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CP 8888, succ. Centre-Ville, Montréal (QC), H3C 3P8 Canada
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Schur functions discovered by Aitken and Berenstein/Zelevinsky.

Keywords: Schensted insertion, generalized ordering, tableau.

MSC 2000 classification: 20C30; 05E10.

Introduction

Let N (N0, resp.) be the set of all positive (nonnegative, resp.) integers and

z := {n ∈ N |n ≤ z }

for all integers z. In a remarkable paper of 1961 [13], Schensted discovered an
algorithmic way to determine the length of the longest increasing and decreasing
subsequence of a finite sequence over N, which, in the meantime, turned out to be
of crucial importance for the representation theory of the symmetric groups. It is
essentially based on the following insertion mappings: Let w be a nondecreasing
word over the alphabet N, that is, an element w = w1 · · ·wn of a free monoid
(W, ·) over N such that w1 ≤ · · · ≤ wn. Then, for any x ∈ N, let

w x :=

{
w if wn ≤ x

w1 · · ·wj−1xwj+1 · · ·wn if x < wn
∈ W

and

w∠∠x :=

{
x if wn ≤ x

wj if x < wn
∈ N ,
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where, in the case of x < wn, the index j ∈ n is defined by the condition
wj−1 ≤ x < wj . In this interesting second case, the word w and the letter x
may be recovered from v = v1 · · · vn := w x and y := w∠∠x, as vj+1 ≥ y > vj .
This is the core of Schensted’s bijection.

Two observations served as the main stimulus for the present paper: Denot-
ing by ·̄ the inverse product onW, we obtain a second pair of insertion mappings
for the (free) monoid (W, ·̄ ) and the ordering ≥, which are denoted by x w
instead of w x and x ∠∠w instead of w∠∠x. Surprisingly, these mappings are
the inverse mappings of the insertion mappings described above. In other words,
Schensted’s deletion algorithm is also an insertion algorithm, namely the one
given by the inverse product and the inverse ordering. More formally, in the
case of x < wn, we have:

(w∠∠x) (w x) = w and (w∠∠x) ∠∠(w x) = x.

This was the first of the two starting points of our investigations. Viewing
tableaux as elements of a free monoid (T , � ) overW, the insertion mappings
and ∠∠ may be extended naturally to the set of tableaux by induction. Again,
considering the inverse product � on T , we obtain the corresponding inverse
mappings. This leads to a short proof of the Robinson-Schensted correspondence

(P,Q) : W −→
⋃

r Partition

ST
≤
r × Lr, (1)

Here, in the first component, we obtain as the P -symbol of w a standard tableau
t ∈ T , which is increasing in rows and strictly increasing in columns, while the
Q-symbol in the second component is a standard word (or: lattice permutation).
As is easily seen, for the bijection (1), instead of ≤, a more general relation ∝
may be used (Section 1). For example, in the special case of ∝=<, Knuth’s dual
correspondence is obtained [7]. This was the second starting point of this paper.

The bijection (1), now for the relation ∝ instead of ≤, may be refined upon
significantly by considering certain invariants. For any w = w1 · · ·wn ∈ W, let

D∝(w) = { i ∈ n− 1 |wi ∝ wi+1 } ,

where x ∝ y means that x ∝ y does not hold. D∝(w) is called the ∝-descent
set of w. In Section 2, it is particularly shown that D∝(w) = D≥(Q(w)), for
all w ∈ W (Theorem 2). In the special case of ∝=≤, this result is due to
Schützenberger ([14], Remarque 2, see also [3], Theorem 2.1). For the dual cor-
respondence (∝=<) we obtain a result due to Knuth ([7], Theorem 1∗). The de-
scent set may be generalized by the property of a word w to be a shifted ∝-filling,
which is also transferred by the Q-symbol (Theorem (3)). This fairly intricate
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result enables us to give several descriptions of the Littlewood-Richardson co-
efficients as will be described below. As a special case, we obtain here Theorem
1 of [17].

In Section 4, our combinatorial investigations are completed by introducing
and analyzing the notion of a conjugate and rotated tableau. It leads to our
main combinatorial result (Main Theorem 1).

The Littlewood-Richardson (L-R) coefficient cuqp describes the multiplicity of
the irreducible character ζu of the symmetric group Sn+k in the outer product
of the irreducible characters ζq of Sn and ζp of Sk. In order to describe them
combinatorially, we use the following characterization (Corollary 4):
For all partitions p of k, q of n and u of n + k, let Cu

qp be a set such that
there exists a bijection

SqT
≤
u−q
p −→

⋃
r

ST
≤
r
p × Cu

qr, (2)

where the union is taken over all partitions r of k. Then we have cuqp = |Cu
qp|

for all q, p, u.
Taking into account the above mentioned invariants of the Q-symbol, bijec-

tions of this kind are established by the Robinson-Schensted correspondence (1).
It may therefore be viewed as a combinatorial core of the representation theory
of the symmetric groups. This concept for proving the L-R rule has been used
in in [11], [16] and [17]. In each of these approaches, the case where ∝=< is
considered.

More generally, in Section 5, considering ∝∈ {≤, <,≥, >} (and a variation
of the Q-symbol), eight combinatorial descriptions for the L-R coefficients are
obtained simultaneously: cuqp is equal to the number of lattice permutations
of content p (p∗, resp.), which, row- or column-wise, fit into the (conjugate,
rotated) skew diagram corresponding to q and u.

A short additional analysis of the bijections (2) in Section 6 shows that the
Robinson-Schensted correspondence yields direct bijections between the eight
L-R sets by fixing the P -symbol. As a special case, this includes the bijection
introduced in [5].

1 Schensted’s insertion mappings

In the sequel, an arbitrary set X instead of N as in our introduction will be
considered. To start with, let us fix some notation. A relation ∝ on X is called
an almost complete ordering (on X), if

(a) ∝ is anti-symmetric (x ∝ y, y ∝ x =⇒ x = y)
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(b) ∝ is transitive (x ∝ y, y ∝ z =⇒ x ∝ z)

(c) ∝ is complete (x �= y =⇒ x ∝ y or y ∝ x)

Then, in the case of X = N, the usual ordering ≤ is an almost complete ordering
on N, and likewise >, ≥ and <. More generally, we have: If ∝ is an almost
complete ordering on X, then so are ∝ , ∝ and ·∝, where

∝ := { (x, y) ∈ X ×X | (x, y) /∈∝}, ∝ := { (x, y) ∈ X ×X | (y, x) ∈∝}

and
·∝ := ∝ .

Let (W, ·) be a free monoid over the alphabet X. The unit element of (W, · ) is
denoted by ι̇, and the elements of

(W, ·)∝ :=
{
w1 · . . . · wn ∈W

∣∣∣w1 ∝ w2 ∝ · · · ∝ wn

}
are called ∝-monotonous. For any word w = w1 · . . . ·wn ∈W of length |w| := n,
the content of w is defined by

c(w) : X −→ N0, x �−→ |{ i ∈ n |wi = x }| .

Furthermore, for u = u1 · . . . · um, v = v1 · . . . · vn ∈W , we write

u ∝∗ v ,

if ui ∝ vj for all i ∈ m, j ∈ n.
As is convenient for our purposes, tableaux over X are viewed as elements

of a free monoid (T , � ) over the alphabet W . The unit element of T is denoted
by ϊ. Let t = tl � · · · � t2 � t1 ∈ T be a tableau. Then, for all i ∈ l, the word ti is
called the i-th row of t. Here, the reverse labelling is used for technical reasons.
The shape of t is defined by

sh(t) : N −→ N0, i �−→
{
|ti| , i ≤ l

0 , i > l
,

and c(t) := c(t1 · . . . · tl) is called the content of t. The set of all tableaux (of

shape r, with content p, resp.), whose rows are ∝-monotonous, is denoted by T
∝

(T
∝

r, T
∝

p, resp.). Furthermore, we put

t>z := tl � · · · � tz+1 and t<z := tz−1
� · · · � t1
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for all z ∈ l + 1 ∪ {0}. Any tableau may be visualized by listing its rows one
above the other, with the first row on top. In the case of X = N, we have, for
example

t = (1 · 2 · 4) � (2 · 2) � (3 · 2 · 2) � (1 · 1 · 5 · 4) ∼

1 2 4
2 2
3 2 2
1 1 5 4

.

This tableau t has shape (4, 3, 2, 3, 0, 0, . . .) and content (3, 5, 1, 2, 1, 0, 0, . . .).
Now, we define mappings

: (W, ·)∝ ×X −→W and ∠∠ : (W, ·)∝ ×X −→ X

as follows: Let w ∈ (W, ·)∝ and x ∈ X. In the case of w ∝∗ x, we put w x :=
w and w∠∠x := x. Otherwise, we can find w(1), w(2) ∈ W , y ∈ X such that
w = w(1) · y · w(2), w(1) ∝∗ x and y ∝ x and put

w x := w(1) · x · w(2) and w∠∠x := y.

