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Abstract. Lie symmetries has been introduced by Sophus Lie to study differential equations.
It has been one of the most efficient way for obtaining exact analytic solution of differential
equations. Here we show how one can extend this technique to the case of differential difference
and difference equations.
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1 Introduction

Sophus Lie introduced the notion of Lie groups as a unifying tool to study
differential equations [1,2]. Lie groups have been used to solve differential equa-
tions, to classify them, and to establish properties of their solutions [3–8].

In particular, they provided one of the most efficient methods for obtaining
exact analytic solutions for partial differential equations, i.e. symmetry reduc-
tion. This method consists of a sequence of algorithmic steps the first of which
is finding the Lie group G of local point transformations:

x̃ = Fg(x, u) = x + gξ(x, u) + · · · (1)

ũ = Hg(x, u) = u+ gφ(x, u) + · · ·

where g is the set of group parameters and x ∈ Rp. Given a partial differential
equation of order k Ek(x, u, uxi

, uxi,j
, . . . , uxi1,...,ik

) = 0, G is obtained requiring
that the transformation (1) leaves the set of solutions invariant, i.e. defining the
infinitesimal generator of the Lie point symmetry

X̂ = ξi∂xi
+ φ∂u, (2)
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where summation over repeated indices is understood, and requiring that

prX̂Ek|Ek=0 = 0. (3)

where by prX̂ we mean the prolongation of X̂ to all derivatives contained in
Ek = 0. Then we look for solutions which are invariant under a subgroup G0 of
G. The finite group transformations, obtained by integrating the infinitesimal
generators, transform solutions of Ek = 0 into solutions of the same equation.
Other classes of exact solutions can be obtained by considering conditional sym-

metries [9].
We can consider the evolutionary formalism [3], an equivalent representation

of the infinitesimal generator of the symmetry (2),

X̂e = Q(x, u, ux1 , . . . , uxp)∂u, (4)

Q = φ− ξiuxi
, prX̂eEk|Ek=0 = 0.

Let us notice that the existence of the evolutionary symmetry (4) implies

ug = Q(x, u, ux1 , . . . , uxp), (5)

i.e. that symmetries are equivalent to commuting flows. As Q is linear in the first
derivatives of u eq. (5) is integrable on the characteristics being a quasilinear
partial differential equation of first order and its solution gives the corresponding
group transformations (1).

The notion of point symmetries can be extended [3] to the case of general-

ized symmetries by requiring that Q = Q(x, u, uxi1
, . . . , uxi1

,...,xis
). In this case

eq. (5) is a partial differential equation of order s. To get the group transforma-
tion we need to solve its initial value problem starting from a generic initial data.
In general this is not possible and thus we are not able to find the correspond-
ing group transformation. However, in the case of variational symmetries, by
Noether theorem [3], generalized symmetries still can provide conservation laws
and their existence is usually associated to exactly integrable equations [10,11].

The application of Lie group theory to discrete equations, like difference
equations, differential-difference equations, or q-difference equations are much
more recent [12–42].

By a difference equation we mean a functional relation, linear or non-linear,
between a function calculated at different points of a lattice [43–47]. These
systems appear in many applications. First of all they can be written down as
discretizations of a differential equation when one is trying to solve it with a
computer. In such a case one reduces the differential equation to a recurrence
relation:

du

dx
= f(x, u) ⇒ v(n+ 1) = g(n, v(n)).
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On the other hand we can consider dynamical systems defined on a lattice,
i.e. systems where the real independent fields depend on a set of independent
variables which vary partly on the integers and partly on the reals. For example
we can consider

d2u(n, t)

dt2
= F (t, u(n, t), u(n− 1, t), . . . , u(n− a, t), u(n+ 1, t), . . . , u(n+ b, t)),

where a and b are some integer positive numbers. These kind of equations can ap-
pear in many different setting. Among them they are associated to the evolution
of many body problems, to the study of crystals, to biological and economical
systems, etc. .

