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For the projective plane € = (B, ®, 1), we denote the joining line of two
different points P and @ € 3 by PQ and the intersection point of two different
lines g and h € & by g N h. Moreover, let P* be the set of all lines through P
and let g* be the set of all points on g. Given two lines ¢ and h and a point P
with P ¢ ¢g* and P ¢ h*, the bijective mapping

J3Q— PQNhehn”
is called perspectivity and is denoted by g* i h*; any (finite) composition of
perspectivities is a projectivity.
In [3], SALZMANN calls & a topological projective plane, when P and & are

endowed with non-trivial and non-discrete topologies Toz and T, respectively,
such that the joining of two different points

{(PQePXP[P#Q}>(P,Q) —PQe®

and the intersection of two different lines

{(g,h) €& xB|g#h}>(9,h) —gnNheP

are continuous mappings; here, the sets {(P,Q) € PxP | P # Q} and {(g,h) €
® x & | g # h} carry the trace topologies of the product topologies on P x P
and & x &, respectively.
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We consider an ordered projective plane (&, ||), where || denotes the corre-
sponding relation of separation. In [4], WYLER constructs topologies on 8 and
&, such that ¢ = (,, 1) is a topological projective plane in the sense of
SALZMANN. In this context, an important role is played by the segments

(A4, B)c ={X € (AB)" | AB || CX}

for all triples of different collinear points A, B and C since || is perspectivity-
preserving, i.e. for four different points A, B, C and D on a line g with AB || CD
and a perspectivity m: ¢g* — h* we have A™B™ || C™ D™, there is a dual relation
of separation ||* for the lines with the corresponding dual segments

(a,b)c ={x € (anb)* | ab|* cx}.

Two dual segments (a,b). and (a’, ')y with a Nb # o’ Nb determine a convex
quadrangle, which consists of all intersection points of lines in (a,b). and of
lines in (a’,b"); the set of all convex quadrangles is a base of a topology on
P. Moreover, if & is endowed with the dually constructed topology, then € is
a topological projective plane in the sense of SALZMANN. This summary may
serve as a structure of the following considerations.

The purpose of this paper is to generalize this method such that it is also
applicable to projective planes endowed with an appropriate multi-valued half-
ordering in the sense of JUNKERS, e.g. to projective planes having a coordina-
tizing ternary field endowed with a uniform valuation in the sense of KALHOFF
with an Abelian value group.

Therefore, we consider the set T of all triples of different collinear points and
the set Q of all quadruples (A, B, C, D) of collinear points with (A, B,C) € ¥.
Moreover, let I' be an arbitrary set and let A be a non-empty proper subset of
T". For a perspectivity-preserving mapping ¢: Q — I', we define the interval

(A,B)c = {X € (AB)* | p(A, B,C, X) € A}

for any (A, B,C) € T, and we call ¢ topological, if the following conditions are
satisfied for an (4, B,C) € :

(1) C ¢ (A, B)c holds.
(2) (A,B)c = (A, B)¢r holds for all (A, B,C") € ¥ with C" ¢ (A, B)c¢.

(3) For all A, B" € (A,B)¢, we have (A',B" )¢ C (A,B)¢ for A' # B/,
(A,B")¢ C(A,B)¢ for A# B and (A", B)c C (A, B)¢ for A’ # B.

(4) For all X € (A, B)c, there exist A, B’ € (A,B)c with X # A" # B' # X
and X € (A, B')c.
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(5) There exist (A’, A”,C) and (B, B”,C) € T with (4, A")eN(B', B")c = 0,
Ac (A, A")¢ and B € (B, B")c.

(6) For all (A',B',C) € ¥ and all X € (A4,B)c N (4',B’)¢, there exists
(A", B",C) € ¥ with X € (A", B")c C (A,B)cN (A, B)c.

Since ¢ is perspectivity-preserving, the preceding conditions are satisfied
even for all (4, B,C) € T. We remark that for the present concept it suffices
to consider the situation I' = {0,1} and A = {1}; nevertheless, we use this
more general notion with regard to easier application. Obviously, any relation
of separation satisfies conditions (1) to (6).

