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Abstract. We consider the formulation by Janyška and Modugno of the phase space of
relativistic mechanics in the framework of jets of 1-dimensional time-like submanifolds. Here,
the gravitational and electromagnetic structures are encoded in a cosymplectic form. We de-
rive the equation of motion of one relativistic particle in this framework, and prove that the
Lagrangian of our model is non-degenerate. This makes the phase space a universal primary
constraint. Finally, we show as all symmetries of the equation of motion (including higher or
generalized symmetries) can be interpreted as distinguished vector fields on the phase space.
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1 Introduction

Relativistic mechanics is usually formulated, in a differential geometric con-
text, as a theory on the tangent bundle of spacetime. Anyway, this formulation
has some well-known drawbacks: first of all the Lagrangian (which, in the case
of vanishing electromagnetic field, is the arc-length with respect to the given
Lorentz metric) is degenerate, i.e. its Hessian is a singular matrix. The degener-
acy is due to the fact that the Lagrangian is invariant with respect to the affine
reparametrization of curves. Hence, to provide a Hamiltonian formulation it is
necessary to use Dirac’s constraints [7].

iPartially supported by University of Lecce and Progetto MIUR PRIN 2003 “Sistemi inte-
grabili, teorie classiche e quantistiche”
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The above problems are well-known; as a way to solve them, some authors
tried to formulate mechanics on ‘trajectories’, or non-parametrized curves [2,
21, 24]. None of them, however, present a complete model for the relativistic
mechanics.

Recently, a formulation of relativistic mechanics based on jets of submani-
folds and cosymplectic forms has been presented [9–11]. Here the tangent bundle
is replaced by the first jet space of time-like curves as the phase space of the
theory. Time-like curves can be regarded as distinguished 1-dimensional sub-
manifolds: indeed, the phase space is a subspace of the first jet of 1-dimensional
submanifolds of spacetime.

The literature on jets of submanifolds (also known as ‘contact elements’,
‘differentiable elements’, ‘first-order caps’, ‘extended jets’ etc., see [18–20, 27]
and references therein) is less spread with respect to the literature on jets of
fibrings. Jets of 1-dimensional submanifolds of order r are equivalence classes
of 1-dimensional submanifolds having a contact of order r. Clearly, two curves
have a contact if and only if their tangent space is the same; hence this notion is
independent of the parametrization. In particular, the first jet of 1-dimensional
submanifolds of spacetime turns out to be the projectivized tangent bundle of
spacetime. The language of jets of submanifolds is a natural and straightforward
generalization of the language of tangent spaces, and shall not be regarded as
a unnecessary mathematical construction. Indeed, being relativistic mechanics
dependent on trajectories as submanifolds (irrespectively of any parametriza-
tion), jets of submanifolds are the most natural language that differential ge-
ometry provides to model such a physical theory. Other models with tangent
spaces introduce one extra degree of freedom which has to be discarded with
the mechanism of Dirac constraints.

In [9] a cosymplectic form (in the sense of [1, 5, 14]) naturally induced from
the gravitational and the electromagnetic fields has been introduced on the
first jet space of time-like curves. Such a form has a one-dimensional kernel
(Reeb vector field) whose integral curves are the trajectories of the system.
Then, a quantum theory for a scalar particle on the above background has been
formulated by analogy with the geometric quantization of classical mechanical
systems [28,29], and this leads to a covariant Klein–Gordon equation [8]. We are
aware of the well known difficulties for physical interpretation of the probability
current and for the formulation of the Hilbert stuff.

Anyway, the variational formulation of the equation of motion was absent in
the above model. This article is aimed at filling this gap. Namely, after recalling
preliminaries on jets in section 2 and the model by Janyška and Modugno in
section 3, we derive the equation of motion using the variational calculus on jets
of submanifolds first introduced by A. M. Vinogradov in the context of infinite-
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order jets [4,25–27] then specialized by us to finite order jets [15,18,19]. As a by-
product, we show that a Lagrangian formulation of relativistic mechanics arise
in a very natural way on jets of submanifolds, contrarily to what is stated in [24].
Moreover, we prove that the Lagrangian of our model is non-degenerate. This
shows that our phase space is, indeed, a universal primary constraint. Hence,
a Hamiltonian formulation could be achieved, but this will be the subject of
future research (see also [12]).