In this second case, we say that x enters w in (W, ·)∝, while otherwise, we say
that x passes w. These definitions of and ∠∠ may be extended naturally to
T
∝
×X by induction, namely by putting

t x :=
(
t>1 (t1∠∠x)

)
�
(
t1 x

)
and t∠∠x := t>1∠∠(t1∠∠x).

for all t = tl � · · · � t1 ∈ T
∝

such that l > 1. Furthermore, let ϊ x := ϊ and
ϊ∠∠x := x. We say that x enters t (in (W, ·)∝ and (T , � )), if t<i∠∠x enters ti in
(W, ·)∝ for all i ∈ l. Otherwise, we say that x passes t. Then, particularly, any
x ∈ X enters the empty tableau ϊ. For example, in the case of X = N and ∝=≤,
we have

(2 · 3) � (1 · 1 · 2) 1 = (2 · 3 2) � (1 · 1 · 1) = (2 · 2) � (1 · 1 · 1) .

Hence 1 enters (2 · 3) � (1 · 1 · 2) in (W, ·)∝ and (T , � ), and

(2 · 3) � (1 · 1 · 2)∠∠1 = 2 · 3∠∠2 = 3 .

Note that, for all x ∈ X and w ∈ (W, ·)∝ such that x enters w, we have

(w∠∠x) ∝ x . (3)
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Furthermore, for t(1), t(2) ∈ T
∝
, a simple induction on |t(2)| shows that

(t(1) � t(2)) x =
(
t(1) (t(2)∠∠x)

)
�
(
t(2) x

)
(4)

and
(t(1) � t(2))∠∠x = t(1)∠∠(t(2)∠∠x). (5)

The following observation is of crucial importance in our context: The defi-
nitions of and ∠∠ do not only depend on the relation ∝, but additionally on
the products · and � of the underlying monoids (W, ·) over X and (T , � ) over
W . Based on the inverse product on W , defined by

u ·̄ v := v · u

for all u, v ∈ W , we obtain again a free monoid (W, ·̄) over X. Analogously, we
may consider the inverse product � instead of � on T . For any w = w1 ·. . .·wn ∈
(W, ·)∝, we now have w = wn ·̄wn−1 ·̄ . . . ·̄w1 and wn∝wn−1∝ · · ·∝w1. This
implies that

(W, · )∝ = (W, ·̄ )∝ . (6)

We shall simply write W∝ for this set. In addition to the mappings and ∠∠
based on ∝ and the products · on W and � on T , we shall also be interested
in the mappings of the same kind arising from the relation ∝ and the products
·̄ and � instead. Note that, by (6), all these mappings are defined on the same

domain T
∝
×X. In order to distinguish, we write

x t and x ∠∠t (x ∈ X, t ∈ T
∝
) ,

if we refer to the mappings based on ∝, ·̄ and � . Furthermore, we will use the
following convention: If x ∈ X enters t ∈ T

∝
in (W, ·)∝ and (T , � ), we simply

say that x enters t. In the case that x enters t in (W, ·)∝ and (T , � ), we say
that x inversely enters t.

Due to this observation, in Proposition 1 and Proposition 2 (and hence, in
Lemma 1 and Lemma 2) it suffices to proof the first part. In each case, the
second part may then essentially be obtained by applying the first part to the
inverse ordering and the inverse products. Similarly, in the proofs of the basic
tools Proposition 3 and Lemma 4 of the Sections 2 and 3, we may restrict
ourselves to considering one implication of the claimed equivalences.

Proposition 1. Let t ∈ T
∝
and x ∈ X.

(a) We have t x ∈ T
∝
. If x enters t, then t∠∠x inversely enters t x, and

(t∠∠x) (t x) = t and (t∠∠x) ∠∠(t x) = x .
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(b) We have x t ∈ T
∝
. If x inversely enters t, then x ∠∠t enters x t, and

(x t) (x ∠∠t) = t and (x t)∠∠(x ∠∠t) = x.

Proofs. ad (a): Let t = tl � · · · � t1 and assume first that l = 1, that is,
w := t ∈ W∝. In the case of w ∝∗ x we have w x = w ∈ W∝. Now assume
that x enters w. Then there exist w(1), w(2) ∈W and y ∈ X such that w = w(1) ·
y ·w(2), w(1) ∝∗ x and y ∝ x, and we have w x = w(1) ·x ·w(2) and w∠∠x = y.
In particular, it follows that x = y or x ∝ y and hence x ∝∗ w(2). This shows
w x ∈ W∝. Furthermore, as w(2)∝ ∗y, x∝� y and w x = w(2) ·̄x ·̄w(1), we
may conclude that y inversely enters w x and that

y (w(2) ·̄x ·̄w(1)) = w(2) ·̄ y ·̄w(1) = w and y ∠∠(w(2) ·̄x ·̄w(1)) = x.

This completes the proof for l = 1. Now, for l > 1, the assertion easily follows
by induction using (4) and (5).

ad (b): In any monoid, the inverse product of the inverse product is the initial
product again. Hence (b) follows from (a), applied to (W, ·), (T , � ) and ∝.

QED

Our next aim is to introduce the notion of a shifted standard tableau. Let
W be a free monoid over the alphabet N. For any q = q1 · · · qk ∈ W, we define

q∞ : N −→ N0, i �−→
{

qi , i ≤ k

0 , i > k

and write q instead q∞ whenever confusion is impossible, for instance for the
shape of a tableau. The word q is called a partition, if q1 ≥ q2 ≥ · · · ≥ qk. If,
additionally, q1 + · · ·+ qk = n, we say that q is a partition of n (q � n). For all
u = u1 · . . . · un, v = v1 · . . . · vk ∈W and j ∈ N0 we write

u ∝j v ,

if |u| + j ≥ |v| and uν ∝ vj+ν for all ν ∈ n ∩ k − j . Let q = q1 · · · qk ∈ W be a
partition. We put di := (q∞)i − (q∞)i+1 for all i ∈ N and

SqT
∝
:= { t = tl � · · · � t1 ∈ T

∝
| ti ·∝ diti+1 for all i ∈ l − 1 },

The elements of SqT
∝

are called q-shifted standard tableaux (with respect to ∝).
For all r : N −→ N0, p : X −→ N0 we put SqT

∝
r := SqT

∝
∩ T

∝
r and SqT

∝
r
p :=

SqT
∝

r ∩ T
∝

p. In the case that q is the empty partition the upper index q is
omitted. Any q-shifted standard tableau t may be visualized by shifting the i-th
row of t qi positions to the right, for all i. Then, in this visualization, each row
is ∝-monotonous, while each column is monotonous with respect to ·∝ :
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t ∼ ti+1

ti

∝

·∝

✲
❄

qi︷ ︸︸ ︷
qi+1︷ ︸︸ ︷

Note that, for all s ∈ W and any partition q ∈ W such that SqT
∝

s �= ∅, we have

(q∞)i + (s∞)i ≥ (q∞)i+1 + (s∞)i+1 for all i ∈ N. (7)

In particular, sh(t) is non-increasing for all t ∈ ST
∝
.

Proposition 2. Let t = tl � · · · � t1 ∈ T
∝
and x ∈ X and assume that l ≥ 2.

(a) Let q ∈ W be a partition such that t ∈ SqT
∝
.

If x enters t<l, then
t x ∈ SqT

∝
.

If x enters t<l, but passes t, then(
tl · (t<l∠∠x)

)
� (t<l x) ∈ SqT

∝
.

(b) If (tl · x) � t<l ∈ ST
∝
, then x inversely enters t<l, and

tl � (x t<l) ∈ ST
∝
.

Proofs. ad (a): By Proposition 1(a), we have t x ∈ T
∝
. Assume first

that l = 2. Let t2 = v1 · . . . · vk and put j := q1 − q2. As x enters t1, there exist
u(1), u(2) ∈W and y ∈ X such that t1 = u(1) · y ·u(2), t1 x = u(1) ·x ·u(2) and
t1∠∠x = y. We put i1 := |u(1)| + 1. In the case of j + i1 > |t2| both assertions
follow easily. Let j + i1 ≤ |t2|. As t1 ·∝ jt2, we have vj+i1 ∝ y. Hence y enters
t2 and x enters t. It remains to be shown that t1 x ·∝ j t2 y. We choose
v(1), v(2) ∈W such that t2 y = v(1) · y · v(2) and put i2 := |v(1)|+ 1 ≤ j + i1.
The tableau (t2 y) � (t1 x) may then be visualized as follows:

j︷ ︸︸ ︷
︸ ︷︷ ︸

i2

i1︷ ︸︸ ︷
x

y
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In the case of i2 = j + i1 it follows that t1 x ·∝ j t2 y, as t1 ·∝ j t2 and
y ∝ x. Let i2 < j + i1. Then we have

(t2 y)j+i1 = (t2)j+i1 ∝ y ∝ x = (t1 x)i1 .