For two triples (A, B,C) and (A’, B',C") € ¥, the corresponding intervals
(A, B)c and (A’, B')¢r have the same cardinality by virtue of the bijection

(A, B)C >5X—X"e (A/,B/)C/

where 7 denotes a projectivity with A™ = A’, B™ = B’ and C™ = C'. By (5),
the intervals are non-empty, hence for (A4, B,C) € T there exists X € (4, B)¢,
and by (4) we have A’, B’ € (A, B)¢ with A’ # X and X € (A’, B')¢. Applying
(5) we obtain (A”, B”,C) € T with

X e (A", B¢ and A ¢ (A", B")c,
and by (6) also (A", B",C) € ¥ with
X c (A”/,BNI)C g (A, B)C N (A,/7B”)C7

which yields (A", B")¢ € (A, B)¢. Consequently, every interval contains in-
finitely many points, but due to (1), it does not consist of all points of a line.
Moreover, for all (A, B,C) € T and X € (A, B)c with A # X # B, we also have
X € (B, A)c: since the quadruples (4, B, X,C) and (B, A, C, X) are projective,
the assumption X ¢ (B, A)¢ yields

SO(A7 B7 X7 C) = (p(BJ A? C7 X) ¢ A?

hence C' ¢ (A, B)x and therefore (A, B)c = (A, B)x by (2), and by (1) we
finally obtain X ¢ (A, B)¢, a contradiction.

Since ¢ is perspectivity-preserving, the dual mapping ¢* for the lines is well-
defined, and we also consider the intervals on the set P* of lines through a point
P determined by ¢*. For (a,b). € Jp, we put (a,b)} = Uxe(a,b)c x*, ie. (a,b):
denotes the set of all points lying on a line z in (a, b)e.

For later use, we note a result which corresponds to the Axiom of Pasch in
the class of ordered projective planes.
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Lemma 1. Let g and h be two lines and let A, B and C be three non-
collinear points lying neither on g nor on h with D = ABNg, £ = AC Ny,
F=BCng, G=ABnNh, H=ACNh and I = BCNh. Then, D ¢ (A, B)c
and E € (A,C)g imply F € (B,C)y.

/4 /B D 'ﬁ:

g h
PROOF. Let J denote the intersection point of AC' and DI. From D ¢
(A,B)g and (A, B,D) € ¥ we can conclude (A, B)g = (A4, B)p by (2), and
by (1) ¢(A, B,D,G) ¢ A holds. Using the perspectivity (AC)* AN (AB)*, we
obtain (A, C, J,H) ¢ A and therefore H ¢ (A, C); because of (A,C,H) € T,
it follows (A,C)g = (A,C); by (2). Then, E € (A, C)y implies ¢(A,C, J, E) €
A, and the perspectivity (AC)* -2+ (BC)* yields ¢(B,C, I, F) € A and finally
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Fe(B,C)r. QED

For a line g we consider the set
Jg={(A,B)c | A, B,C € g pairwisely different}

of all intervals with points on g, and we check that it is a base of a topology T,
on g*. Therefore, let (A, B)¢ and (A', B')¢r € J4 with X € (A, B)cN (A4, B')cr.

In the case C ¢ (A', B')¢r, we have (A', B )er = (A’, B')¢ by (2), and by (6)
there exists (A", B")¢ € J, with

X € (A”, B”)C C (A, B)C N (A/, B,)c/.

In the case C € (A, B)¢r, we have C # C', C # X and X # C’ by (1),
and by (5) there exist (Al,Bl)cl and (AQ,BQ)C/ € J, with C € (Al,Bl)Cl
and X € (Ag,B2)er and (A1, B1)or N (A2, Ba)cr = (. Due to (6), there is
(A", B")¢r € 3, with

X € (A//, B”)C/ - (AI, B/)C/ N (AQ, Bg)c/.

Hence, X € (A,B)c N (A", B”)¢r holds, and because of C' ¢ (A", B")¢r we
obtain (A”/, BNI)C”’ S jg with

X e (Am, BH/)CW C(A,B)cnN (A//, B”)Cl C(A,B)enN (AI, B/)C/

according to the first case.

The above considerations on the intervals yield that the topology T, is nei-
ther trivial nor discrete; moreover, the following lemma gives a closer description
of the subsets of g* which are open with respect to T,.

Lemma 2. Let g be a line. Then for all MM € T4 and all X, C' € g* with X €
M and C ¢ M there exists (A, B)c € Jg with A, B € M and X € (A, B)c C M.

PROOF. Due to M € T, there exists (A', B")¢r € I, with X € (A, B')¢r C
M, and C ¢ M yields (A', B')c = (A, B')¢cr. By (4), there exists (A, B)c € T
with A, B € (A',B')¢c and X € (A,B)c C (A", B')c C M.

