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Abstract. The reduction theorems for general linear and classical connections are general-
ized for operators with values in higher order gauge-natural bundles. We prove that natural
operators depending on the s1-jets of classical connections, on the s2-jets of general linear
connections and on the r-jets of tensor fields with values in gauge-natural bundles of order
k ≥ 1, s1 + 2 ≥ s2, s1, s2 ≥ r − 1 ≥ k − 2, can be factorized through the (k − 2)-jets of both
connections, the (k − 1)-jets of the tensor fields and sufficiently high covariant differentials of
the curvature tensors and the tensor fields.
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Introduction

It is well known that natural operators of classical (linear and symmetric)
connections on manifolds and of tensor fields with values in natural bundles of
order one can be factorized through the curvature tensors, the tensor fields and
their covariant differentials. These theorems are known as the first (operators on
classical connections only) and the second reduction theorems, [6, 8, 10]. In [6]
the reduction theorems are proved by using methods of natural bundles and
operators, [6, 7, 9, 11].

In [4] the reduction theorems were generalized for general linear connections
on vector bundles. In this gauge-natural situation we need auxiliary classical
connections on the base manifolds. It is proved that natural operators with
values in gauge-natural bundles of order (1,0) defined on the space of general
linear connections on a vector bundle, on the space of classical connections on
the base manifold and on certain tensor bundles can be factorized through the
curvature tensors of linear and classical connections, the tensor fields and their
covariant differentials with respect to both connections.

iThis paper has been supported by the Ministry of Education of the Czech Republic under
the Project MSM 143100009.
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In [5] another generalization of the classical reduction theorems was pre-
sented. Namely, the reduction theorems were proved for operators with values
in higher order natural bundles. It was proved that an r-th order natural op-
erator on classical connections with values in natural bundles of order k ≥ 1,
r + 2 ≥ k, can be factorized through the (k − 2)-jets of connections and suffi-
ciently high covariant differentials of the curvature tensor.

In this paper we combine both possible generalizations of the reduction
theorems and we prove the reduction theorems for general linear connections on
vector bundles for operators with values in higher order gauge-natural bundles.
In this situation we shall use the name higher order valued reduction theorems
for general linear connections.

All manifolds and maps are assumed to be smooth. The sheaf of (local)
sections of a fibered manifold p : Y → X is denoted by C∞(Y ), C∞(Y , IR)
denotes the sheaf of (local) functions.

1 Gauge-natural bundles

Let Mm be the category ofm-dimensional C∞-manifolds and smooth embed-
dings. Let FMm be the category of smooth fibered manifolds overm-dimensional
bases and smooth fiber manifold maps over embeddings of bases and PBm(G)
be the category of smooth principal G-bundles with m-dimensional bases and
smooth G-bundle maps (ϕ, f), where the map f ∈ MorMm.

1 Definition. A G-gauge-natural bundle is a covariant functor F from the
category PBm(G) to the category FMm satisfying

i) for each π : P → M in Ob PBm(G), πP : FP → M is a fibered manifold
over M ,

ii) for each map (ϕ, f) in Mor PBm(G), Fϕ = F (ϕ, f) is a fibered manifold
morphism covering f ,

iii) for any open subset U ⊆ M , the immersion ι : π−1(U) ↪→ P is trans-
formed into the immersion Fι : π−1

P
(U) ↪→ FP .

Let (π : P → M) ∈ Ob PBm(G) and W rP be the space of all r-jets jr(0,e)ϕ,

where ϕ : IRm × G → P is in Mor PBm(G), 0 ∈ IRm and e is the unit in
G. The space W rP is a principal fiber bundle over the manifold M with the
structure group W r

mG of all r-jets jr(0,e)Ψ of principal fiber bundle isomorphisms
Ψ : IRm×G→ IRm×G covering the diffeomorphisms ψ : IRm → IRm such that
ψ(0) = 0. The group W r

mG is the semidirect product of Gr
m = inv Jr0 (IRm, IRm)0

and T rmG = Jr0 (IRm, G) with respect to the action of Gr
m on T rmG given by

the jet composition, i.e. W r
mG = Grm o T rmG. If (ϕ : P → P̄ ) ∈ Mor PBm(G),

then we can define the principal bundle morphism W rϕ : W rP → W rP̄ by
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the jet composition. The rule transforming any P ∈ Ob PBm(G) into W rP ∈
Ob PBm(W r

mG) and any ϕ ∈ Mor PBm(G) into W rϕ ∈ Mor PBm(W r
mG) is a

G-gauge-natural bundle.
The gauge-natural bundle functor W r plays a fundamental role in the theory

of gauge-natural bundles. We have, [1, 6],

2 Theorem. Every gauge-natural bundle is a fiber bundle associated to the
bundle W r for a certain order r.

The number r from Theorem 2 is called the order of the gauge-natural bundle.
So if F is an r-order gauge-natural bundle, then