If i2 > j, we may conclude that, additionally,

(t2 y)i2 = y ∝ x and (t1 x)i2−j = u(1)
i2−j ∝ x,

hence (t2 y)j+(i2−j) ∝ (t1 x)i2−j . This shows t1 x ·∝ j t2 y and com-
pletes the proof for l = 2. For l > 2, we can use (4) and proceed by an easy
induction.

ad (b): Letm := |tl|+1 and t̃ := (tl·x) � t<l ∈ ST
∝
. Then sh(t̃) is non-increasing.

This implies that |tl−1| ≥ m and x ∝ (tl−1)m. Thus x inversely enters tl−1 and,
by a simple induction, also t<l. More precisely, we can find v(1), v(2) ∈ W such
that x tl−1 = v(1) ·x · v(2) and |v(1)| ≥ |tl|. Let s := sh(t<l) and q ∈ W be the
unique partition such that (q∞)i = s1 − sl−i for all i ∈ l − 1 and (q∞)i = 0 for
all i ≥ l. Then we have

t<l = t1 � · · · � tl−1 ∈ SqT
∝

with respect to the inverse products onW and T (for more details, see Lemma 6).

Applying (a), we have x t<l ∈ SqT
∝

with respect to the inverse products on

W and T . But this is equivalent to x t<l ∈ ST
∝

with respect to the initial
products on W and T , and the proof is completed.

QED

Let t = tl � · · · � t1 ∈ T
∝

and x ∈ X. We choose z ∈ l + 1 maximal such that
x enters t<z and define

z(x, t) := z

and
t × x := t>z

�
(
tz · (t<z∠∠x)

)
� (t<z x) ,

where, in the case of z = l + 1, we put tl+1 := ι̇.
Now, on the other hand, if z ∈ l such that m := |tz| > 0, we denote by

y := (tz)m the final letter of tz and define

b(z, t) := y ∠∠t<z

and

t[z] :=

{
t>z

� (tz,1 · · · tz,m−1) � (y t<z) , m > 1

t>z
� (y t<z) , m = 1

.
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We observe that

sh(t × x)i =

{
sh(t)i + 1 , i = z(x, t)

sh(t)i , otherwise
(8)

and, in the case that sh(t) is non-increasing and sh(t)z > sh(t)z+1,

sh(t[z])i =

{
sh(t)i − 1 , i = z

sh(t)i , otherwise
(9)

for all i ∈ N.

Lemma 1. Let t = tl � · · · � t1 ∈ T
∝
.

(a) For all x ∈ X, we have(
t × x

)
[z(x, t)] = t and b

(
z(x, t), t × x

)
= x.

(b) If t ∈ ST
∝
, for all z ∈ l such that sh(t)z > sh(t)z+1, we have

t[z] × b(z, t) = t and z
(
b(z, t), t[z]

)
= z.

Proofs. ad (a): Proposition 1(a)

ad (b): Let t ∈ ST
∝
and z ∈ l such that sh(t)z > sh(t)z+1. Let t̃ := t[z]. Then, by

Proposition 2(b), x := (tz)|tz | inversely enters t<z. Hence, by Proposition 1(b),
b(z, t) = x ∠∠t<z enters t̃<z = x t<z and

t̃z ∝∗ x = (x t<z)∠∠(x ∠∠t<z) = t[z]<z∠∠b(x, t̃) .

This implies that b(z, t) passes t̃<z+1 and hence z(b(z, t), t̃) = z. Furthermore,
we can conclude that t̃ × b(z, t) = t from Proposition 1(b).

QED

As an immediate consequence of Proposition 2 we observe:

Lemma 2. Let t = tl � · · · � t1 ∈ ST
∝
.

(a) For all x ∈ X, we have t × x ∈ ST
∝
.

(b) For all z ∈ l such that sh(t)z > sh(t)z+1, we have t[z] ∈ ST
∝
.
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Now we define mappings

P∝ : W −→ T and Q∝ : W −→W

as follows: First, we put P∝(ι̇) := ϊ and Q∝(ι̇) := ι̇. Let w = w1 · . . . · wn ∈
W\{ι̇} and w̃ := w1 · . . . · wn−1. Inductively, we put P∝(w) := P∝(w̃) × wn

and Q∝(w) := Q∝(w̃) z(wn, P∝(w̃)). The definition of the mappings P∝ and Q∝
is essentially due to Schensted [13]. The tableau P∝(w) is often referred to as
P -symbol, while the word Q∝(w) is called Q-symbol of w (with respect to ∝).

Any word p = p1 · · · pn ∈ W is called standard (or lattice permutation), if
c(p1 · · · pi) is non-increasing for all i ∈ n. For example, the word 1112213 is
standard, while the word 1122213 is not. The set of all lattice permutations in
W is denoted by L. Furthermore, for all r ∈ W, we denote by Lr the set of all
lattice permutation with content r∞.

Theorem 1. Let ST
∝ =× L be the set of all pairs (tl � · · · � t1, p) ∈ ST

∝
× L

such that sh(t) = c(p) and ti �= ι̇ for all i ∈ l. Then the mapping

W −→ ST
∝ =× L, w �−→

(
P∝(w), Q∝(w)

)
(10)

is a bijection, and c(P∝(w)) = c(w) for all w ∈W .
For example, in the case of X = N and

4 ∝ 3 ∝ 2 ∝ 1, 4 ∝ 4, 3 ∝ 3, 2 ∝ 2 and 1 ∝ 1 , (11)

for the word
w = 3 · 3 · 2 · 4 · 2 · 1 · 4 , (12)

we obtain

P∝(w) ∼
2
3 3
4 4 2 1

∈ ST
∝

421 and Q∝(w) = 1112213 ∈ L421. (13)

Proof of the theorem. The second assertion concerning the content can
be shown easily by induction. We put A := ST

∝ =× L and define α : X ×A −→
A\{(ϊ, ι̇)} by (

x, (t, p)
)
�−→

(
t × x, p z(x, t)

)
.

By Lemma 2(a) and (8), we have indeed (X ×A)α ⊆ A\{(ϊ, ι̇)}. Furthermore,
for the mapping

β : A\{(ϊ, ι̇)} −→ X ×A, (s, p1 · · · pn) �−→
(
b(pn, s), (s[pn], p1 · · · pn−1)

)
,
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we have (s, p)β ∈ X × A for all (s, p) by Lemma 2(b) and (9). Applying
Lemma 1(a), we obtain αβ = idX×A, while Lemma 1(b) implies that βα =
idA\{(ϊ,ι̇)}. Hence α is a bijection. Now, for all n ∈ N0, we put

Wn := {w ∈W | |w| = n }

and define

γn : Wn −→
⋃
r�n

ST
∝

r × Lr, w �−→
(
P∝(w), Q∝(w)

)
.

Then wγn = (wn, (w1 · . . . · wn−1)γn−1)α for all w = w1 · . . . · wn ∈ W , and the
proof may be completed easily by induction. QED

Let T be a set of tableaux over the alphabet N, that is, a free monoid over
W. Let t ∈ T and assume that there exists an n ∈ N such that

c(t)i =

{
1 , i ≤ n

0 , i > n

for all i ∈ N, that is, any letter i ∈ n occurs exactly once in t. Then t is called
a Young tableau (over N) or is said to be of Young type. The set of all Young
tableaux is denoted by Y T . Furthermore, we put

SY T := ST
≤
∩ Y T .

For all i ∈ n, let zi be the number of the row of t containing i. Then

tz := z1 · · · zn ∈ W

is called the row word of t. For all r : N −→ N0, denoting byWr the set of words
w ∈ W with content r, we obtain a bijection

Y T r −→Wr, t �−→ tz . (14)

Furthermore, we have t ∈ SY T if and only if tz ∈ L. This observation is due
to Macmahon (96 in [10]). For the special choice of X = N and ∝=≤, we
thus obtain the following classical correspondence due to Robinson [12] and
Schensted [13].