As an example of possible applications we consider the problem of the trans-
mission of energy in one dimensional molecular system, problem which is of
particular relevance for understanding the functioning of physical systems of
biological interest [48]. This is a particularly hot topic as biological processes
require the transport of energy with low dispersion along essentially one di-
mensional chains, such as the spines in an α helix [49]. A mechanism for the
nondispersive transport of vibrational energy along hydrogenon bonded chains
was proposed by Davydov and its continuous limit for small lattice spacing gave
rise to a Nonlinear Schrödinger equation (NLS) which has soliton solutions [50].
If such soliton like solutions are valid also at biological temperatures is an open
problem. In the case of diatomic nonlinear lattices we can describe such systems
by the equations

M1ẍn − k1(yn − xn)+k2(xn − yn−1)−
εβ1(yn − xn)

2 + εβ2(xn − yn−1)
2 = 0

(6)

M2ÿn + k1(yn − xn)−k2(xn+1 − yn)+

εβ1(yn − xn)
2 − εβ2(xn+1 − yn)

2 = 0

where M1 and M2 are the different values of the two atomic masses, ε is a
small parameter while k1, k2, β1 and β2 are four constants of order 1. When
k2 � k1 these equation represent a molecular chain with intramolecular inter-
action stronger than the intermolecular one. This is the case, for example, of an
hydrogen-bonded polypeptide chain.

In ref. [48] this problem has been considered from two different points of
view:

(1) One has performed a molecular dynamics numerical simulation.

(2) One has performed a reductive perturbative analysis of the dynamics of
the diatomic chain.



142 D. Levi

The numerical results (see Figs.1-3 of [48]) show clearly the relevance of the non-
linear terms in this non-dispersive energy transport. Moreover one can show that
localized initial excitations of generic form can evolve into solitonlike solutions
that travel along the chain. The numerical calculations show that such solutions
are robust with respect to thermal disorder, i.e. energy can be transported with
no appreciable dispersion even at room temperature. In the second case the
development led to a NLS equation and to a solitonlike solution that transfers
energy without dispersion.

To conclude I would like to present a result by MacKay and Aubry [51].
In a Theorem they showed that almost any Hamiltonian network of weakly
coupled oscillators has a ‘breather’ solution while the existence of breathers
for a nonlinear wave equation is rare. The results of this Theorem imply that
the discrete world can be richer of interesting solutions and thus worthwhile
studying by itself and symmetries are a simple and efficient way to do so.

2 Intrinsic Lie point symmetries for discrete equa-

tions

The first steps in the construction of Lie symmetries for difference equations
were taken by Shiguro Maeda in 1980 [12] and later extended by many authors
[13–42].

For simplicity in the following I will consider just the case of a scalar equation
in two independent variables but, equivalent results can be obtained in the case
of N independent and M dependent variables.

A discrete equation in R2 is a functional relation for a field u(P ) at L
different points Pi in R2, i.e. E = E(x, t, u(P1), . . . , u(PL)) = 0. A differential
difference equation is obtained by considering the points Pi uniformly spaces
in one direction, say t, with spacing ht, in such a way that we are allowed to
consider the continuous limit when ht goes to zero and the number of points in
this direction goes to infinity.

The points Pi in R2 can be labelled by two discrete indexes Pi = Pn,m which
characterize the points with respect to two independent directions, say x and t.
For example, in cartesian coordinates we can write:

Pn,m = (xn,m, tn,m) (7)

and the function u(P ) reads

u(Pi) = u(Pn,m) = u(xn,m, tn,m) = un,m. (8)

A difference scheme will be a set of relations among the values of {x, t, u(x, t)}
at a finite number, say L, of points in R2 {P1, . . . , PL} around a reference point,
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say P1. Some of these relations will define where the points are in R2 and others
how u(P ) transforms in R2. The number of relations required will depend on
the kind of initial - boundary value problem we are interested in. If the lattice is
completely defined by those relations than we need to have five equations, four
which define the two independent variables in the two independent directions
in R2, and one the dependent variable in terms of the lattice points:

Ea({xn+j,m+i, tn+j,m+i, un+j,m+i}) = 0 (9)

1 ≤ a ≤ 5; −i1 ≤ i ≤ i2, −j1 ≤ j ≤ j2 (i1, i2, j1, j2)εZ
+

i1 + i2 = N, j1 + j2 = M.