FP = (W rP , SF ), Fϕ = (W rϕ, idSF
),

where SF is a left W r
mG-manifold called the standard fiber of F .

If (xλ, za) is a local fiber coordinate chart on P and (yi) a coordinate chart
on SF , then (xλ, yi) is the fiber coordinate chart on FP which is said to be
adapted.

Let F be a G-gauge-natural bundle of order s and let r ≤ s be a minimal
number such that the action of W s

mG = Gsm o T smG on SF can be factorized
through the canonical projection πsr : T smG→ T rmG. Then r is called the gauge-

order of F and we say that F is of order (s, r). We shall denote by W
(s,r)
m G =

GsmoT rmG the Lie group acting on the standard fiber of an (s, r)-order G-gauge-
natural bundle. Then there is a one-to-one, up to equivalence, correspondence of

smooth left W
(s,r)
m G-manifolds and G-gauge-natural bundles of order (s, r), [1].

So any (s, r)-order G-gauge-natural bundle can be represented by its standard

fiber with an action of the group W
(s,r)
m G.

If F is an (s, r)-order G-gauge-natural bundle, then JkF is an (s+k, r+k)-
order G-gauge-natural bundle with the standard fiber T kmSF = Jk0 (IRm, SF ).

The class of G-gauge-natural bundles contains the class of natural bundles
in the sense of [6, 7, 9, 11]. Namely, if F is an r-order natural bundle, then F is
the (r, 0)-order G-gauge-natural bundle with trivial gauge structure.

Let F be a G-gauge-natural bundle and (ϕ, f) : P → P̄ be in the category
PBn(G). Let σ be a section of FP . Then we define the section ϕ∗

Fσ = Fϕ◦σ◦f−1

of F P̄ . Let H be another gauge-natural bundle.

3 Definition. A natural differential operator from F to H is a collec-
tion D = {D(P ),P ∈ Ob PBn(G)} of differential operators from C∞(FP )
to C∞(HP ) satisfying D(P̄ ) ◦ ϕ∗

F = ϕ∗
H ◦D(P ) for each map

(ϕ, f) ∈ Mor PBn(G), ϕ : P → P̄ .

D is of order k if all D(P ) are of order k. Let D be a natural differential
operator of order k from F toH. For any P ∈ Ob PBn(G) we have the associated
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map D(P ) : JkFP → HP , over M , defined by D(P )(jkxσ) = D(P )σ(x) for all
x ∈ M and any section σ : M → FP . From the naturality of D it follows that
D = {D(P ),P ∈ Ob PBn(G)} is a natural transformation of JkF to H. The
following theorem is due to Eck, [1].

4 Theorem. Let F and H be G-gauge-natural bundles of order ≤ (s, r), s ≥
r. Then we have a one-to-one correspondence between natural differential oper-

ators of order k from F to H and W
(s+k,r+k)
n G-equivariant maps from T kmSF

to SH .

So according to Theorem 4 a classification of natural operators between
G-gauge-natural bundles is equivalent to the classification of equivariant maps
between standard fibers. Very important tool in classifications of equivariant
maps is the orbit reduction theorem, [6, 7]. Let p : G → H be a Lie group
epimorphism with the kernel K, M be a left G-space, Q be a left H-space and
π : M → Q be a p-equivariant surjective submersion, i.e., π(gx) = p(g)π(x) for
all x ∈ M , g ∈ G. Having p, we can consider every left H-space N as a left
G-space by gy = p(g)y, g ∈ G, y ∈ N .

5 Theorem. If each π−1(q), q ∈ Q is a K-orbit in M , then there is a
bijection between the G-maps f : M → N and the H-maps ϕ : Q→ N given by
f = ϕ ◦ π.