Corollary 1. Let r : N −→ N0. Then the mapping

w �−→
(
P≤(w), (Q≤(w))z−1

)
is a bijection from the set of words over N of content r onto the set of pairs of
standard tableaux over N of the same shape, the first of which has content r and
the second of which is of Young type.
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2 Descent Sets

For all w = w1 · . . . · wn ∈ W , the descent set of w (with respect to ∝) is
defined by

D∝(w) := { i ∈ n− 1 |wi ∝ wi+1 } . (15)

For example, the descent set of the word w defined in (12) (with respect to ∝
defined in (11)) is {3, 6}. In this section, we will show that the descent set of
any word w (with respect to ∝) is equal to the descent set of its Q∝-symbol
(with respect to ≥). In the above example, bearing in mind (13), we obtain
indeed D≥(Q∝(w)) = D≥(1112213) = {3, 6}. In the case of X = N and ∝=≤,
this result is due to Schützenberger [14, Remarque 2], and, independently, to
Foulkes [3, Theorem 2.1]. In the case of ∝=<, we obtain Knuth’s result on the
so-called dual correspondence [7, Theorem 1∗]. It is interesting to compare the
proofs of the Theorems 1 and 1∗ in [7] with those of Proposition 3 and Lemma 3
below.

Proposition 3. Let w ∈W∝ and x, y ∈ X. Assume that x enters w and y
enters w x. Then the following conditions are equivalent:

(i) x ∝ y,

(ii) (w∠∠x) ∝
(
(w x)∠∠y

)
.

Proof. We choose w(1), w(2) ∈ W and a ∈ X such that w = w(1) · a · w(2),
w x = w(1) · x ·w(2) and w∠∠x = a. Then, assuming (i), we have w(1) · x ∝∗ y
and hence a ∝ ((w x)∠∠y), as a ∝∗ w(2). This shows (ii). Now, putting
x̃ := (w x)∠∠y, ỹ := w∠∠x and w̃ := (w x) y, we have

y = x̃ ∠∠̃w and x = ỹ ∠∠(x̃ w̃) ,

by Proposition 1(a). The remaining implication is thus an application of the
one already proved, applied to x̃, ỹ, w̃, ∝ and , ∠∠instead of x, y, w, ∝ and

, ∠∠. QED

For all t = tl � · · · � t1 ∈ T
∝

and x ∈ X, we define

s(x, t) := |(t × x)z(x,t)|.

and observe that

z(x, t) = z(t1∠∠x, t>1) + 1 and s(x, t) = s(t1∠∠x, t>1) (16)

for all t = tl � · · · � t1 ∈ T
∝
\{ϊ} and x ∈ X such that x enters t1.
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Lemma 3. For all t ∈ T
∝
and x, y ∈ X, the following conditions are equiv-

alent:

(i) x ∝ y,

(ii) z(x, t) ≥ z(y, t × x).

If, additionally, t ∈ ST
∝
, we obtain the following third equivalent condition:

(iii) s(x, t) < s(y, t × x).

Proof. Let t = tl � · · · � t1 ∈ T
∝
, x, y ∈ X, zx := z(x, t), zy := z(y, t × x)

and sx := s(x, t), sy := s(y, t × x). In the case of t ∈ ST
∝
, we have sy ≤ |t1|+2,

as sh(t) is non-increasing. Now assume first that x passes t1 or t = ϊ. Then we
have zx = 1 and sx = |t1|+ 1. Putting t1 := ι̇ in the case of t = ϊ, we obtain

x ∝ y ⇐⇒ t1 · x ∝∗ y ⇐⇒ zy = 1 ⇐⇒ zx ≥ zy

and, in the case of t ∈ ST
∝
, x ∝ y ⇐⇒ sy = |t1| + 2 ⇐⇒ sx < sy as

asserted. Now assume that t �= ϊ and that x enters t1. Then there exist x̃ ∈ X
and u(1), u(2) ∈ W such that t1 = u(1) · x̃ · u(2) and t1 x = u(1) · x · u(2). If
(t1 x) ∝∗ y, we may conclude that x ∝ y, zx > 1 = zy and sx ≤ |t1| < sy in

the case of t ∈ ST
∝
, by Lemma 2(a). If, on the other hand, y enters t1 x, we

put ỹ := (t1 x)∠∠y and obtain inductively

x ∝ y ⇐⇒ x̃ ∝ ỹ ⇐⇒ z(x̃, t>1) ≥ z(ỹ, t>1 × x̃) ⇐⇒ zx ≥ zy

and the corresponding equivalence for s, by Proposition 3 and (16). QED

The mappings ∠∠, , × , z and s are defined on the set T
∝
×X. In order to

simplify our notations in the sequel, they will be extended to T
∝
×W canonically

as follows: Let t ∈ T
∝
. First, we put t∠∠ι̇ := ι̇, t ι̇ := t and let z(ι̇, t) be the

unit element of W. Now let w = w1 · . . . · wn ∈W\{ι̇} and w̃ := w1 · . . . · wn−1.
Then, inductively, we put

t w := (t w̃) wn, t∠∠w := (t∠∠w̃) ·
(
(t w̃)∠∠wn

)
and

z(w, t) := z(w̃, t) z(wn, t × w̃).

The mapping × (s, resp.) is extended in the same way as (z, resp.).
Particularly, we then have

Q∝(w) = z(w, ϊ) (17)
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for all w ∈ W . For any t ∈ T
∝

and any w = w1 · . . . · wn ∈ W , we say that w
enters t, if wi enters t (w1 · . . . ·wi−1) for all i ∈ n. Otherwise, we say that w
passes t.

Note that, for all u, v ∈ W and t ∈ T , the inductive definition given above
implies that

t (u · v) = (t u) v, t∠∠(u · v) = (t∠∠u) ·
(
(t u)∠∠v

)
(18)

and
z(u · v, t) = z(u, t) z(v, t × u). (19)

Analogous identities hold for the mappings × and s.
Now, applying Lemma 3 and using induction, we obtain the transfer of

descent sets mentioned at the beginning of this Section.

Theorem 2. For all w ∈W , t ∈ ST
∝
, we have

D∝(w) = D≥(z(w, t)) = D<(s(w, t)).

In particular, for t = ϊ, we have D∝(w) = D≥(Q∝(w)).

3 Shifted fillings

The transfer of the descent set is a special case of a more general property
that is invariant under the Q-symbol, as will be shown now.

Let n ∈ N, w ∈ W such that |w| = n and let r = r1 · · · rl ∈ W such that
r1 + · · · + rl = n. Then there exist unique words w(1), . . . , w(l) ∈ W such that
|w(i)| = ri for all i ∈ l and w = w(l) · . . . · w(1). We put

Tabr(w) := w(l) � · · · �w(1) ∈ T.

Let q ∈ W be a partition. If Tabr(w) ∈ SqT
∝

r, then w is called a q-shifted
∝-filling of shape r. For all U ⊆W , we define

SqU
∝
r := {w ∈ U | |w| = n, Tabr(w) ∈ SqT

∝
r }

to be the set of all q-shifted ∝-fillings of shape r in U . If q is the empty partition,
the upper index q is omitted. In this section, we will particularly show that any
word w ∈W is a q-shifted ∝-filling of shape r if and only if Q∝(w) is a q-shifted
≥-filling of shape r in W (Theorem 3).
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For example, for the word w = 3 · 3 · 2 · 4 · 2 · 1 · 4 considered in (12), we have

Tab133(w) ∼
4

4 2 1
3 3 2

∈ S31T
∝

133,

(with ∝ defined in (11)), hence w ∈ S31W
∝

133. Recalling (13) and observing that

Tab133(1112213) ∼
3

2 2 1
1 1 1

∈ S31T
≥

133 ,

we obtain that Q∝(w) ∈ S31W
≥

133.
Now, for any D = {d1, . . . , dk} ⊆ n− 1 (d1 < · · · < dk) we may define

q := (dk − k) · · · (d1− 1) and r = (n− dk)(dk − dk−1) · · · (d2− d1)d1 and observe
that

D∝(w) = D ⇐⇒ w ∈ SqW
∝

r

for all w ∈ W . Thus the transfer of the descent set described in Theorem 2 is
indeed a special case of Theorem 3.

Proposition 4. Let t = tl � · · · � t1 ∈ T
∝
, w ∈W∝ and v ∈W .

(a) If v enters t1, then

t × v =
(
t>1 × (t1∠∠v)

)
� (t1 v).

(b) If v = v1 · . . . · vm is ∝-monotonous, then there exist w(1), . . . , w(m+1) ∈W
such that the first row of w × v is given by

(w × v)1 = w(1) · v1 · w(2) · v2 · . . . · w(m) · vm · w(m+1).

(c) If v enters w, then

(w∠∠v) (w v) = w and (w∠∠v) ∠∠(w v) = v.