System (9) must be such that, starting from {x, t, u} in L points we are able to
calculate it in all points.

If a continuous limit of (9) exists, than one of the equations will go over
to a partial differential equation and the others will be identically satisfied
(generically 0 = 0). We can also do partial continuous limits when only one of
the independent variables become continuous while the other is still discrete. In
this case only part of the lattice equations are identically satisfied and we obtain
a differential difference equation for the dependent variable and an equation for
the lattice variable.

To clarify the ideas let us present now some examples of difference scheme.
Let as consider at first the case of the discrete heat equation on a uniform

orthogonal lattice:

un+1,m − un,m
tn+1,m − tn,m

=
un,m+2 − 2un,m+1 + un,m

(xn,m+1 − xn,m)2
, (10)

xn,m+1 − xn,m = hx; tn,m+1 − tn,m = 0, (11)

xn+1,m − xn,m = 0; tn+1,m − tn,m = ht,

where hx, ht are two a priory fixed constants which define the spacing between
two neighboring points in the two directions of the orthogonal lattice. The lattice
equations (11) could be substituted by different ones which will provide different
Lie point symmetries for the difference scheme while keeping the continuous
limit. For example we can consider instead of eq. (11)

xn,m+2 − 2xn,m+1 + xn,m = 0; tn,m+1 − tn,m = 0 (12)

xn+1,m − xn,m = 0; tn+2,m − 2tn+1,m + tn,m = 0,

or

xn,m+2 − 2xn,m+1 + xn,m = 0; tn,m+1 − tn,m = 0, (13)

xn+1,m − xn,m = 0; tn+1,m − tn,m = c(xn,m+1 − xn,m)2,
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Figure 1. The set of points which are connected by the DTL (15).

or

xn,m+2 − 2xn,m+1 + xn,m = 0; tn,m+1 − tn,m = 0, (14)

xn+1,m − (1 + c)xn,m = 0; tn+1,m − tn,m = h.

Eq. (12) corresponds to a lattice scheme when the lattice spacing can be
varied in the Lie point transformation, while the lattice (13) involves only four
points as the heat equation itself and eq. (14) corresponds to an exponential
lattice, i.e. a lattice that is neither equally spaced nor orthogonal. Eq. (11) or
eqs. (12, 13, 14) determine completely the lattice variable (xm,n, tm,n) in terms
of some initial conditions.

A second example is provided by the Discrete-time Toda Lattice equation
(DTL) [52]:

eu(P1)−u(P3) − eu(P3)−u(P5) = α2{eu(P4)−u(P3) − eu(P3)−u(P12)} (15)

where α is a constant parameter. The DTL is a relation between 5 points in the
two dimensional plane (see Fig. 1):

P5 = (xn,m+2, tn,m+2); P4 = (xn−1,m+2, tn−1,m+2); (16)

P3 = (xn,m+1, tn,m+1); P2 = (xn+1,m, tn+1,m); P1 = (xn,m, tn,m).
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i.e.

eun,m−un,m+1 − eun,m+1−un,m+2 = α2{eun−1,m+2−un,m+1 − eun,m+1−un+1,m}. (17)

On an orthogonal uniform unchangeable lattice such that tn,m = t = mht
and xn,m = nhx, setting vn(t) = un,m and α = h2

t , when ht goes to zero, we get;

v̈n = evn−1−vn − evn−vn+1 , (18)

the usual Toda Lattice [45].