Due to the ‘cleaner’ mathematical setting of the theory, we obtain a nat-
ural picture of symmetries of the equation of motion in our scheme, including
symmetries depending on velocities (higher symmetries in the sense of [4, 27],
generalized symmetries in the sense of [22]). We stress that the point symmetries
of our equation (i.e, symmetries induced by spacetime transformations) recover
in a much simpler way projective collineations, i.e. transformations bringing
geodesics into geodesics even without preserving the parametrization. Usually
such transformations are defined in a much more involved way (see [3, 6, 13]).

In future papers we hope to provide also the Hamiltonian formalism as well
as computations on classical, projective and higher symmetries of the equations
of motions in distinguished models of spacetime.

We end this introduction by some mathematical preliminaries.

The theory of unit space has been developed in [9, 12] in order to make
explicit the independence of classical and quantum mechanics from the choice
of unit of measurements. Unit spaces have the same algebraic structure as R+,
but no natural basis. We assume the (1-dimensional) unit spaces T (space of
time intervals), L (space of lengths) and M (space of masses). We set T

−1 ≡
T
∗, and analogously for L, M. Tensor fields appearing in the theory will be

usually scaled, i.e., they will take values in unit spaces according to their physical
interpretation. For example, the metric will take values in the space of area units
L

2.

We assume the following constant elements: the light velocity c ∈ T
−1 ⊗ L

and the Planck’s constant ~ ∈ T
−1 ⊗ L

2 ⊗ M. Moreover, we say a charge to be
an element q ∈ T

−1 ⊗ L
3/2 ⊗ M

1/2 ⊗ R.

We will assume coordinates to be dimensionless (i.e., real valued). We as-
sume manifolds and maps to be C∞.

2 Jets of submanifolds: an overview

Here we will recall the basics about jets of 1-dimensional submanifolds. Our
main sources are [15, 18–20], where the structures constructed below are given
in the general case of jets of n-dimensional submanifolds.
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Let r ≥ 0. An r-jet of a 1-dimensional submanifold s ⊂ E at x ∈ E is defined
to be the equivalence class of 1-dimensional submanifolds having a contact with
s of order r at x. The equivalence class is denoted by jrs(x), and the quotient
set by Jr(E, 1). Moreover, the image of the map jrs : s → Jr(E, 1) defines a
natural lifting of the 1-dimensional submanifold s to J r(E, 1). For r > p we
have the bundles πrp : Jr(E, 1) → Jp(E, 1). Note that the bundles πr+1

r are

affine bundles for r ≥ 1 [19, 26]. Of course J0(E, 1) = E. A chart (xλ) on E is
said to be adapted to a 1-dimensional submanifold s if s can be expressed in
coordinate as (x0, si(x0)), where si are local real functions. The set J r(E, 1) has
a natural manifold structure; a chart (x0, xi) on E induce the chart (x0, xi, xiα)
on Jr(E, 1) such that xiα ◦ s = ∂|α|sixα (here α is a multi-index of length r
containing, in the 1-dimensional case, only the index 0 repeated r times).

We introduce the bundle T r+1,r def
= Jr+1(E, 1)×Jr(E,1)TJ

r(E, 1); the pseudo-
horizontal subbundle Hr+1,r ⊂ T r+1,r [18, 19] is defined by

Hr+1,r def
=
{
(jr+1s(x), υ) ∈ T r+1,r | υ ∈ Tjrs(x)(jrs(s))

}
. (1)

It is easy to realize that Hr+1,r = Jr+1(E, 1) ×J1(E,1) H
1,0. We also have the

pseudo-vertical bundle V r+1,r def
= T r+1,r/Hr+1,r. The bundles H1,0 and V 1,0 are

strictly related with the horizontal and vertical bundle in the case of jets of

fibrings. A local basis for the sections of the bundle Hr+1,r is D
(r+1)
0 = ∂0 +

xi
α0∂

α

i , while a local basis for the sections of its dual Hr+1,r∗ is d0 def
= d0|Hr+1,r

The inclusion D(r+1) : Jr+1(E, 1) → Hr+1,r∗ ⊗ T r+1,r is said to be the (r + 1)-
th order contact structure on J r+1(E, 1). Its coordinate expression is D(r+1) =

d0 ⊗ D
(r+1)
0 = d0 ⊗ (∂0 + xi

α0∂
α

i ). The basis of the annihilators of D
(r+1)
0 in

T r+1,r∗, or contact forms, is denoted by {ωiα}, where ωiα
def
= diα − xi

α0d
0. They

generate a space of forms which is naturally isomorphic to V r+1,r∗. For deeper
discussions on jets of submanifolds, see [15,18–20] and references therein.

