖T ‖4(α ∧ ωA) ∧ I, (32)

and consequently one can conclude that the elements of the vector basis {eA}
are exterior concurrent vector fields; in the sequel we will use the terminology
of a 2-exterior vector basis for this case.

We recall that a function f : R2m → R is called isoparametric [13] if both
‖gradf‖2 and div(gradf) are functions of f . In the case under discussion, one
has first of all that

grad‖T ‖2 = ‖T ‖2T , (33)

from which there follows that

‖ grad‖T ‖2 ‖2 = ‖T ‖4. (34)

Next, one also derives that

div grad‖T ‖2 = 4
(
2m+ ‖T ‖2

)
‖T ‖2, (35)

from which one may conclude that ‖T ‖2 is an isoparametric function. Next, by
the general formula

∆µ = −div∇µ, µ ∈ Λ0M,

where ∆ denotes the Laplacian, and in virtue of (33), we see that ‖T ‖2 is an
eigenfunction of ∆, having 4(2m+ ‖T ‖2) as eigenvalue of ∆. Recall now that if
Z is any vector field, one has

tr∇2Z =
∑

∇eA(∇eAZ).

Then, by (30) one derives

tr∇2T = 2‖T ‖2T . (36)

With R denoting the Ricci tensor field, one now has

R(T , V ) = −2(2m− 1)‖T ‖2g(T , V ), V ∈ Ξ(M). (37)



On manifolds with T -parallel exterior recurrent connection 65

Then, by reference to [8], if V is a parallel vector field, one has the Weitzenbock
formula:

(∆T 8)V = R(V, T )− < tr∇2T , V >= −4m‖T ‖2g(T , V ). (38)

On the other hand, regarding the almost symplectic form Ω, one writes with
standard notation

Ω =
∑

ωa ∧ ωa∗ , a = 1, · · ·m, a∗ = a+m. (39)

Taking the exterior derivative of Ω, and in view of (24), one finds that

dΩ = 2α ∧ Ω, α = T 8. (40)

This affirms the fact that Ω defines a locally conformal symplectic structure on
M having α as covector of Lee. Then, as is known from [5], calling the mapping
Z → −iZΩ = 8Z the symplectic isomorphism, one has

− 8T = iT Ω =
∑

(T aωa∗ − T a∗ωa), (41)

and by (21) and (24) one finds that

LT Ω = 2‖T ‖2Ω. (42)

Hence, following a known definition [5], the above equation means that T defines
a infinitesimal conformal transformation of Ω. On the other hand, regarding the
curvature forms, we recall that the Bianchi forms in the sense of Tachibana [12]
are defined by

Θ(p)
u1,...,u2p = Θu2

u1
∧Θu3

u2
∧ · · · ∧Θ2p

2p−1. (43)

Then, by exterior differentiation one gets from (43)

d
(
Θ(p)

u1,...,u2p

)
= 3(2m− 1)α ∧Θ(p)

u1,...,u2p , (44)

and we may consequently observe that the Bianchi forms Θ(p)
u1,...,u2p are exterior

recurrent, with 3(2m− 1)α as recurrence form.
In another perspective, let X be any vector field on M ; if the covariant

differential of X is the wedge product of X with the structure vector field T ,
this means that X is a skew symmetric Killing vector field (in the sense of [11]),
i.e.

∇X = X ∧ T = α⊗X −X8 ⊗ T . (45)
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One may also remark that the above relation is indeed in correspondence with
Rosca’s lemma [11] concerning skew-symmetric Killing and conformal skew-
symmetric Killing vector fields.

dX8 = 2X ∧X8.

In this case, the differentials of the components of X, i.e. dXA satisfy

dXA = −g(X, T )ωA +XAα. (46)

In view of the mentioned facts, and taking the Lie derivative of Ω with respect
to X, one calculates that

LXΩ = −2g(X, T )Ω. (47)

This proves the property that any skew symmetric Killing vector field X, having
the structure vector field T as generative, defines an infinitesimal conformal
transformation of the conformal symplectic form Ω.

Summing up, we state the following
Theorem 1. Let M(Ω, T , α) be a 2m-dimensional Riemannian manifold

structured by a T -parallel exterior recurrent connection. In this case, the struc-
ture vector field T is concurrent and defines an infinitesimal conformal trans-
formation of the connection forms θAB, of the curvature forms Θ

A
B and of the

conformal symplectic form Ω. In addition, one has the following properties:

(i) ‖T ‖2 is an isoparametric function;

(ii) the differential system {eA} admits an infinitesimal transformation with
generator T , i.e.

[T , eA] = ‖T ‖2eA;

(iii) all the basis vector fields eA are 2-exterior concurrent vector fields, i.e.

∇3eA = 2‖T ‖2(α ∧ ωA) ∧ I, α = T 8.

(iv) ‖T ‖2 is an eigenfunction of ∆ having 4(2m+ ‖T ‖2) as eigenvalue of ∆;

(v) if V denotes any parallel vector field, then one has the Weitzenbock formula

∆α(V ) = R(V, T )− < tr∇2T , V >= −4m‖T ‖2g(T , V );

(vi) if Θ(p)
u1,...,u2p = Θu2

u1
∧ Θu3

u2
∧ · · · ∧ Θ2p

2p−1 means the Bianchi form of type

(2p, 2p), in the sense of Tachibana, then Θ(p)
u1,...,u2p is exterior recurrent

with 3(2m− 1)α as recurrence form;
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(vii) any skew symmetric Killing vector field X, having T as generative, defines
an infinitesimal conformal transformation of Ω, i.e.