2 Linear connections on vector bundles

In what follows let G = GL(n, IR) be the group of linear automorphisms
of IRn with coordinates (aij). Let us consider the category VBm,n of vector
bundles with m-dimensional bases, n-dimensional fibers and local fibered linear
diffeomorphisms. Then any vector bundle (p : E → M) ∈ Ob VBm,n can be
considered as a zero order G-gauge-natural vector bundle (the associated vector
bundle) PBm(G) → VBm,n.

Local linear fiber coordinate charts on E will be denoted by (xλ, yi). The
induced local bases of sections of E or E∗ will be denoted by Ebi or Ebi, respec-
tively, and the induced local bases of sections of TE or T ∗E will be denoted by
(∂λ, ∂i) or (dλ, di), respectively.

We define a linear connection on E to be a linear splitting

K : E → J1E .

Considering the contact morphism J1E → T ∗M⊗TE over the identity of TM ,
a linear connection can be regarded as a TE-valued 1-form

K : E → T ∗M ⊗ TE
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projecting onto the identity of TM .
The coordinate expression of a linear connection K is of the type

K = dλ ⊗
(
∂λ +Kj

i
λ y

j ∂i
)
, with Kj

i
λ ∈ C∞(M , IR) .

Linear connections can be regarded as sections of a (1,1)-order G-gauge-
natural bundle Lin E → M , [1,6]. The standard fiber of the functor Lin will be
denoted by R = IRn∗⊗IRn⊗IRm∗, elements of R will be said to be formal linear
connections, the induced coordinates on R will be said to be formal symbols
of formal linear connections and will be denoted by (Kj

i
λ). The action β :

W
(1,1)
m G× R → R of the group W

(1,1)
m G = G1

m o T 1
mG on the standard fiber R

is given in coordinates by

(Kj
i
λ) ◦ β = aip (Kq

p
ρã
q
j ã
ρ
λ − ãpjλ) ,

where (aλµ, a
i
j , a

i
jλ) are coordinates on W

(1,1)
m G and ˜ denotes the inverse element.

6 Note. Let us note that the action β gives, in a natural way, the action

βr : W (r+1,r+1)
m G× T rmR→ T rmR

determined by the r-jet prolongation of the action β.

7 Remark. Let us consider the group epimorphism

πr+1,r+1
r,r : W (r+1,r+1)

m G→W (r,r)
m G

and its kernel Br+1,r+1
r,r G

def
= Kerπr+1,r+1

r,r . On Br+1,r+1
r,r G we have the induced

coordinates (aλµ1...µr+1
, aijµ1...µr+1

). Then the restriction β̄r of the action βr to

Br+1,r+1
r,r G has the following coordinate expression

(Kj
i
µ1 , . . . ,Kj

i
µ1,µ2...µr+1) ◦ β̄r (1)

= (Kj
i
µ1 , . . . ,Kj

i
µ1,µ2...µr ,Kj

i
µ1,µ2...µr+1 − ãijµ1...µr+1

) ,

where (Kj
i
µ1 ,Kj

i
µ1,µ2 , . . . ,Kj

i
µ1,µ2...µr+1) are the induced jet coordinates on

T rmR.

The curvature of a linear connection K on E turns out to be the vertical
valued 2–form

R[K] = −[K,K] : E → VE ⊗
2∧
T ∗M ,

where [, ] is the Frölicher-Nijenhuis bracket. The coordinate expression is

R[K] = R[K]j
i
λµ y

j ∂i ⊗ dλ ∧ dµ

= −2(∂λKj
i
µ +Kj

p
λKp

i
µ) y

j ∂i ⊗ dλ ∧ dµ .
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If we consider the identification VE = E ×
M

E and linearity of R[K], the

curvature R[K] can be considered as the curvature tensor field R[K] : M →
E∗ ⊗ E ⊗∧2 T ∗M and

R[K] : C∞(Lin E) → C∞(E∗ ⊗ E ⊗
2∧
T ∗M)

is a natural operator which is of order one, i.e., we have the associated W
(2,2)
m G-

equivariant map, called the formal curvature map of formal linear connections,

RL : T 1
mR→ U

with the coordinate expression

(uj
i
λµ) ◦ RL = Kj

i
λ,µ −Kj

i
µ,λ +Kj

p
µKp

i
λ −Kj

p
λKp

i
µ , (2)

where (uj
i
λµ) are the induced coordinates on the standard fiber U

def
= IRn∗⊗IRn⊗∧2 IRm∗ of E∗ ⊗ E ⊗∧2 T ∗M .