Jets of submanifolds are a natural environment for differential equations
and the calculus of variations. An ordinary differential equation of order r is a
submanifold Y ⊂ Jr(E, 1). A solution is a 1-dimensional submanifold s ⊂ E
such that jrs(s) ⊂ Y.

Given a 1-form α on J1(E, 1) and a 1-dimensional submanifold s ⊂ E we
have the action [19]:

AU (s) =

∫

U
(j1s)

∗α,

where U is a regular oriented 1-dimensional submanifold of s with compact
closure. The action is determined by α modulo contact forms: a contact form C
fulfills (j1s)

∗C = 0 for every 1-dimensional submanifold s. The horizontalization
[18, 19] takes the 1-form α into a section h(α) of H2,1∗ which does not contain
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contact factors. If α = α0d
0+αid

i+α0
i d
i
0 then we have the coordinate expression

h(α) = (α0 + αix
i
0 + α0

i x
i
00)d

0. For the above reasons, the action depends only
on the ‘horizontal’ component of α, hence we have

AU (L) =

∫

U
(α0 + αix

i
0 + α0

i x
i
00)d

0.

Note that here d0 transforms according to a more complex law with respect to
the case of jets of fibrings.

Then, there is a natural differential operator, the Euler–Lagrange operator,
bringing a Lagrangian into its Euler–Lagrange morphism. It can be defined in
the framework of A. M. Vinogradov’s C-spectral sequence [25, 26] (see [18, 19]
for its finite-order jet equivalent). We have

E(h(α)) : J3(E, 1) → V 1,0∗ ⊗H1,0∗.

The corresponding Euler–Lagrange equations are

E(h(α)) =
(
∂ih(α)0 −D

(3)
0

(
∂0
i h(α)0

))
ωi ⊗ d0 = 0, (2)

where we have set h(α)0
def
= α0 + αix

i
0 + α0

i x
i
00. The Euler–Lagrange equation

can be achieved in another way, using properties of the C-spectral sequence.
Namely, the horizontalization can be generalized to k-forms; it produces forms
which always have a horizontal factor. Then, the following diagram commute:

Λ1
1

d
- Λ2

1

Λ̄1
1

h

? E
- E1,1

1

h′

?

(3)

where Λk1 denotes the space of k-forms on J1(E, n), h is the horizontalization,
h′ is horizontalization followed by factorization of total divergencies [18, 19], d
is the standard differential and E is the Euler–Lagrange operator between the
space of Lagrangians Λ̄1

1 and the space of Euler–Lagrange morphisms E1,1
1 . So,

we can compute the Euler–Lagrange morphism through the equality

E(h(α)) = h′(dα). (4)

3 General relativistic phase space

In this section we summarize the model of general relativistic phase space
given by Janyška and Modugno [9].
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Spacetime. We assume the spacetime to be a manifold E, with dimE = 4,
endowed with a scaled Lorentz metric g : E → L

2⊗T ∗E⊗ET
∗E whose signature

is (− + ++). Moreover, we assume E to be oriented and time-like oriented.
In what follows, Latin indexes i, j, . . . will label space-like coordinates and

run from 1 to 3, Greek indexes λ, µ, ϕ, . . . will label spacetime coordinates and
run from 0 to 3. Charts on E are denoted by (xϕ); the corresponding bases
of vector fields and 1-forms are denoted, respectively, by ∂ϕ and dϕ. An ele-
ment u0 ∈ T, or, equivalently, its dual u0 ∈ T

−1, is said to be a time unit
of measurement. We have the coordinate expressions g = gϕψd

ϕ ⊗ dψ, where
gϕψ : E → L

2 ⊗ R. We will use charts such that ∂0 is time-like and time-like
oriented, and ∂i are space-like.

Kinematics. A time-like 1-dimensional submanifold s ⊂ E is said to be a
motion, whose velocity is j1s. The open subbundle U1E ⊂ J1(E, 1) of velocities
of motions is said to be the (general relativistic) phase space.