Proof. All three claims may be proved easily by induction on m := |v|.
We restrict ourselves to proving the first part of (c). For m = 0, it is simply the
definition. Let m > 0. We put u := w∠∠v = u1 ·̄ . . . ·̄um, ũ = u2 ·̄ . . . ·̄um and
ṽ = v1 · . . . · vm−1. Then we have

um · . . . · u1 = w∠∠v = (w∠∠ṽ) ·
(
(w ṽ)∠∠vn

)
,
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hence u1 = (w ṽ)∠∠vm and ũ = w ṽ. Applying Proposition 1(a), we obtain

u (w v) = ũ
(
u1 ((w ṽ) vn)

)
= ũ (w ṽ) = w .

QED

Let j ∈ N0. For all w = w1 · . . . · wn ∈W , t = tl � · · · � t1 ∈ T , we put

w≤j :=

{
w1 · . . . · wj , j < n

w , j ≥ n
and t≤j := t≤j

l
� · · · � t≤j

1 .

In the same way, we define t<j and t>j .
Lemma 4. Let u, v, w ∈ W∝. Assume that m := |u| = |v| and that u · v

enters w. Then the following conditions are equivalent:

(i) u · v ∈ SW
∝

mm,

(ii) w∠∠(u · v) ∈ SW
∝

mm.

Proof. Let u·v ∈ SW
∝

mm. Then, particularly, we have u, v ∈W∝ and hence
w∠∠u, (w u)∠∠v ∈ W∝, by Proposition 3. Furthermore, by Proposition 4(b),
there exist words w(1), . . . , w(m+1) ∈W such that

w u = (w × u)1 = w(1) · u1 · w(2) · u2 · . . . · w(m) · um · w(m+1).

As ui ∝ vi for all i ∈ m, a simple induction shows that, for all j ∈ m, there
exist a(j), b(j) ∈W such that

(∗) w (u · v<j) = a(j) · vj−1 · b(j) · w(j) · uj · . . . · w(m) · um · w(m+1) ,

where a(1) = v0 = b(1) := ι̇. Let j ∈ m and put ṽj := (w (u · v<j))∠∠vj . Then,
bearing in mind (∗), we observe that uj = ṽj or uj ∝ ṽj . On the other hand, we
have ũj := (w u<j)∠∠uj ∝ uj , by (3). This implies that ũj ∝ ṽj and thus (ii).
The remaining implication can be obtained now by applying the one already
proved to ũ := w∠∠u, ṽ := (w u)∠∠v, w̃ := w u · v, ∠∠and ∝ and using
Proposition 4(c). QED

For all s = sk � · · · �s1, t = tl � · · · � t1 ∈ T , we put

s + t := (smax{k,l} · tmax{k,l}) � · · · � (s1 · t1) ∈ T,

where si := ι̇ for all i > k or, resp., ti := ι̇ for all i > l. Note that t = t≤j + t>j

for all t ∈ T and j ∈ N0.

Proposition 5. Let y, z ∈ X and t = tl � · · · � t1 ∈ ST
∝
.
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(a) If z passes t1, we have

t × z = t + z and
(
z(z, t), s(z, t)

)
= (1, |t1|+ 1).

(b) If j ∈ |t1| and y enters t≤j
1 , we have

t × y = (t≤j × y) + t>j and
(
z(y, t), s(y, t)

)
=
(
z(y, t≤j), s(y, t≤j)

)
.

Proofs. ad (a): Definition.

ad (b): Let j ∈ |t1| such that t≤j
1 ∝∗✟✟ y. Then there exist u(1), u(2) ∈ W and

ỹ ∈ X such that t1 = u(1) · ỹ · u(2), t1 y = u(1) · y · u(2), ỹ ∝ y and |u(1)| < j.
We have |t2| ≤ |u(1)| < j or (t2)|u(1)|+1 ∝ ỹ, hence t≤j

2 ∝∗✟✟ ỹ. In both cases,
putting t̃ := t>1, it follows inductively that

t × y = (t̃ × ỹ) � (t1 y) =
(
(t̃≤j × ỹ) + t̃>j

)
�
(
(t≤j

1 y) · t>j
1

)
= (t≤j × y) + t>j .

QED

Lemma 5. Let m ∈ N, w ∈ W and t ∈ ST
∝
. Then the following conditions

are equivalent:

(i) w ∈ SW
∝

mm,

(ii) z(w, t) ∈ SW
≥

mm,

(iii) s(w, t) ∈ SW
<

mm.

Proof. For m = 1, the asserted equivalence follows from Lemma 3. Let
m > 1 and choose u, v ∈ W such that w = u · v and |u| = m = |v|. First, all
three conditions (i), (ii) and (iii) imply that u, v ∈ W∝, by definition or, resp.,
Theorem 2. Furthermore, in each case, we have:
(∗) v enters the first row (t × u)1 of t × u.
For, in the case that (i) holds, this follows from Proposition 4(b) and ui ∝ vi for
all i ∈ m, while, assuming (ii), (∗) follows from z(vi, t × u·v<i) > z(ui, t × u<i),
that is, z(vi, t × u · v<i) ≥ 2 for all i ∈ m. Finally, (iii) implies that

s(vi, t × u · v<i) ≤ s(ui, t × u<i) ≤ |(t × u · v<i)1|

for all i ∈ m and thus also (∗).
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Let t = tl � · · · � t1. We consider two cases:
case 1: u enters t1.
Then w enters t1, by (∗). Applying Lemma 4 and (16), we obtain inductively

(i) ⇐⇒ t1∠∠w ∈ SW
∝

mm ⇐⇒ z(t1∠∠w, t>1) ∈ SW
≥

mm ⇐⇒ (ii).

and the corresponding equivalence for s(w, t).
case 2: u passes t1.
Then Proposition 5(a) particularly implies that t × u = (t × u<m)+um, and

there exist w̃ ∈ W and x ∈ {v1, . . . , vm−1, um} such that ((t × u) × v<m)1 =
w̃ · x. As vm enters w̃ · x whenever (i), (ii) or (iii) holds, by (∗), we obtain step
by step x /∈ {v1, . . . , vm−1}, x = um and finally um ∝ vm. Hence, each of the
three conditions implies that

(t × u) × v<m =
(
t × (u<m · v<m)

)
+ um

and

z(v<m, t × u) = z(v<m, t × u<m), s(v<m, t × u) = s(v<m, t × u<m) ,

by Proposition 5(b). The equivalence of (i), (ii) and (iii) again follows by induc-
tion. QED

Theorem 3. Let t ∈ ST
∝
, q, r ∈ W and assume that q is a partition. Then,

for all w ∈W , the following three conditions are equivalent:

(i) w ∈ SqW
∝

r,

(ii) z(w, t) ∈ SqW
≥

r,

(iii) s(w, t) ∈ SqW
<

r.

Note that, in the special case ofX = N, ∝=≥, the preceding theorem implies
Theorem 1 in [17], as will be demonstrated after Lemma 6.

Proof of the theorem. Let n := |w| > 0, z = z1 · · · zn := z(w, t), s =
s1 · · · sn := s(w, t) and r = r1 · · · rl. For l = 1, the asserted equivalence is
immediate from Theorem 2. Let l > 1. Then, by (7), each of the conditions (i),
(ii) and (iii) implies that q1+r1 ≥ q2+r2. If q1+r1 > q2+r2, the equivalence of
(i), (ii) and (iii) inductively follows from the equivalence for w1 · . . . · wn−1 and
from Theorem 2. Hence we may assume that q1+r1 = q2+r2. Now put m := r1,
w̃ := w1 · . . . · wn−2m, u := wn−2m+1 · . . . · wn−m and v := wn−m+1 · . . . · wn,
visualized as follows:
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Tabr(w) ∼

v

u

w̃

m︷ ︸︸ ︷

Let t̃ := t × w̃. By Lemma 5, we have

u · v ∈ SW
∝

mm ⇐⇒ z(u · v, t̃) ∈ SW
≥

mm ⇐⇒ s(u · v, t̃) ∈ SW
<

mm.

Furthermore, putting r̃ := r2 · · · rl and q̃ := q2 · · · q|q|, we obtain inductively

w̃ · u ∈ S q̃W
∝

r̃ ⇐⇒ z(w̃ · u, t) ∈ S q̃W
≥

r̃ ⇐⇒ s(w̃ · u, t) ∈ S q̃W
<

r̃.

Combining these two chains of equivalence, we are done. QED

4 Conjugate and Rotated Tableaux

Conjugating or rotating a shifted standard tableau leads again to a shifted
standard tableau (with respect to a suitable ordering). This simple observation
combined with Theorems 1 and 3 yields our main combinatorial result (Main
Theorem 1). For example, in the case of X = N and ∝=≤, we may consider

the partition q = 11 and the tableau t = (2 · 4) � (3 · 3) � (1 · 1 · 1 · 2) ∈ SqT
≤

422,
visualized by

t ∼
1 1 1 2
3 3

2 4
.