2.1 Symmetries of a difference scheme

As we are interested in Lie point symmetries, we look for transformations of
the form:

x̃ = Fg(x, t, u) = x+ g ξ(x, t, u) + · · · (19)

t̃ = Gg(x, t, u) = t+ g τ(x, t, u) + · · ·
ũ = Hg(x, t, u) = u+ g φ(x, t, u) + · · ·

where g is the group parameter. The transformation (19) is such that if {x, t, u}
satisfy the difference scheme Ea = 0, {x̃, t̃, ũ} will be a solution of the same
scheme. Such a transformation acts on the whole space of the independent and
dependent variables {x, t, u}, at least in some neighborhood of P1 including all
points up to PL. This means that the same set of functions Fg, Gg and Hg will
determine the transformation in all points of the scheme. In the point P1 we
define the infinitesimal generator as:

X̂P1 = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u (20)

and than we prolong it to all other L− 1 points of the scheme. Since the trans-
formation is given by the same set of functions {Fg, Gg, Hg} at all points, the
prolongation of X̂P1 is obtained simply by evaluating X̂P1 at all points involved
in the scheme. So

prX̂ =
L∑

i=1

X̂Pi
, (21)

and the invariance condition for the difference scheme is:

prX̂Ea|Ea=0 = 0. (22)

Eq. (22) is a set of functional equations whose solution is obtained by turning
them into differential equations by successive derivation with respect to the
independent variables {x, t, u} at the different points of the lattice [53].
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The solution of (22) provides us with the functions ξ(x, t, u), τ(x, t, u) and
φ(x, t, u), the infinitesimal coefficients of the local Lie point symmetry group.
The group transformation is obtained by integrating the vector field, i.e. by
solving the following system of differential equations:

dx̃

dg
= ξ(x̃, t̃, ũ), x̃|g=0 = x,

dt̃

dg
= τ(x̃, t̃, ũ), t̃|g=0 = t, (23)

dũ

dg
= φ(x̃, t̃, ũ), ũ|g=0 = u.

In general we expect the infinitesimal coefficients ξ and τ to be determined by
the lattice equations. So according to the form of the lattice, different symme-
tries can appear.

In fact, in the case of eq. (11), by applying the infinitesimal generator (20)
to the lattice equations we get:

ξ(xn,m+1, tn,m+1, un,m+1) = ξ(xn,m, tn,m, un,m);

ξ(xn+1,m, tn+1,m, un+1,m) = ξ(xn,m, tn,m, un,m).

As un,m+1, un+1,m and un,m are independent functions we get ξ = ξ(x, t).
tn,m+1 = tn,m but xn,m+1 6= xn,m and consequently ξ = ξ(t). As xn+1,m = xn,m
but tn+1,m 6= tn,m we get that the only possible value for ξ in this case is
ξ=constant. In a similar fashion we derive that also τ must be a constant and
that φ=u + s(x, t), where s(x, t) is a solution of the heat equation, the linear
superposition formula. Summarizing we get that the infinitesimal generators of
the symmetries for the heat equation are given by

P̂0 = ∂t; P̂1 = ∂x; Ŵ = u∂u; Ŝ = s(x, t)∂u. (24)

If we associate to the heat equation (10) the lattice (12) we have an extra
generator, D̂ = x∂x + 2t∂t. See [54] for other examples.

From the results presented above we see that the symmetries of a discrete
equation depend crucially on the structure of the lattice. In the examples con-
sidered (11 - 14) the lattice is completely defined but we can also think of the
lattice as a variable which evolves together with the system. In such a way we
should need less relations to determine it. For more details on possible defini-
tions of the lattice to generate difference equations with predefined symmetries
see, for example, the results by Dorodnitzin [30–38].
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3 Extensions

As one can see in the examples considered so far in the literature [13–15,54]
discrete equations will, in general have less symmetries than the corresponding
continuous system. In the case of discrete equations we rarely find symmetries
which involve both dependent and independent variables. The extension to a
variable lattice is not always sufficient to obtain them [38].