In an analogous way we introduce the subbundles U rE ⊂ Jr(E, 1). Note that
the bundles πr+1

r are affine if r ≥ 1. By a restriction we have the natural bundle
structure π1

0 : U1E → E. A section o : E → U 1E is said to be an observer. A
typical chart (x0, xi) on E induces a local fibred chart (x0, xi;xi0) on U1E such
that, if xi|s = si ◦ x0|s, then

xi0 ◦ j1s = ∂six0.

The restriction of the pseudo-horizontal bundle H1,0 to U1E admits the follow-
ing global trivialization

H1,0 → U1E × (T ⊗ R), (j1s(x), υ) →
(
j1s(x),±

‖υ‖
c

)
,

where the sign depends on the time orientation of υ. This enables us to use a
normalized version of the contact structure

d1
def
= c

D(1)

∥∥D(1)
∥∥ : U1E → T

∗ ⊗ TE,

with coordinate expression d1 = cα0 (∂0 + xi0∂i), where

α0 = |g00 + 2g0jx
j
0 + gijx

i
0x
j
0|−1/2 ∈ L

−1 ⊗ R.

We have g◦(d1,d1) = −c2, hence U1E can be regarded as a non-linear subbundle
U1E ⊂ T

∗ ⊗ TE, whose fibres are diffeomorphic to R3. We also have the dual
counterpart of d1

τ
def
= −c−2 g[ ◦ d1 : U1E → T ⊗ T ∗E, (5)
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with coordinate expression τ = τλ d
λ = −c−1α0(g0λ + giλx

i
0)d

λ.
The metric g yields an orthogonal splitting of the tangent space TE on each

x ∈ E on which a time-like direction has been assigned. In other words, we have
the splitting [9]

U1E ×E TE = H1,0 ⊕U1E V
1,0
g , (6)

where V 1,0
g is naturally isomorphic to V 1,0. The projection π⊥ on V 1,0

g is denoted

by θ. Let us set ğ0λ
def
= g(D

(1)
0 , ∂λ) = g0λ + giλx

i
0. Then we have the coordinate

expression θ = dλ ⊗ ∂λ + (α0)2ğ0λd
λ ⊗ (∂0 + xi0∂i), and the local basis bi

def
= ∂i −

cα0τi(∂0 +xi0∂i) of V 1,0
g . According to the above splitting we have the following

decomposition of the lift of g on T 1,0

g ◦ π1
0 = g‖ + g⊥, (7)

where g‖ is a metric on H1,0 and g⊥ is a metric on V 1,0
g . The coordinate expres-

sion of the above metric and of their contravariant form g‖ and g⊥ are

g‖00 = − 1

(α0)2
g‖

00 = −(α0)2

g⊥ij = gij + c2τiτj , g⊥
ij = gij − gi0xj0 − g0jxi0 + g00xi0x

j
0

The vertical derivative V d1 induces the linear fibred isomorphism

v : V U1E → T
∗ ⊗ V 1,0

g (8)

over U1E, with coordinate expression v = cα0 di0 ⊗ bi.

Gravitational and electromagnetic forms. The Levi-Civita connec-
tionK\ on TE → E induces naturally a (non linear) connection Γ\ on U1E → E
[9], which is expressed by a section Γ\ : U1E → T ∗E ⊗U1E TU

1E, and has the
coordinate expression

Γ\ = dϕ ⊗ (∂ϕ + Γ\ϕ
i
0 ∂

0
i ), (9)

with Γ\ϕ
i
0 = Kϕ

i
jx
j
0 +Kϕ

i
0 − xi0(Kϕ

0
jx
j
0 +Kϕ

0
0). The connections K\ and Γ\

are said to be gravitational.
Let m be a mass. Then, the gravitational connection Γ\ and the metric g

induce the form on U1E

Ω\ def
=
m

~
g⊥y(v ◦ ν[Γ\]) ∧ θ : U1E →

2∧
T ∗U1E, (10)

where ν[Γ\] = id[TU1E] − Γ\ is the vertical projection associated with Γ\, v
is the isomorphism (8), θ is the vertical projection of the splitting (6) and the
factor m/~ is put in order to obtain a non-scaled object. It can be proved that
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• Ω\ = −mc2

~
dτ , hence Ω\ is an exact form;

• τ ∧ Ω\ ∧ Ω\ ∧ Ω\ is a volume form on U1E, hence Ω is non degenerate.