The corresponding q-conjugate and rotated tableau may then be visualized by

t�(q) ∼

2
1 3 4
1 3
1
2

and t ∼
4 2

3 3
2 1 1 1

.
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Hence t�(q) and t are indeed shifted standard tableaux with respect to < and
≥, resp. More precisely, we have

t�(q) ∈ S2T
<

13211 and t ∈ S32T
≥

224 .

In order to analyze these phenomena in general, we need some definitions.
Let p = p1 · · · pl ∈ W be a partition. For the conjugate partition p∗ =

p∗1 · · · p∗p1 of p, defined by

p∗i := |{ j ∈ l | pj ≥ i }|

for all i ∈ p1, we then have (p∗)∗ = p. Now let q, r ∈ W. We define words
q + r, q − r ∈ W by (q + r)∞ = q∞ + r∞ and (q − r)∞ = q∞ − r∞, resp.,
where, in the second case, nonpositive integers in q − r are omitted. Let r =
r1 · · · rl and t = tl � · · · � t1 ∈ T r. Assume that q and q + r are partitions.

For all i ∈ q1 + r1, we put ν1 :=

{
q∗i + 1 , i ≤ q1

1 , i > q1
, ν2 := (q + r)∗i and

si := tν1,i−qν1
· tν1+1,i−qν1+1 · . . . · tν2,i−qν2

, where qν := 0 whenever ν > |q|. Now
we define

t�(q) := sq1+r1
� · · · �s1 .

The i-th row si of the q-conjugate tableau t∗(q) of t may be visualized as follows:

t ∼

q∗i

(q + r)∗i

i

↓

��
��
��
��

If q is the empty partition, we write t� instead of t�(q). As an immediate
consequence of the definitions, we obtain:

Proposition 6. Let q, r ∈ W such that |q| ≤ |r|. Let t ∈ T r. Assume that q
and q + r are partitions. Then we have t�(q) ∈ T (q+r)∗−q∗ and(

t�(q)
)�(q∗)

= t .
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The rotated tableau t of t is defined by

t := t1 � · · · � tl ,

where we have used the notation w := w1 ·̄ . . . ·̄wn for all w = w1 · . . . ·wn ∈W .
Obviously, we have (t ) = t for all t ∈ T . For all q, u ∈ W, we write

q � u ,

if (q∞)i ≤ (u∞)i for all i ∈ N. Let q and u be partitions such that q � u. Let
m := |u|. Then we put

(u, q)′ := (u′, q′) ,

where u′, q′ are the unique partitions such that

(u′∞)i :=

{
u1 − (q∞)m+1−i , i ≤ m

0 , i > m

and

(q′∞)i :=

{
u1 − (u∞)m+1−i , i ≤ m

0 , i > m

for all i ∈ N. It is easy to see now that q′ � u′,

(u∗, q∗)′ = (u′∗, q′∗) (20)

and, in the case of |q| < |u|,
(
(u, q)′

)′
= (u, q).

Lemma 6. Let q, u ∈ W be partitions such that q � u. Let u′, q′ ∈ W
such that (u, q)′ = (u′, q′). Then, for any t ∈ T , the following conditions are
equivalent:

(i) t ∈ SqT
∝

u−q,

(ii) t�(q) ∈ Sq∗
·∝
T u∗−q∗,

(iii) t ∈ Sq′
∝
T u′−q′,

(iv) t�(q) ∈ Sq′∗
·∝
T u′∗−q′∗.

As an immediate consequence of this lemma, we observe that, for the set
Fq,u defined in [17], we have

w ∈ Fq,u ⇐⇒ w ∈ Sq′
≥
T u′−q′
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for any w ∈ W. Hence Theorem 1 in [17] indeed follows from our Theorem 3,
if we take into account that, for the template tableau T (w) defined in [17], we
have T (w)z = Q≥(w).

Proof of the lemma. We may assume that |q| < m := |u|. For, other-
wise, we may consider q̃, ũ ∈ W, defined by (q̃∞)i := (q∞)i − qm and (ũ∞)i :=
(u∞)i − qm for all i ∈ N, instead of q, u. The corresponding sets of standard
tableaux in (i)-(iv) remain the same.
The equivalence of (i) and (ii) is immediate from the definitions. In order to
prove the equivalence of (i) and (iii), it suffices to show that (i) implies (iii), as

(t ) = t and ((u, q)′)′ = (u, q). Let t ∈ SqT
∝

u−q and r = r1 · · · rl := u− q. Then
we have u′ − q′ = rl · · · r1. By definition, it follows that

t′ = t1 � · · · � tl ∈
∝
T r =

∝
T u′−q′ .

Hence, for the proof of (iii), it remains to be shown that, for all i ∈ l − 1,

ti · ∝q′i−q′i+1
ti+1 .

As ·∝ = ∝ , this is equivalent to

ti+1 ∝ q′l−i−q′l−i+1
ti

for all i ∈ l − 1. But, for all i ∈ l − 1, we have ti ∝ qi−qi+1ti+1, by (i), and
furthermore

|ti|+ qi − qi+1 = ui − qi+1 = |ti+1| − ui+1 + ui = |ti+1|+ q′l−i − q′l+1−i.

Hence (iii) follows from the following easy seen equivalence: If k, l,m, n ∈ N

such that n+ l = k +m and if v, w ∈W such that |v| = n, |w| = m, we have

w ∝ k v ⇐⇒ v ∝ l w .

Finally, the equivalence of (ii) and (iv) follows from the equivalence of (i) and
(iii), by (20). QED

In the case of X = N, we obtain from Lemma 6:
Corollary 2. Let p, q, r ∈ W such that q and u := q + p are partitions. Let

q′, u′ ∈ W such that (u, q)′ = (u′, q′) and put

q≤ := q, q≥ := q′, q< := q∗ and q> := q′∗

and

p≤ := p, p≥ := u′ − q′, p< := u∗ − q∗ and p> := u′∗ − q′∗.
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Then we have
|SqT

≤
p
r | = |Sq∝T

∝
p∝
r |

for all ∝∈ {≤,≥, <,>}. In particular, we have |ST
≤
p
r | = |ST

<
p∗
r | and |ST

≥
p
r | =

|ST
>
p∗
r |.
Proof. Conjugating and rotating induce bijections between the sets in

question, by Lemma 6. QED

Remark 1. Let n ∈ N, p � n and r = r1 · · · rl � n. For any t ∈ ST
≥
p
r , we

obtain a tableau t̃ ∈ ST
≤
p
r by replacing the letters i in t by l+1− i, for all i ∈ l.

The mapping t �−→ t̃ induces an involution between the sets ST
≥
p
r and ST

≤
p
r .

As r = rl · · · r1 is a rearrangement of r, we have |ST
≤
p
r | = |ST

≤
p
r | (for a simple

combinatorial proof, see [15], Theorem 7.10.2). Hence

|ST
≥
p
r | = |ST

≤
p
r |. (21)

For any tableau t ∈ SY T , the column word of t is defined by

ts := t∗z ,

that is, the i-th letter of ts is the number of the column of t containing i, for all
i.

Corollary 3. Let t ∈ SY T and q, p ∈ W. Assume that q and q + p are
partitions. Then we have

tz ∈ SqW
≥

p ⇐⇒ ts ∈ SqW
<

p.

Proof. By Theorem 1, we can find a word w ∈ W such that (P≤(w), Q≤(w))

= (t, tz), for there exists a partition r ∈ W such that t ∈ ST
≤
r and tz ∈ Lr. Fur-

thermore, we have tz = z(w, ϊ), by (17), and hence ts = s(w, ϊ) by induction.
Applying Theorem 3, we obtain

zz = z(w, ϊ) ∈ SqW
≥

p ⇐⇒ w ∈ SqW
≤

p ⇐⇒ ts = s(w, ϊ) ∈ SqW
<

p.

QED

We are now in a position to prove our main combinatorial result.
Main Theorem 1. Let p, q, r ∈ W such that q and q + p are partitions.

Then we have

|SqT
∝

p
r | = |

⋃
u partition

ST
∝

u
r × SqL

≥
p
u| = |

⋃
u partition

ST
∝

u
r × SqL

<
p
u∗ |
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Proof. The first identity is a combination of Theorems 1 and 3. Let u ∈ W
be a partition. Then the mapping t �−→ ts induces a bijection of SY T u onto
Lu∗ , by Corollary 2 and (14). Hence, the mapping ϕ : Lu −→ Lu∗ , w �−→ wz−1s

is bijective, and SqL
≥

p
uϕ = SqL

<
p
u∗ for all q, p, by Corollary 3. This implies the

second identity. QED

5 An Eightfold Littlewood-Richardson Theorem

Let K be a field of characteristic 0. For all n ∈ N, we denote by Sn the
symmetric group on n and by ClK(Sn) the ring of class functions of Sn over K.
For all χ, ψ ∈ ClK(Sn), we write

(χ, ψ)Sn :=
1
n!