LXΩ = −2g(X, T )Ω.

3 Geometry of the tangent bundle

In this section we will discuss some properties of the tangent bundle manifold
TM having as basis manifold M studied in Section 3. Denote by V (V A) (A =
1, · · · 2m) the Liouville vector field (or the canonical vector field on TM [4]).
Accordingly, one may consider the set

B∗ = {ωA, dV A | A = 1, · · · 2m}

as an adapted cobasis in TM (see also [6]). Let T r
s be the set of all tensor fields

of type (r, s) on M . It is well known [14] that the vertical and complete lifts are
linear mappings of T r

sM into T r
s (TM), and one has

(T1 ⊗ T2)C = T V
1 ⊗ T C

2 + T C
1 ⊗ T V

2 . (48)

Hence, in the case under discussion we may define the complete lift ΩC of the
structure conformal 2-form Ω of M to be the 2-form of rank 4m on TM given
by

ΩC =
∑

(dV a ∧ ωa∗ + ωa ∧ dV a∗), a = 1, · · ·m; a∗ = a+m. (49)

On the other hand, the Liouville vector field V is expressed by

V =
∑

V A ∂

∂V A
; (50)

it is also known that the associated basic 1-form

µ =
∑

V AωA (51)

is called the Liouville form. (Alternatively, one can also write that µ = V 8.)
Next, taking the Lie differential of ΩC with respect to the Liouville vector

field V and taking into account (24), one finds that

LV ΩC = ΩC . (52)

Hence, with reference to [4], the above equation proves that ΩC is a homogeneous
2-form of class 1 on TM .
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Taking moreover the Lie differential of ΩC with respect to the structure
vector field T , one also derives that

LT ΩC = ‖T ‖2ΩC . (53)

The above equation shows that T defines also for ΩC an infinitesimal conformal
transformation.

By exterior derivation of the Liouville form µ defined by (51), and taking
into account (24), one gets that

dµ = α ∧ µ+ dV A ∧ ωA. (54)

Introducing the notation
ψ =

∑
dV a ∧ ωa, (55)

and by reference to (24), it follows that

dψ = α ∧ ψ, (56)

which shows that ψ is an exterior recurrent form with α as recurrence form.
Then, since one first calculates that

iV ψ = µ, α(V ) = 0, (57)

one finally gets that
LV ψ = ψ, (58)

which shows that, as Ωc, the form ψ is also a homogeneous 2-form of class 1.
We remind that the vertical operator iv in the sense of [3] possesses by

definition the following properties:

ivλ = 0, ivω
A = 0, ivdV

A = ωA, (59)

from which one calculates that

ivψ = 0. (60)

On behalf of (58) and (60) we conclude from this that ψ is a Finslerian form [3].
In another order of ideas, we recall that the vertical lift ZV [14] of any vector

field Z on M with components ZA is expressed by

ZV =
(

0
ZA

)
= ZA ∂

∂vA
, (A = 1, · · · 2m).
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Therefore, in the case under consideration, the vertical lift T V of T is given by

T V =
∑

T A ∂

∂V A
, A ∈ {1, · · · 2m}, (61)

and by (55) one finds respectively that

iT V ψ = α, and LT V ψ = 0. (62)

On behalf of the above, one may conclude that T V defines an infinitesimal
automorphism of the 2-form ψ.

Finally, consider the 2-form

II = fψ; (63)

following [4], f is called the energy scalar. Now, in view of (23), one has

dII = f

(
df

f
+

d‖T ‖2
2‖T ‖2

)
∧ II. (64)

By reference to [4] and in case that

df

f
+

d‖T ‖2
2‖T ‖2 = 0,

this shows that II can then be seen as the canonical symplectic form of the
4m-dimensional manifold TM . Finally, we set

r = fv,

where v = 1
2

∑
(V A)2 denotes the Liouville function; then, by reference to [4],

the pair (r, II) defines a regular mechanical system (in the sense of Klein) having
r as kinetic energy.

Theorem 2. Let TM be the tangent bundle manifold having as basis the
conformal symplectic manifoldM(Ω, T , α) structured by a T -parallel connection
and having α = T 8 as covector of Lee. Let V , µ, and v, be the Liouville vector
field, the Liouville form, and the Liouville function of TM respectively. One has
the following properties:

(i) the complete lift ΩC on TM of the conformally symplectic form Ω of M , is
a homogeneous 2-form of class 1, i.e.

LV ΩC = ΩC ;
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(ii) the vertical lift T V of T defines an infinitesimal automorphism of the 2-
form ψ =

∑
dV A ∧ ωA, (A = 1, · · · 2m);

(iii) if f stands for the energy function of M , then the 2-form II = fψ is the
canonical symplectic form on TM

(
df
f + d‖T ‖2

2‖T ‖2 = 0
)
, and the pair (r, II),

consisting of the scalar r = fv and the 2-form fψ, defines a regular me-
chanical system (in the sense of Klein) on TM .
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