Research for more general symmetries requires the extension of the intrinsic
Lie point ansatz. We have various possibilities.

Let us consider the dependent variables u(Pj) (j = 1, 2, · · · , L) as indepen-
dent fields. Under such an hypothesis the difference equation is just an algebraic
relation between the fields. The discrete variables are just indices of the depen-
dent fields and the only independent variables are the continuous ones. In this
case the infinitesimal generator, for one dependent field u and one independent
continuous variable t, reads:

X̂ = τ(t, {u(Pi)})∂t +
L∑

i=1

φPi
(t, {u(Pi)})∂uPi

(25)

So we extend the dependence of ξ, τ and φ from the point P1 to all points Pj of
the lattice and to impose the invariance condition no prolongation is necessary.
As, by Taylor expansion, un,m+1 can be expressed in term of un,m and all of
its derivatives, this definition of the infinitesimal generator of the symmetries is
equivalent to consider a particular class of generalized symmetries. This explains
the difficulties for obtaining nontrivial results [14].

On the other hand, as was shown in [26, 27] a linear difference equations
admits a symmetry group which is isomorph to the one of the continuous equa-
tion by allowing the symmetry generators to depends on various points on the
lattice. As an example, let us consider the discrete heat equation (10):

∆tu = ∆xxu (26)

where the discrete derivative ∆ is defined in term of the shift operator Tz as the
incremental ratio,

∆+
z =

Tz − 1

hz
, Tzf(z) = f(z + hz), (27)

with hz the lattice spacing in the z direction. In [26, 27] it was shown that
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eq. (26) admits the following symmetry group:

P̂0 = ∆+
t u∂u, (28)

P̂1 = ∆+
x u∂u,

Ŵ = u∂u,

B̂ = (2tT−1
t ∆+

x u+ xT−1
x u)∂u,

D̂ = (2tT−1
t ∆+

t u+ xT−1
x ∆+

x u+
1

2
u)∂u,

K̂ =
{
t2T−1

t ∆+
t u− httT

−2
t ∆+

t u+ txT−1
t T−1

x ∆+
x u+

+
1

4
x2T−2

x u− 1

4
hxxT

−2
x u+

1

2
tT−1
t u

}
∂u.

In a later work [55] it has been proven that the previous result can be extended
to any discrete derivative and for any linear partial differential equation by using
the following prescriptions:

• we write down the vector fields in evolutionary form

• we substitute

u,t → ∆tu (29)

u,x → ∆xu

x → xβx

t → tβt

where βx, βt are functions of the shift operators, commuting with ∆x and
∆t, and such that the following commutation relation is satisfied:

[∆z, zβz] = 1. (30)

The same construction can be carried out also in the case when Tz is a
dilation operator [56], i.e.

Tzf(z) = f(zhz) (31)

Equation (30) define completely the function βz in terms of ∆z. If by ∆z we
mean ∂x than βx = 1; for ∆z given by eq. (27) than βz = T−1

z , completely

in agreement with the results presented in (28). If we choose ∆s
z = Tz−T−1

z

2hz

than βz = 2(Tz + T−1
z )−1. From the correspondence (29) it follows that for any

analytic solution of the linear partial differential equation we find a solution of

the discrete counterpart. In the case of ∆+
z , or ∆−

z = 1−T−1
z

hz
, the continuous

case will give all solutions of the discrete one. This will not be the case for the
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more general ∆s
z, when by the correspondence (29) we obtain just a subset of

the possible solutions. Eqs. (29, 30) are a generalization of the classical umbral

calculus [57, 58].
As the symmetries (28) depend on more points on the lattice, we are in

a situation similar to the case of generalized symmetries and in general we
are no more able to get the corresponding group transformations. However we
can still use the symmetries to carry out symmetry reductions and get explicit
solutions. Let us see this on the example of the heat equation (25). In the case
of the symmetry generator P̂1 − aP̂0 eq. (5) reads:

dun,m
dg

= −
(

1

hx
− a

1

ht

)
un,m +

1

hx
un,m+1 −

a

ht
un+1,m. (32)

Eq. (32) is a linear differential difference equation and to get the group trans-
formations we need the explicit solution of its initial problem. The symmetry
reduction is obtained by setting

dun,m

dg = 0. In this case we get:

un,m = c0 + c1(1 + a2ht)
n(1 + ahx)

m (33)

which is a discrete representation of the continuous solution.