Let g be a line. A subset M of P with g* NI = () is called g-convez if for
all A, B € M with A # B we have (A, B)apng € 9. In this case, M is also
h-convex for any line h with A* N9 = : indeed, for A, B € M with A # B
and C' = AB N h, we obtain C' ¢ (A,B)c by (4,B)c C M and therefore
(Aa B)C’ = (Av B)C € M by (2)

We now consider three non-collinear points O, U and V with w = UV. Let
u1 7 us and vy # v9 be lines different from w with U = uy Nug and V = v Nws
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and with OU € (u1,u2)w and OV € (v1,v2)y. Then

UV = {X|XUe€ (u1,u2)w and XV € (v1,v2)w}
= {zNy |z € (u1,u2)y and y € (v1,v2)w}

= (ug,u2);, N (v1,v2);,

is called a convezr quadrangle around O with respect to U and V. This notion
is justified, since on the one hand we obviously have O € U and on the other
hand 9 is also w-convex: w* NY = () is an immediate consequence of (1). Let A
and B € U with A # B and X € (A, B)¢ with C = ABNw. In the case C = U
we have XU = AU € (u1,u2)y. In the case C # U we have U ¢ (AB)*, and we
obtain

©* (AU, BU,w, XU) = ¢(A,B,C, X) € A

and therefore by (3) also
XU € (AU,BU)U, C (ul,uQ)w.

In an analogous way it follows XV € (v1, v2)w, finally yielding X € 2.
We consider the trace of a line in a convex quadrangle.

Lemma 3. Let U be a convexr quadrangle around O with respect to U and
V. Then for any line g, the subset g* NV of g* is open with respect to T,,.

PROOF. There is no loss of generality in assuming g* NY # (); furthermore,
let U = (u1,u2);, N (vi,v2)5,. For U € g%, we have g = XU € (u1,u2),, for any
X € ¢g* NV and therefore g* N (uy,u2)k, = g*. For U ¢ g¢*, we consider the
mapping 7: U* — g*, h — g N h, and we obtain

g N (ur,ug)y, ={P € g | ¢*(u1,u2,w, PU) € A} =
={Peg o], uz,wng, P) € A} = (uf,u3)ung-

Applying the same arguments to V' and making use of (6), we finally obtain
that
9" MY = (g" N (u1,u2)y,) N (9" N (v, 02)y)

is an open subset of g* with respect to . QED

The following lemma guarantees that a convex quadrangle around O contains
a convex quadrangle around O with respect to the same points U and V' which
is disjoint to a given line g with O ¢ g*.

Lemma 4. Let U be a convexr quadrangle around O with respect to U and
V, and let g be a line with O ¢ g*. Then there exists a convex quadrangle U’
around O with respect to U and V with 0’ C U and g* NY' = .
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ProOOF. Without loss of generality we may assume g # w with w = UV
and therefore g ¢ V*; furthermore, let W = gNw and B = (u1, u2)i, N (vi,v2)5.

In the case U € g¢*, there exists (uf,u}),, € Jy with OU € (uf,uf),, and
g ¢ (uf,ul)y by (5) due to g # OU; by (6), there is (u}, u)), € Ty with

OU € (u),ub)w C (u1,u2)w N (uf, ul)w.

Obviously,
U = (ulla u/2)1*u N (Ul’ UQ):U

is a convex quadrangle around O with respect to U and V with U’ C U and
g Ny = 0.

In the case U ¢ g*, we consider U’ = OUNg and V' = OV Ng, where O ¢ g*
yields U" # V'. Hence, by (5) there exist (U1, Usz)w and (Vi,Va)w in J, with
(Ul, Ug)Wﬂ(Vl, VQ)W =Pand U’ € (Ul, UQ)W and V' € (Vl,Vz)W. By (6) there
exist (u},uh)w € Jy and (v],vh), € Ty with

OU e (u’l,ulz)w - (’LL1,’LL2)w n (UlU, UQU)w

and
OV € (v}, 5)w C (v1,v2)w N (VIV, VoV ),

Therefore,
T = (u/1> ué):u N (U/h UIQ)TU
is a convex quadrangle around O with respect to U and V with 2’ C U and

g NY = (g" N (uh,uy)y,) N (g" N (V] v5)5) € (U, U2)w N (Vi Va)w =0,

proving the assertion.

According to the next lemma, a convex quadrangle around O contains a
convex quadrangle around O with respect to a given pair of points.

Lemma 5. Let U be a convexr quadrangle around O with respect to U and
V, and let U and V' be two points which are non-collinear with O. Then there
exists a convexr quadrangle B’ around O with respect to U' and V' with 0" C 5.