We define a classical connection on M to be a linear symmetric connection
on the tangent vector bundle pM : TM → M with the coordinate expression

Λ = dλ ⊗
(
∂λ + Λν

µ
λ ẋ

ν ∂̇µ
)
, Λµ

λ
ν ∈ C∞(M , IR), Λµ

λ
ν = Λν

λ
µ .

Classical connections can be regarded as sections of a 2nd order natural
bundle Cla M → M , [6]. The standard fiber of the functor Cla will be de-
noted by Q = IRm ⊗ S2IRm∗, elements of Q will be said to be formal classical
connections, the induced coordinates on Q will be said to be formal Christof-
fel symbols of formal classical connections and will be denoted by (Λµ

λ
ν). The

action α : G2
m ×Q→ Q of the group G2

m on Q is given in coordinates by

(Λµ
λ
ν) ◦ α = aλρ (Λσ

ρ
τ ã
σ
µã

τ
ν − ãρµν) .

8 Note. Let us note that the action α gives, in a natural way, the action

αr : Gr+2
m × T rmQ→ T rmQ

determined by the r-jet prolongation of the action α.

9 Remark. Let us consider the group epimorphism πr+2
r+1 : Gr+2

m → Gr+1
m

and its kernel Br+2
r+1

def
= Kerπr+2

r+1. We have the induced coordinates (aλµ1...µr+2
)

on Br+2
r+1 . Then the restriction ᾱr of the action αr to Br+2

r+1 has the following
coordinate expression

(Λµ1
λ
µ2 , . . . ,Λµ1

λ
µ2,µ3...µr+2) ◦ ᾱr (3)

= (Λµ1
λ
µ2 , . . . ,Λµ1

λ
µ2,µ3...µr+1 ,Λµ1

λ
µ2,µ3...µr+2 − ãλµ1...µr+2

) ,
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where (Λµ1
λ
µ2 ,Λµ1

λ
µ2,µ3 , . . . ,Λµ1

λ
µ2,µ3...µr+2) are the induced jet coordinates on

T rmQ.

The curvature tensor of a classical connection is a natural operator

R[Λ] : C∞(Cla M) → C∞(T ∗M ⊗ TM ⊗
2∧
T ∗M)

which is of order one, i.e., we have the associated G3
m-equivariant map, called

the formal curvature map of formal classical connections,

RC : T 1
mQ→ ST ∗⊗T⊗V2 T ∗

with the coordinate expression

(wν
ρ
λµ) ◦ RC = Λν

ρ
λ,µ − Λν

ρ
µ,λ + Λν

σ
µΛσ

ρ
λ − Λν

σ
λΛσ

ρ
µ ,

where (wν
ρ
λµ) are the induced coordinates on the standard fiber

W
def
= ST ∗⊗T⊗V2 T ∗ = IRm∗ ⊗ IRm ⊗

2∧
IRm∗.

Let us denote by Ep,r
q,s

def
= ⊗pE⊗⊗qE∗⊗⊗rTM⊗⊗sT ∗M the tensor product

over M and recall that Ep,r
q,s is a vector bundle which is aG-gauge-natural bundle

of order (1, 0).
A classical connection Λ on M and a linear connection K on E induce the

linear tensor product connection Kp
q ⊗Λrs

def
= ⊗pK⊗⊗qK∗⊗⊗rΛ⊗⊗sΛ∗ on Ep,r

q,s

Kp
q ⊗ Λrs : Ep,r

q,s → T ∗M ⊗
M

TEp,r
q,s

which can be considered as a linear splitting

Kp
q ⊗ Λrs : Ep,r

q,s → J1Ep,r
q,s .

Then we define, [3], the covariant differential of a section Φ : M → Ep,r
q,s

with respect to the pair of connections (K,Λ) as a section of Ep,r
q,s ⊗ T ∗M given

by

∇(K,Λ)Φ = j1Φ − (Kp
q ⊗ Λrs) ◦ Φ .

In what follows we set ∇ = ∇(K,Λ) and φ
i1...ipλ1...λr

j1...jqµ1...µs;ν
= ∇νφ

i1...ipλ1...λr

j1...jqµ1...µs
.

We have the following relations between the covariant differentials and the
curvatures, [3].