It turns out that Ω\ is a contact form (see [14]), and it is said to be the grav-
itational form of our model. Note that, being dimU 1E = 7, there exist no
symplectic forms on U 1E. We have the coordinate expression

Ω\ =
m

~
cα0g⊥ij(d

i
0 − Γ\ϕ

i
0 d

ϕ) ∧ ωj ,

Now, we assume the electromagnetic field to be a closed scaled 2-form on E

F : E → (L1/2 ⊗ M
1/2) ⊗ ∧2T ∗E. (11)

We have the coordinate expression F = 2F0jd
0 ∧ dj + Fijd

i ∧ dj . We denote a
local potential of F with A : E → T ∗E, according to 2dA = F .

Given a charge q, the normalized electromagnetic field q/~F can be incor-
porated into the geometrical structure of the phase space, i.e. the gravitational
form. Namely, we define the total form

Ω
def
= Ω\ +

q

2~
F : U1E → ∧2T ∗U1E. (12)

Of course dΩ = 0 but Ω is exact if and only if F is exact. A local potential of
Ω is

Ω = d

(
−mc

2

~
τ +

q

~
A

)
. (13)

Moreover we have

τ ∧ Ω ∧ Ω ∧ Ω = τ ∧ Ω\ ∧ Ω\ ∧ Ω\,

so Ω is non degenerate. Hence, Ω is a cosymplectic form (in the sense of [1, 5])
encoding the gravitational and electromagnetic (classical) structures. Note that,
even locally, Ω cannot be regarded as a contact form, because we have

(
−mc

2

~
τ +

q

~
A

)
∧ Ω ∧ Ω ∧ Ω =

(
−mc

2

~
τ +

q

~
A

)
∧ Ω\ ∧ Ω\ ∧ Ω\,

but the form −mc2/~ τ + q/~A may vanish at some point.

We recall that a unique connection Γ on U 1E → E can be characterized
through Ω [9].



Relativistic mechanics, contact manifolds and symmetries 165

Equations of motion. We define a second order connection1 γ\ [9,23] on
spacetime as the map

γ\
def
= d1yΓ: U1E → U2E

d2
↪→ T

∗ ⊗ TU1E. (14)

1 Remark. The map γ\ can be regarded both as a section of π2
1 and as a

scaled vector field on the phase space because it takes its values in the image of
the inclusion d2. We will drop this inclusion, being clear from the context what
is the representation of γ\ that we are using. �

We have the coordinate expressions

γ\0
i
0

def
= xi00 ◦ γ\ = γ\0

i
0 = Γ0

i
0 + Γj

i
0x
j
0, γ\ = cα0(∂0 + xi0∂i + γ\0

i
0∂

0
i ).

As a scaled vector field on U 1E, γ\ fulfills

γ\yΩ\ = 0, γ\yτ = 1,

hence it is the Reeb vector field associated with the contact form Ω\ [14].
It is natural to ask about analogous properties of the total form Ω. It can be

easily proved that there exists a second order connection γ such that γyΩ = 0
and γyτ = 1. Such a connection takes the form γ = γ\ + γe, where

γe : U1E → T
∗ ⊗ V U1E. (15)

Note that the above sum is performed in U 2E, as T
∗ ⊗ V U1E is the associated

fibre bundle [19]. We have the coordinate expression

γe = − q

m
g⊥

ik(F0k + Fjkx
j
0)∂

0
i .

Of course, γe is the Lorentz force associated with F .
The equation of motion is the submanifold of U 2E defined as follows

∇[γ] = j2s− γ ◦ j1s = 0. (16)

In other words, the equation of motion is the image of the section γ. It is
equivalent to j2s− γ\ ◦ j1s = γe ◦ j1s. We have the coordinate expression

xi00 −K0
i
0 − 2K0

i
jx
j
0 +K0

0
0x
i
0 + 2K0

0
jx
i
0x
j
0 −Kj

i
kx

j
0x
k
0 +Kj

0
kx

j
0x
k
0x

i
0 =

= − q

m
g⊥

ik(F0k + Fjkx
j
0). (17)