PRrROOF. We have O ¢ g* with g = U'V’. Therefore, by Lemma 4 there exists
a convex quadrangle 0" around O with respect to U and V with 0" C U and
g*NY" = (). By Lemma 3, the set (OU’")* NY" is open with respect to Toy,
and Lemma 2 ensures the existence of (Vi,V2)yr € Joyr with

O € (i, Vo) C (OU* Ny
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and Vi, Vo € U”. Another application of Lemma 3 yields that for i € {1,2}
there exists (U1, Ui2)v: € Ty, with

Vi € (Ui, Ui2)yr C (V)Y ng".

Let (Uy,Us)y+ € Joyr and (Vi1, Vie)yr € Jy,ur for i € {1,2} be chosen in the
corresponding way. By (6), we obtain (u1,u2), € Jyr with

OU'" € (u1,uz)g € (UnU',UiaU")g N (U1 U', UpaU')4
and (vi,v2)g € Jyr with
OV’ € (v1,v2)y € (Vi1 V', V12V )g N (Vaa V!, Voo V7 ) g 0 (VIV, Vo V) 5.

Then,

U = (u1,u2); N (v1,v2);

is obviously a convex quadrangle around O with respect to U’ and V’; to check
P CY' let X € Y. For i € {1,2} we have

X; = XU'N Vﬂ/’ € (Uﬂ, Uig)vl - DI
with XV' e (V' VaV'), = (X1 V', XoV"),4; the g-convexity of " yields
X € (X1, Xo)pr €U,

concluding the proof. QED

The set of all convex quadrangles is a base of a topology Tqz on the set B
of points. Indeed, let O € U N Y, where U and Y’ are convex quadrangles
around O with respect to U and V and to U’ and V', respectively. By virtue
of Lemma 5, there exists a convex quadrangle 0" around O with respect to U
and V with 0" C U’; let w = UV. With

U = (u1,u2), N (v1,02)y, and V' = (uf,uz)y, N (vf,v5)7,
we have OU € (ug,u2)y N (U, uh)y, and by (6) there is (u1, uz2), € Jy with
OU S (aia a\i)w g (ula U2)w N (u/1,7u,2/)w,
analogously, there exists (v1,02), € Jy with

oV S ('171,'[72)11; g ('Ul,UQ)w N (’Ui/,'Ug)w-

Finally,

T = (u1, uz)y, N (01, 02)y,
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is a convex quadrangle around O with respect to U and V' with T cuny’
and therefore O € Y C Y NY'.

With the same arguments as for ‘¥, for a line g, we observe that the topology
Tqp is neither trivial nor discrete. Moreover, let the set ® of lines be endowed with
the topology T which has been constructed in the dual way. In the following
theorem we show that the projective plane € = (B, &, L) together with these
topologies is a topological projective plane in the sense of SALZMANN.

Theorem 1. If the set B of points and the set & of lines are endowed
with the topologies Ty and T, respectively, then € = (P, G, L) is a topological
projective plane in the sense of SALZMANN.

PROOF. Obviously, it suffices to show that the intersection of two different
lines

{(g,h) €& x&|g#h}>(g9,h) —»gnheP

is continuous. Therefore, let ug and vy be two different lines with O = ug N vy,
and let O # U € ug and O # V € vg. For a neighbourhood 90t of O, we first have
M € Ty with O € M’ C M, then a convex quadrangle V' with O € B’ C M
and finally by Lemma 5 a convex quadrangle U around O with respect to U
and V with U C '.

The figure illustrates the situation in the affine plane €, with w = UV,
where U and V' are on the horizontal lines and on the vertical lines, respectively.
By virtue of (4), we can assume

B = (ur,uz)y, N (v1,v2)y
with u; # ug # ug and vy # vy # ve; therefore by (5), there is (w14, u2i)w €
Ju with ug € (u1j,u2i)w and u; & (u1;,u2)y for i € {1,2}, hence (6) yields
(81, Sz)w € Jy with
up € (51,52)w € (U1, U2)w N (W11, U21 )w N (W12, U22 )10
Analogously, there exists (¢1,t2), € Jy with
vp € (t1,t2)w C (V1,v2) and vy, v2 & (t1,12)w.