What happens in the case of nonlinear difference equations? In general we
are no more able to obtain a symmetry group isomorphic to the continuous
one, the application of the umbral correspondence to a nonlinear equation is
questionable and research on it is in progress [59, 60].

In all cases, both for linear and nonlinear difference equations,

• we can still compute intrinsic Lie point symmetries

• generalized symmetries, i.e. symmetries depending on a finite number of
points of the lattice, are usually associated to integrable equations and
their form is usually very complicate and very difficult to predict apriori
without any further information on the structure of the system at study.
As an example let us show few symmetries of the discrete Burgers equation
[17]

∆tu =
1 + hxu

1 + ht(∆xu+ uTxu)
∆x(∆xu+ uTxu) (34)

i.e.
u,λ1 = [1 + ht(∆xu+ uTxu)]∆tu (35)

a time translation and

u,λ2 = [1 + hxu]∆x

{
2tT−1

t

u

1 + ht(∆xu+ uTxu)
+

+ (x+
hx
2

)T−1
x

1

1 + hxu

}
(36)
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a boost. In both cases they depend nonlinearly on the field u at various
points of the lattice. In the case of the time translation (35) polynomially,
but sometimes, as one can see in eq. (36), also rationally.

As a further exemplification of the complicate structure of symmetries for non-
linear discrete equations, let us present the simplest symmetries one obtains for
the Toda Lattice equation (18) and for the dNLS (45) from their integrability
properties [20]:

Ŷµ−1 = ∂vn (37)

Ŷµ0 = t∂vn (38)

Ŷµ1 = (tv̇n − 2n)∂vn (39)

X̂ε0 = v̇n∂vn (40)

X̂ε1 = {v̇2
n + evn−1−vn + evn−vn+1 − 2}∂vn (41)

X̂ε2 = {v̇3
n − 2v̇n + evn−1−vn(v̇n−1 + 2v̇n) + (42)

+ evn−vn+1(v̇n+1 + 2v̇n)}∂vn

Ŷν = [t{v̇2
n + evn−1−vn + evn−vn+1 − 2} − (2n− 1)v̇n + wn]∂vn (43)

wn−1 − wn2v̇n

where (37 - 40) are intrinsic symmetries, (40 - 42) are associated to isospectral
deformation of the discrete Schrödinger spectral problem associated to the Toda
lattice while (37 - 39, 43) are associated to non isospectral deformations. Let
us notice that the coefficient of t in eq. (43) is not equal to v̇n, as would be in
the case of the Korteweg de Vries equation, but corresponds to a higher flow
in the Toda Lattice hierarchy. The nonzero commutation relations between the
infinitesimal generators X̂ corresponding to the isospectral deformations and Ŷ
corresponding to the non isospectral ones are:

[X̂εi , X̂εj ] = 0; [X̂ε1 , Ŷν ] = 4X̂ε1 − 2X̂ε3 . (44)

In the case of the discrete Nonlinear Schrödinger equation [61–63]

iQ̇n +
1

h2
x

[2Qn − (1 − ε|Qn|2)(Qn+1 +Qn−1)] = 0, (45)

where ε = ±1, the symmetries read

X̂1 = Qn∂Qn −Q∗
n∂Q∗

n
(46)

X̂2 = (1 − ε|Qn|2)[Qn+1∂Qn −Q∗
n−1∂Q∗

n
] (47)

X̂3 = (1 − ε|Qn|2)Qn−1∂Qn − (1 − ε|Qn|2)Q∗
n+1∂Q∗

n
(48)
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Ŷ =
[
− 2t

h2
x

(1 − ε|Qn|2)(Qn+1 −Qn+1) + i(2n+ 1)Qn

]
∂Qn + (49)

−
[ 2t

h2
x

(1 − ε|Qn|2)(Q∗
n+1 −Q∗

n+1) + i(2n+ 1)Q∗
n

]
∂Q∗

n
.