1The map γ\ plays here a role analogous to that of the geodesic spray in the formulation
of mechanics on tangent spaces.
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2 Remark. The above system of equations is different from the usual equa-
tions of general relativistic mechanics. The main difference is that the above
equations are on unparametrized trajectories rather than on parametrized tra-
jectories. Indeed, it is well-known that general relativistic mechanics is invariant
with respect to reparametrizations [7]. The above approach allows us to discard
the extra degree of freedom constituted by the parameter of motions. Hence,
the equations of motions are just 3 instead of the standard 4. �

4 Variational formulation of the equations of motion

Now, we derive the equation of motion from the variational viewpoint. To do
this we use the geometric theory of calculus of variations on jets of submanifolds
by A. M. Vinogradov. He formulated the theory on infinite order jets, but to
the purposes of the analysis of our model it is more suitable to use the finite
order analogue developed in [15,18,19].

3 Theorem. We have h(Ω) = η, where

η : U2E → V 1,0∗ ⊗H1,0∗

with coordinate expression

η =
m

~

(
cα0g⊥ij(x

i
00 − γ\0

i
0) −

q

m
(F0j + Fijx

i
0)
)
ωj ⊗ d0.

Proof. The form Ω can be locally written as follows:

Ω =
m

~
cα0g⊥ij(d

i
0 − γ\0

i
0d

0 − Γh
i
0ω

h) ∧ ωj

+
q

2~
(2F0jd

0 ∧ dj + Fijd
i ∧ dj)

=
m

~
cα0g⊥ij(ω

i
0 + (xi00 − γ\0

i
0)d

0 − Γh
i
0ω

h) ∧ ωj

+
q

~
(F0j + Fijx

i
0)d

0 ∧ ωj +
q

2~
Fij ω

i ∧ ωj

= η + C,

having set

C =
m

~
cα0g⊥ij(ω

i
0 − Γh

i
0ω

h) ∧ ωj +
q

2~
Fij ω

i ∧ ωj

Of course, C is annihilated by the horizontalization because it has only contact
factors and no horizontal factors d0. QED
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We observe that the map η is an Euler–Lagrange type morphism: it is
divergence-free because it takes values in a space of divergence-free forms [19].
Now, the following corollary provides the obvious link between η and the equa-
tion of motion.

4 Corollary. We have the equality

η = g⊥(∇[γ]),

where g⊥ is the metric on V 1,0
g

∗
induced by g (7). Hence, the Euler–Lagrange

type equation η ◦ j2s = 0 and the equation of motion are the same submanifold
of U2E.

It is natural to ask if η comes from a Lagrangian: the answer, of course, is
positive.

5 Theorem. The relation Ω = d(−mc2/~ τ + q/~A) implies that η admits
the (local) Lagrangian

L : U1E → H1,0∗, L = h

(
−mc

2

~
τ +

q

~
A

)
, (18)

with coordinate expression

L = L0 d
0 =

(
−mc

~
|g00 + 2g0jx

j
0 + gijx

i
0x
j
0|1/2 +

q

~
(A0 + xi0Ai)

)
d0.

Proof. It comes from the commutative diagram (3), or, equivalently, the
identity (4) (see [18,19]). QED

Of course, L is defined on the same domain as A, and it is global if and only
if F is exact (including the distinguished case F = 0).

A simple computation proves the following corollary.

6 Corollary. The form −mc2/~ τ + q/~A turns out to be the Poincaré–
Cartan form associated with the Lagrangian of the above theorem.

5 Regularity of the equation of motion

Let us denote by Hess(L) the Hessian of L, i.e., the second differential of L
along the fibres of π1,0. We have

Hess(L) : U1E → V ∗U1E ⊗ V ∗U1E ⊗H1,0∗,

Hess(L) =
∂2L0

∂xi0∂x
j
0

di0 ⊗ dj0 ⊗ d0.

7 Theorem. The Hessian of L is a non-singular matrix.
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Proof. By a direct computation we have

∂2L

∂xi0∂x
j
0

=
mc

~

∂2(α0)−1

∂xi0∂x
j
0

= −mc
~
α0g⊥ij (19)

QED

8 Remark. In the standard relativistic mechanics the arc-length Lagrangian
L̃ =

√
gAB ẏAẏB on TE has an Hessian matrix whose rank is 3, hence it is sin-

gular. �

The above theorem shows that our model for the relativistic mechanics ad-
mits a Hamiltonian formalism which is related with the above Lagrangian for-
malism via a hyperregular transformation. Hence, we have the following conse-
quence.