For i, j € {1,2}, let f)ij = u; Nv; and Uij = s5;MNv; and V;j = uiﬁtj. Now, ug, v1
and vg are three lines without common point with v1 Nwy =V, and Uy, # Uy;
are two points different from V' with v; = Uy;Us; and ug Nv; € (Uyj, Uzj)y for

J € {1,2}. Therefore

‘Buo = {XY | X € (U11, U21)V and Y € (Ulz, UQQ)V}
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vt (H)\ (V)

(@)
uy Pl Vi H, Vig | Pio 51/
51 Un /\ U12/
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S
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h t2 V2

is a convex quadrangle around ug with respect to v; and vo; analogously,
By, = {XY | X € (V11,Vi2)y and Y € (Var, Vag)u'}

is a convex quadrangle around vy with respect to u; and ws.

For all g € U, and h € U,,, we show g # h and S = g N h € V. First, we
have g = G1G9 with Gj € (Ulj,UQj)V for j € {1,2} and h = H1Hy with H; €
(Vi1, Vie)u fori € {1,2}, and by g # w # h there exist G = gNw and H = hNw.
Because of P11 ¢ (U11,Us21)y and Gy € (Ui1,Us1)y we have u; # ¢; moreover,
we have S1 ¢ (P11, Pi2)y for S = uy N g. This is clear for S; = U by virtue
of (1). For S} # U we have G1U # G2U with (G1U,G2U),, C (s1,82)w and
by construction u; ¢ (G1U,G2U),, and S1 ¢ (G1,G2)g; with the perspectivity
uj v, g* it follows p(Pi1, P12, U, S1) = ¢(G1,G2,G,S1) ¢ A and therefore
the assertion. In an analogous way, we obtain uy # ¢ with So = ugNg ¢
(Pa1, P22)y. In particular, we have g ¢ 2U,,, and therefore g # h, and by (3) also
S1 ¢ (Pi1, Hi)y and Sy ¢ (Pa1, Ho)y.
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We now apply Lemma 1 two times. On the one hand, Py, H; and P are
three non-collinear points lying neither on g nor on w with

Si1=PuHiNg, Gi=PuPung, T=HPFPinNg,

U=P1H Nw, V=P1PmNw and V/:Hlpglﬂ’w;

then, S ¢ (Pthl)U and G € (P11,P21)V imply T € (Hl,Pgl)V/. On the
other hand, Hy, P> and Hs are three non-collinear points lying neither on w
nor on g with

V,:Hlpglﬂw, H=HHnw, U=DPFP1HyNw,

T=HP1Ng, S=HHsNg und S9=Py1HyNy;

then, T € (Hl, Pgl)vl and S5 §é (PQl, HQ)U imply S e (Hl, HQ)H. Hence, we ob-
tain SU € (u1,u2), and with the corresponding arguments also SV € (v1,v2)q,
which finally yields S € U.

We have already remarked that the construction presented in this paper
is a generalization of the method given by WYLER; apart from the ordered
projective planes, we now consider a further class of projective planes which
can be regarded as topological projective planes in the sense of SALZMANN by
virtue of the construction suggested here.

Therefore, let € = (P, &, L) be a projective plane and let (K,T) be the
coordinatizing ternary field with respect to the quadrangle (O, E, U, V'); more-
over, let (G,-) be an Abelian group with the neutral element ¢; for z, y € K
we define x —y € K by (x —y)+y =z and z/y € K by (z/y) -y = x for
y # 0. In [1], JUNKERS and KALHOFF give an algebraic characterization of the
G-valued half-orderings ¢ of &; by virtue of

©(0,1, 00, ) = v(z),
they exactly correspond with the mappings v: K* — G satisfying
(i) v(T(m,z,c) —T(m,z,d)) = v(c —d) for m, x, ¢, d € K with ¢ # d,

(ii) v(T(m,u,c) — T(n,u,d)) = v(m —n) - v(u — ) for m, n, x, u, ¢, d € K
with m # n, ¢ # v and T(m, z,c) = T'(n,z, d).

By v(0) =0 ¢ G and v(oo) = oo ¢ G with 0 # oo, we extend v to the whole
projective line K U {oco} = (OE)* with I' = G U {0, co}. For a multiplicatively
closed subset D of G with A = D U {0}, we consider the following properties:

(iii) v(z £y) € A holds for all z, y € K with v(z), v(y) € A.
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(iv) v(1 — ) = v(x) holds for all z € K with v(z) ¢ A.

(v) There is 29 € K with v(zg) € D such that v(z) # ¢ and v(x £ 1) = € hold
for all z € K with v(z/zg) € A.