∑
σ∈Sn

χ(σ)ψ(σ−1)

for the ordinary scalar product of χ and ψ. Let q = q1 · · · qk ∈ W such that
q1+· · ·+qk = n. Inducing the trivial character of a Young subgroup of Sn of type
q, we obtain a character ξq of Sn which is called Young character corresponding
to q. We then have ξq = ξr whenever q is a rearrangement of r. For any p � n,
we denote by ζp the irreducible character of Sn corresponding to p. Then, in
particular, sgnn := ζ11...1 ∈ ClK(Sn) is the sign character of Sn, and we have

sgnn ζ
p = ζp

∗
(22)

(see [6], 4.3.14). The Kostka matrix Kn = (kqp)q,p�n is defined by

ξq =
∑
p�n

kqp ζp (23)

for all q � n, that is, kqp is the multiplicity (ξq, ζp)Sn of the irreducible character
corresponding to p in the Young character corresponding to q. Row and column
indices of Kn are assumed to be arranged in lexicographic decreasing order.
Finally, for all p, q, r ∈ W, we put

stpr := |ST
≤
p
r | and sqtpr := |SqT

≤
p
r |.

Then we have (see [6], 4.3.22, 4.4.6):

Theorem 4. Let n ∈ N.

(a) The Kostka matrix Kn is lower triangular with units in the diagonal. Par-
ticularly, { ξq | q � n } is a K-basis of ClK(Sn).
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(b) For all q, p � n, we have kqp = stpq.

Let
C :=

⊕
n∈N0

ClK(Sn).

Then, by Theorem 4(a), { ξq | q ∈ W, q partition } is a K-basis of C. Hence, the
outer product � on C may be defined by

ξq � ξr := ξqr

for all partitions q, r, and bilinearity. We are aiming at combinatorial descrip-
tions of the Littlewood-Richardson (L-R) coefficients

cuqp := (ζq � ζp, ζu)Sn+k

for all n, k ∈ N, p � k, q � n and u � n+ k. Our starting point is the following
well-known result due to Young [18]. For the reader’s convenience, a short proof
is given.

Theorem 5 (Young’s Rule). For all k, n ∈ N, p � n, r � k, we have

ζp � ξr =
∑

u�n+k

sptu−p
r ζu.

Proof. Let q = q1 · · · ql � n and u � n + k. For all w = w1 · · ·wk ∈ W,
we define w+l := (w1 + l) · · · (wk + l). For all t = tm � · · · � t1 ∈ T , we define
t+l := t+l

m
� · · · � t+l

1 . Then the mapping⋃
p�n

ST
≤
p
q × SpT

≤
u−p
r −→ ST

≤
u
qr, (s, t) �−→ s + t+l

is bijective. Hence we have
∑

p�n st
p
q sptu−p

r = stuqr. By Theorem 4(b), this
implies the identity

Kn(sptu−p
r )p�n, u�n+k = (stuqr)q�n, u�n+k

or, equivalently, (sptu−p
r )p�n, u�n+k = K−1

n (stuqr)q�n, u�n+k. Writing K−1
n = (epq)

and applying Theorem 4(b) again we may conclude that

ζp � ξr =
∑
q�n

epq ξ
qr =

∑
u�n+k

(
∑
q�n

epqst
u
qr) ζ

u =
∑

u�n+k

sptu−p
k ζu.

QED
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Corollary 4. Let n, k ∈ N. For all p � k, q � n and u � n+ k, let Cu
qp be a

set such that there exists a bijection

SqT
≤
u−q
p −→

⋃
r�k

ST
≤
r
p × Cu

qr .

Then, for all p � k, q � n and u � n+ k, we have cuqp = |Cu
qp|. In particular, we

have q, p � u whenever cuqp �= 0.

Proof. Let q � n and p � k. By Theorem 5 and Theorem 4(b), we have∑
u�n+k

sqtu−q
p ζu = ζq � ξr =

∑
r�k

strp ζ
q � ζr =

∑
u�n+k

∑
r�k

strp cuqr ζ
u.

Comparing the coefficients of ζu on both sides, we obtain∑
r�k

strp |Cu
qr| = sqtu−q

p =
∑
r�k

strp cuqr

for all u � n + k. Hence, cuqp �= 0 implies sqtu−q
p �= 0 and therefore q � u. Now

p � u follows from ζp � ζq = ζq � ζp. As p and q have been chosen arbitrarily, we
obtain furthermore

(cuqp)u�n+k
p�k

(strp) r�k
p�k

= (|Cu
qp|)u�n+k

p�k
(strp) r�k

p�k
for all q � n.

This identity of matrices implies our claim, by the regularity of the (transposed)
Kostka matrix and Theorem 4(b). QED

Now we are in a position to give eight combinatorial descriptions of the L-R
coefficients.

Main Theorem 2. Let n, k ∈ N, q � n, p � k, u � n+k and u′, q′ ∈ W such
that (u, q)′ = (u′, q′). Then the Littlewood-Richardson coefficient cuqp is equal to
the number of q- (q′-, q∗-, q′∗-, resp.) shifted standard tableaux t with respect
to ≤ of shape u − q (u′ − q′, u∗ − q∗, u′∗ − q′∗, resp.) such that the word w
obtained by reading off the entries of t row-wise from top right to bottom left is
a standard word (= “lattice permutation”) of content p (p, p∗, p∗, resp.).
(In this description, the word “row-wise” may be replaced by “column-wise”.)

The first variation listed above is the classical description due to Littlewood
and Richardson [9].

Proof of the theorem. By Corollary 4, we may assume that q � u. For
all partitions r, we put

r(≤) = r(≥) := r and r(<) = r(>) := r∗ . (24)
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Then we have |ST
∝
r
p| = |ST

≤
r(∝)
p | for all∝∈ {≤,≥, <,>}, by (21) and Corollary 2.

Let v := u− q. Applying Corollary 2 again and defining q∝, v∝ accordingly, for
all ∝∈ {≤,≥, <,>}, we obtain

|SqT
≤
v
p| = |Sq∝T

∝
v∝
p | = |

⋃
r�k

ST
∝
r
p × Sq∝L

≥
v∝
r | = |

⋃
r�k

ST
≤
r
p × Sq∝L

≥
v∝
r(∝)|

by the first equality in Main Theorem 1, and

|SqT
≤
v
p| = |Sq∝T

∝
v∝
p | = |

⋃
r�k

ST
∝
r
p × Sq∝L

<
v∝
r∗ | = |

⋃
r�k

ST
≤
r
p × Sq∝L

<
v∝
r(∝)∗ |

by the second equality in Main Theorem 1. Now Corollary 4 implies that

(∗) cuqp = |Sq∝L
≥

v∝
p(∝)| = |S

q∝L
<

v∝
p(∝)∗ | for all ∝∈ {≤,≥, <,>}.

In the case of ∝=≥, the first equality in (∗) says that cuqp is the number of
standard q′-shifted ≥-fillings of shape u′ − q′ and content p. But this is simply
the number of q-shifted standard tableaux t of shape u− q and content p such
that the word w obtained by reading off the entries of t row-wise from top right
to bottom left is a standard word, that is, the classical description of cuqp. The
remaining seven descriptions may be obtained from (∗) analogously. QED

Let n, k ∈ N and q � n, u � n + k such that q � u. The skew character
ζu/q ∈ ClK(Sk) of Sn corresponding to u and q may be defined by

ζu/q :=
∑
p�k

cuqp ζp ,

or, equivalently, by

(ζu/q, ζp)Sk
= (ζu, ζq � ζp)Sk

for all p � k.