9 Corollary. The injective morphism

d1 : U1E → T
∗ ⊗ TE

provides a primary constraint for any choice of a time scale u0 ∈ T. Hence,
U1E can be regarded as a universal primary constraint.

6 Symmetries of the equation of motion

We have seen, in the construction of the pseudo-horizontal bundle, that
to any point jr+1s(x) ∈ Jr+1(E, 1) there corresponds the 1-dimensional line
Tjrs(x)(jrs(s)). The span Cjrs(x) of such lines obtained by varying the point
jr+1s(x) on the fibre of πr+1

r is called a Cartan space at jrs(x). Then we obtain
the Cartan distribution C on J r(E, 1). On any differential equation Y ⊂ J r(E, 1)
we have the induced Cartan distribution TY∩C. A vector field on J r(E, 1) which
preserves the Cartan distribution is called a classical external symmetry of Y
if it is tangent to Y. A vector field on Y which preserves the induced Cartan
distribution is called a classical internal symmetry.

Now let us consider the set of the first differential consequences of Y

Y(1) = {jr+1s(x) ∈ Jr+1(E, 1) | jrs(x) ∈ Y, Tjrs(x)(jrs(s)) ⊂ Tjrs(x)Y}.

We can define Y(m) by iteration. The differential equation Y is said formally
integrable if πr+mr+m−1|Y(m) : Y(m) → Y(m−1) are smooth fibre bundles. In this

case the space Y(∞) can be introduced as the projective limit of the sequence
· · · → Y(m) → Y(m−1) → · · · A higher internal symmetry of Y is a vector field
on Y(∞) which preserves the induced Cartan distribution on Y (∞).

We denote by Rγ the 1-dimensional distribution on U 1E associated to γ.
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The results exposed below are analogous to the results obtained in [16] in
the case of the geodesic equation for a Riemannian manifold.

10 Proposition. All the prolongations of the equation of motion ∇[γ] =
0 are naturally diffeomorphic to U 1E and the induced Cartan distribution is
isomorphic to Rγ.

Proof. For any point θ ∈ U 1E we define γ(1) by γ(1)(θ) = (γ(θ))(1). Also, we
have

(γ(θ))(1) ≡
(
γ(θ), Tθγ(R

γ
θ )
)
.

Then it is easy to realize that Tθγ
(1)(Rγθ ) is the induced Cartan plane on the

first prolongation of the equation at the point (γ(θ))(1) and it is isomorphic to
Rγθ . The proposition follows by iterating this reasoning. QED

11 Corollary. Higher internal symmetries are vector fields on U 1E pre-
serving the distribution Rγ, and coincide with the classical internal symmetries.

Of course, vector fields which are contained in the distribution Rγ are sym-
metries of our equation, that we call trivial symmetries. We are interested in
symmetries which are defined up to trivial ones. Such symmetries are of the
form

�ϕ = D
(2)
σ (ϕi)∂xi

σ
, |σ| ≤ 1 , 1 ≤ i ≤ 3

where denotes the restriction to the equation ∇[γ] = 0 and ϕ = (ϕi) is a
section of V 1,0 restricted to U1E.

Such a section has to satisfy the k differential equations

∂∇[γ]k

∂xiσ
D

(2)
σ ϕi = 0, |σ| ≤ 2, (20)

where D
(2)
00 = D

(2)
0 ◦D(2)

0 .

Then we realize that the correspondence which associates with a section ϕ
satisfying (20) the symmetry �ϕ is bijective. We call this ϕ a generating section
of an (higher) internal symmetry.

For what concerns classical external symmetries, by virtue of Lie-Bäcklund
theorem [4, 27], they are just lifting of vector fields defined on spacetime. Such
symmetries coincide with the projective vector fields of spacetime, as they send
unparametrized solutions into unparametrized solutions.

We would like to stress that any classical external symmetry restricts to
an internal one, but an internal symmetry can not be always prolonged to an
external one. Anyway in [4, 15] it is proved that, for the equation of motion,
classical external symmetries are a subalgebra of classical internal ones.
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