For example, these conditions are satisfied by a uniform valuation v of the
ternary field K in the sense of KALHOFF (see [2]) with an Abelian value group
(G,<)and D={ye G|~ <e}

In the sequel, we show that the properties (iii), (iv) and (v) for v ensure that
the corresponding G-valued half-ordering ¢ is topological; therefore, we check
(1) to (6) for (0,1,0) € %.

First, we have v(0) = 0 € A and v(1) = ¢ € A, since by (iv), v(1) ¢ A
implies v(0) = v(1), a contradiction. Moreover, for all z, y € K with v(z) € A
and v(y) ¢ A we have v(y/z) ¢ A; hence, (iv) yields v(1 — y/x) = v(y/z) and
therefore v(y) = v(1 — y/x) - v(z) = v(z — y).

(1) is an immediate consequence of v(c0) = 0o ¢ A.

For (2), let ¢ € K with v(¢/) ¢ A and let 2 € K with v(z) € A. By virtue
of the projectivity m = mme with

m: (0B L (0VY and m: (0V)* "=5Y (0EB),

we obtain
©(0,1,00,2™) = ¢(0,1,c, x)

with T'(2/,1 — ¢, 2) =1 and T(2/, 2™, x) = 2. From
T('1-d,2)=T01,1-¢,c)

it follows v(z — ') = v(a’ — 1) - v(1 — ) and by v(z — ) = v(d) = v(1 — ()
also v(z’ — 1) = e. Thus, by

T(2' 2", z) =T(1,27,0)

we have v(z) = v(2/—1)-v(2™) = v(2™) and therefore v(z™) € A and xz € (0,1)..
Hence, we obtain (0, 1) C (0,1)., and

(0,1, ,00) = (0,1,00,1 — )
with v(1 — ¢) ¢ A yields equality.

For (3), let @/, b’ € K with @’ # ¥ and v(a'), v(b') € A. For all x € (a’,V)0,
we have

©0(0,1,00,(z —d) /(b —d')) = p(0,V —d' 00,z —a') = p(d,V,0c0,1) € A,
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hence v((z — a') /(b — d’)) € A, and by (iii) also v(z — a') € A and v(z) € A.
For (4), let z € (0,1)s. In the case 0 # x # 1, we can put «’ = 0 and b/ = 1.
Otherwise, we choose xy € K according to (v). For x = 0, we put ¢’ = x¢ and
b =1 and we have
QO(CL/,b/,OO,CC) = SD("B()a 170070) - (10(07"1:0 - 17007:1:0) =
— (0, 1,00, 70/ (0 — 1)) = v(a0) - v(ao — 1)~ = v(ao) € A
and therefore = € (a/,0). For z = 1, we put ' = 0 and ¥/ = 29 + 1 and we
have
QO(CL,, bl) 0, x) - 80(07‘%.0 + 17 o, 1) =
=(0,1,00,1/(zo+ 1)) =v(zg+ 1) t=cec A

and again = € (a’,V)xo
For (5), we choose @/ =0, @’ = 2, b’ =1 and b” = ¢ + 1; it immediately
follows 0 € (a’,a" ) and 1 € (b',0") 0. For all z € (d/,a”)s we have

v(z/x0) = (0,1, 00,2/20) = (0, 20,00,7) = (a’,a",00,2) € A
hence, v(z) # € by (v); for all y € (b',b0") we have
U((y - 1)/1‘0) = 90(07 1, 00, (y - 1)/.’B0) = (10(07'%'07 o0, Y — 1) =
=¢(L,ao +1,00,y) = (b, ", 00,y) € A,

hence, v(y) = € by (v). Consequently, (a’,a”)oo N (V/, " )0 = 0 holds.
For (6), let € (0,1)00 N (a/,0)o0, where we exemplarily consider the case
0 # z # d’. By (3), it holds
€(0,2)00 C(0,1)0 and 1z € (a’,2)0 C (a',b)oo
In the case v(a') € A, we have (@', %) C (0,1)s and therefore
2 € (a/,2)00 C (0,1)00 N (', )os

In the case v(a’) ¢ A, we have v(—d’') = v(a') = v(z — d’) and therefore
—a) =
d)/(x—d))=v(-d) vz-d)t=ccA

and therefore 0 € (d/, 7)0; thus by (3), we obtain (0,2)s C (a/,2) and there-
fore

o(a’,2,00,0) = (0,2 — d’, 00, —
_@(071700 (

€ (0,2)00 C (0,1)00 N (', )00,

proving the assertion.
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