As a consequence of Main Theorem 2, we obtain the following identities of skew
characters:

Corollary 5. Let n, k ∈ N, q � n, u � n+ k such q � u. Then we have

ζu/q = sgnk ζ
u∗/q∗ = ζu

′/q′ = sgnk ζ
u′∗/q′∗ ,

where q′, u′ ∈ W such that (u, q)′ = (u′, q′).
The first equality in Corollary 5 is due to Aitken [1], while the identity

ζu/q = ζu
′/q′ is a special case of a symmetry property of L-R coefficients due to

Berenstein and Zelevinsky [2].
Proof of the corollary. Let p � k. Then, for all χ ∈ ClK(Sk), we have

(sgnk χ, ζ
p)Sk

= (χ, sgnk ζ
p)Sk

= (χ, ζp
∗
)Sk

,

by (22). Hence our assertions are equivalent to cuqp = cu
∗

q∗p∗ = cu
′

q′p = cu
′∗

q′∗p∗ . These
identities are immediate from Main Theorem 2. QED
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6 Bijections between Littlewood-Richardson sets

In Main Theorem 2, for all q � n, r � k, u � n+k, eight different sets were in-
troduced with cardinality cuqr, which will be referred to as Littlewood-Richardson
(L-R) sets in the sequel. In the proof of Main Theorem 2, a combinatorial con-
nection was established between each pair of families of L-R sets: For, if Cu

qr

and C̃u
qr (q � n, r � k, u � n+ k) are two such families, we obtain bijections⋃

r�k ST
≤
r
p × Cu

qr −→ SqT
≤
u−q
p −→

⋃
r�k ST

≤
r
p × C̃u

qr

(s, w) �−→ t �−→ (s̃, w̃)
(25)

for all q, u, by Corollary 2 and Main Theorem 1. From a combinatorial point
of view, it is natural to ask for a direct bijection Cu

qr −→ C̃u
qr for all q, u, r.

Surprisingly, such a bijection may be obtained as a suitable restriction of the
bijection (25), namely by fixing the first component s ∈ ST

≤
r
p in (25). It will be

shown indeed that for every s ∈ ST
≤
r
p there exists s̃ ∈ ST

≤
r
p such that the set

{s} × Cu
qr is mapped onto {s̃} × C̃u

qr by the bijection (25).
For the remainder of this section, we fix n, k ∈ N, q � n, r = r1 · · · rl � k

and u � n + k such that q � u. Furthermore, we put p := u − q and choose
s ∈ SY T r arbitrarily. Let ∝∈ {≤, <,≥, >}. Bearing in mind the definitions of
q∝ and p∝ in Corollary 2 and of r(∝) in (24), we put

C∝ := Sq∝L
≥

p∝
r(∝) and C̃∝ := Sq∝L

<
p∝
r(∝)∗ .

In the sequel, bijections will be established from the set C≥ (the classical L-R
description) onto C∝ and onto C̃∝ (∝∈ {≤, <,≥, >}) .

For all t = tl • · · · • t1 ∈ T , we define

word(t) := tl · · · · · t1 .

Then, for all w ∈ C≥, there exists a unique (Young) tableau tw ∈ Sq′T
≤
u′−q′

such that (
P≤(word(tw)), Q≤(word(tw))

)
= (s, w) ,

by Main Theorem 1. Furthermore, defining

t≤ := t, t≥ := t , t< := t�(q
′) and t> := t�(q

′)

for any tableau t ∈ T and applying Lemma 6, we obtain a bijection

Sq′T
≤
u′−q′ −→ Sq′∝T

∝
(u′−q′)∝ , t �−→ t∝ , (26)

for all ∝∈ {≤, <,≥, >}.
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Theorem 6. For all ∝∈ {≤, <,≥, >}, the mappings

C≥ −→ C∝, w �−→ Q∝(word(tw ∝))

and
C≥ −→ C̃∝, w �−→ s(word(tw ∝), ϊ)

are bijections.
For the proof we need the following lemma that is based on some well-known

properties of the classical Robinson-Schensted correspondence.

Lemma 7. Let t, t̃ ∈ Sq′T
≤
u′−q′ ∩Y T such that P≤(word(t)) = P≤(word(t̃)).

Then, for all ∝∈ {≤, <,≥, >}, we have

P∝(word(t∝)) = P∝(word(t̃∝)).

Proof. Let YWn be the set of all w = w1 · · ·wn ∈ W such that

{w1, . . . , wn} = n.

Then the symmetric group Sn acts on YWn from the left by

π(w1 · · ·wn) := w1π · · ·wnπ

and from the right by

(w1 · · ·wn)π := (w1π) · · · (wnπ)

for all π ∈ Sn, w = w1 · · ·wn ∈ YWn. Furthermore, as word(t) ∈ YWn for all
t ∈ Y T such that |word(t)| = n, we obtain a canonical right action of Sn on the
set of Young tableaux defined by

tπ := Tabr(word(t)π)

for all such t and π ∈ Sn, where r ∈ W such that r∞ = sh(t). Now let 4 ∈ Sn

be the order-reversing permutation, defined by i4 = n+ 1− i for all i ∈ n, and
let w = w1 · · ·wn ∈ YWn. Then it may be seen easily that

(a) word(t ) = 4word(t),

(b) P>(w) = P<(w 4)4,

Furthermore, we have:

(c) P<(4w) = P<(π)∗ ([13], Lemma 7),

(d) P<(w 4) = P<(w)evac ([14], Section 4, 5),
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(e) P<(word(t∗(q
′) )) = P<(word(t)) ([7], Thm. 5, [4], §2, (10)),

where, in (d), P<(w)evac is Schützenberger’s evacutation of the tableau P<(w).
(for details concerning this, and (c), see [8], §4.1.) Now our claim is immediate
from (a)-(e): Indeed, for ∝=≥, we obtain

P≥(word(t≥)) = P≥(word(t )) = P>(word(t ))

= P>(4word(t)) , by (a)

= P<(4word(t) 4)4 , by (b)

= P<(word(t) 4)∗4 , by (c)

= (P<(word(t))evac)∗4 , by (d)

and hence

P≥(word(t≥)) = (P<(word(t))evac)∗4 = (P<(word(t̃))evac)∗4 = P≥(word(t̃≥)).

In the same vein, our claim for ∝=> (∝=<, resp.) follows from

P>(word(t>)) = P>(word(t�(q
′) ))

= P<(word(t�(q
′) ) 4)4 , by (b)

= (P<(word(t�(q
′) ))evac) 4 , by (d)

= (P<(word(t))evac) 4 , by (e)

and, resp.,

P<(word(t<)) = P<(word(t�(q
′)))

= P<(4word(t�(q
′) )) , by (b)

= P<(word(t�(q
′) ))∗ , by (c)

= P<(word(t))∗ , by (e).

QED

Proof of Theorem 6. Let ∝∈ {≤, <,≥, >} and

M := { t ∈ Sq′T
≤
u′−q′ |P≤(t) = s } .

Applying Lemma 7, we can find a tableau s̃ such that P∝(word(t∝)) = s̃ for all
t ∈M . Let

M∝ := { t ∈ Sq′∝T
∝

(u′−q′)∝ |P∝(t) = s̃ } .
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Then the mapping M −→ M∝, t �−→ t∝ is a bijection, by (26) and Lemma 7
again. Furthermore, by Main Theorem 1, the mappings C≥ −→ M, w �−→ tw
and M∝ −→ C∝ (C̃∝, resp.), t �−→ Q∝(word(t)) ( t �−→ s(word(t), ϊ), resp.) are
one to one. This completes the proof. QED

The bijections in Theorem 6 should be illustrated by an example: Let ∝=<.
Then the bijection given in Theorem 6 may be understood as a bijective proof
of the identity cuqr = cu

∗
q∗r∗ . Let n = 3, k = 9, q = 21, r = 432 and u = 543.

Then, for the word w := 111221332, we have

Tab333(w) ∼
1 1 1

2 2 1
3 3 2

and hence w ∈ Sq′L
≥

u′−q′
r = C≥. Furthermore, s = 89 �567 �1234 ∈ SY T r. We

obtain

tw ∼
1 8 9

5 6 7
2 3 4

and tw
< ∼

4
3 7
2 6 9

5 8
1

,

hence word(tw<) = 437269581. Now, indeed, we have w̃ = Q<(437269581) =

121321324 ∈ Sq′∗L
≥

u′∗−q′∗
r∗ , as

Tab12321(121321324) ∼

4
2 3
1 2 3

1 2
1

is a q∗-shifted standard tableau.

Remark 2. In [5], instead of C≥ and C>, the sets C
u/q
r := C≥z−1 and

C
u∗/q∗
r∗ := C>z−1 are considered. Using αu/q defined in [5], we find that

word(t�(q
′)) = α−1

u/qword(t)

for all t ∈ Sq′T
≤

u′−q′ ∩ Y T . Let w ∈ C≥ and T := wz−1. Then, applying
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Schützenberger’s theorem ([14], section 4) and Theorem 3.11 in [5], we obtain1

Q<(word(t�(q
′)

w ))z−1 = P<(word(tw)−1αu/q)

= P<(word(tw)−14)αu/q4

= (T �)evacαu/q4 .

Thus Theorem 3.14 in [5] is the special case where ∝=< of our Theorem 6.
Comparing Example 3.15 in [5] with the example given above might illustrate
this.
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