X̂1 and X̂ = X̂2 + X̂3 are intrinsic Lie point symmetries, {X̂1, X̂2 and X̂3} are
isospectral symmetries while Ŷ is a nonisospectral symmetry and they satisfy

commutation relations similar to eq. (44). We can use Ŷ−iX̂1
2 to do a symmetry

reduction for the Nonlinear Schrödinger equation (45). In the continuous limit
this would correspond to a dilation symmetry which would give rise to elliptic
functions or Painlevé solutions. This reduces to solving the discrete NLS (45)
together with

− t

hx
(1 − ε|Qn|2)(Qn+1 −Qn+1) + inQn = 0.

Defining Qn = ρne
iθn , under the assumption that ρ2

n 6= ε we get the following
nonlinear reduced equation:

√
ρ2
nρ

2
n+1 − h4

xc
2
0 +

√
ρ2
nρ

2
n−1 − h4

xc
2
0 =

nh2
x

t

ρ2
n

1 − ερ2
n

. (50)

Up to now we have shown that extra symmetries can be found in the case
of linear and integrable difference equations and that we can use them to get
solutions. In the following we want to provide a partial answer in the generic
case.

Let us consider the class of differential difference equations:

u̇n = Fn(un+1, un, un−1) (51)

defined on a uniform unchangeable orthogonal lattice and look for symmetries
depending linearly on t, as it is the case of the symmetries Ŷ (43, 49) for the
Toda Lattice and discrete Nonlinear Schrödinger equations. To exclude the case
of integrable equations we assume symmetries of the form:

un,λ = tu̇n +Hn(un+1, un, un−1). (52)

Under the assumption that the differential difference equation (51) is really
nonlinear (

∂Fn
∂un+1

,
∂Fn
∂un−1

)
6= (0, 0) ∀n (53)
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we can, by a simple transformation reduce in all generality the function Hn to
the form

Hn = Hn(un+1, un) (54)

with ∂Hn

∂un+1
6= 0, as we are not interested in intrinsic Lie point symmetries.

We can state the following theorem, proved in [24];

1 Theorem. If a nonlinear equation (51 has a symmetry of the form (53,
54) than it is equivalent, up to a Lie point transformation

t̃ = ωt, ũn = φn(un); ω 6= 0, φ‘
n 6= 0 ∀ n (55)

to an equation of the form

u̇n = An +Bn (56)

An = an+1e
un+1 − ane

un − 1

Bn = ane
−un − an−1e

−un−1 − 1

a2
n = n2 + αn+ β ∀ n,

where α and β are arbitrary constants. Than the symmetry is given by

un,λ = tu̇n +An (57)

and the equation is linearizable.

As a consequence of Theorem 1 an equation of the form (51) can have dilation
symmetries of the form (52) only if it is equivalent to a linear equation.

4 Conclusions

We have shown how one can construct in a coherent way Lie point symme-
tries for discrete equations.

If we want to extend the symmetries to the case when they depend on more
point of the lattice than this can be done only in the case of linear, linearizable
or integrable equations. This statement is very plausible but no complete proof
of this statement has been given. In the case of linear, linearizable or integrable
equations we can find generalized symmetries from which we are not able to
construct group transformations but we can use them to get explicit solutions
via symmetry reduction.

For a generic equation we can construct intrinsic Lie point and conditional
symmetries [14] and we can use them, as for partial differential equations, to
construct group transformations, to do symmetry reduction and obtain explicit
solutions, to classify the discrete equations according to their symmetries, etc..
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