82 J. Janyška

10 Proposition. The curvature

R[Kp
q ⊗ Λrs]

def
=−[Kp

q ⊗ Λrs,K
p
q ⊗ Λrs] : Ep,r

q,s → Ep,r
q,s ⊗

2∧
T ∗M

is determined by the curvatures R[K] and R[Λ].

11 Theorem. (The generalized Bianchi identity) We have

R[K]j
i
λµ;ν +R[K]j

i
µν;λ +R[K]j

i
νλ;µ = 0 .

12 Theorem. Let Φ ∈ C∞(Ep,r
q,s). Then we have

Alt∇2Φ = −1

2
R[Λpq ⊗Kr

s ] ◦ Φ ∈ C∞(Ep,r
q,s ⊗

2∧
T ∗M) ,

where Alt is the antisymmetrization.

13 Remark. From the above Theorem 12 and the expression of R[Kp
q ⊗

Λrs], [3], it follows, that Alt∇2Φ is a Ep,r
q,s-valued 2-form which is a quadratic

polynomial in R[K], R[Λ],Φ. Especially, we have

Alt∇2R[K] : M → E∗ ⊗ E ⊗
2∧
T ∗M ⊗

2∧
T ∗M ,

given in coordinates by

Alt∇2R[K] = −1

2

(
R[K]p

i
ν1ν2 R[K]j

p
λµ −R[K]j

p
ν1ν2 R[K]p

i
λµ

−R[Λ]λ
ω
ν1ν2 R[K]j

i
ωµ −R[Λ]µ

ω
ν1ν2 R[K]j

i
λω

)

b
j ⊗ bi ⊗ dλ ∧ dµ ⊗ dν1 ∧ dν2 .

14 Remark. Let us note that for classical connections we have the first
and the second Bianchi identities

R[Λ](ν
ρ
λµ) = 0 and R[Λ]ν

ρ
(λµ;σ) = 0 ,

respectively, where (. . . ) denotes the cyclic permutation. Moreover, we have the
antisymmetrization of the second order covariant differential of the curvature
tensor which is a quadratic polynomial of the curvature tensor.

3 The first k-th order valued reduction theorem

for general linear and classical connections

Let us introduce the following notations.
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Let W0M
def
= WM = T ∗M⊗TM⊗∧2 T ∗M , WiM = WM⊗⊗iT ∗M , i ≥ 0.

Let us put W(k,r)M = WkM ×
M

. . . ×
M

WrM . We set W(r)M
def
= W(0,r)M . Then

WiM and W(k,r)M are natural bundles of order one and the corresponding
standard fibers will be denoted by Wi and W(k,r), where W0

def
= W = IRm∗ ⊗

IRm ⊗∧2 IRm∗, Wi = W ⊗⊗iIRm∗, i ≥ 0, and W(k,r) = Wk × . . .× Wr. Let us
denote by (wν

ρ
λµσ1...σi

) the coordinates on Wi.
We denote by

RC,i : T i+1
m Q→ Wi

the Gi+3
m -equivariant map associated with the i-th covariant differential of the

curvature tensors of classical connections

∇iR[Λ] : C∞(Cla M) → C∞(WiM) .

The map RC,i is said to be the formal curvature map of order i of classical
connections.

Let CC,i ⊂ Wi be a subset given by identities of the i-th covariant differen-
tials of the curvature tensors of classical connections, i.e., by covariant differen-
tials of the Bianchi identities and the antisymmetrization of the second order
covariant differentials, see Remark 14. So CC,i is given by the following system
of equations

w(ν
ρ
λµ)σ1...σi

= 0 , (4)

wν
ρ
(λµσ1)σ2...σi

= 0 , (5)

wν
ρ
λµσ1...[σj−1σj ]...σi

+ pol(W(i−2)) = 0 , (6)

where j = 2, . . . , i and [..] denotes the antisymmetrization.

Let us put C
(r)
C = CC,0 × . . . × CC,r and denote by C

(k,r)

C,r
(k−1)
C

, k ≤ r, the

fiber in r
(k−1)
C ∈ C

(k−1)
C of the canonical projection prrk−1 : C

(r)
C → C

(k−1)
C . For

r < k we put C
(k,r)

C,r
(k−1)
C

= ∅. Let us note that there is an affine structure on the

fibres of the projection prrr−1 : C
(r)
C → C

(r−1)
C , [6]. Really, C

(r)
C is a subbundle in

C
(r−1)
C ×Wr given by the solution (for i = r) of the system of nonhomogeneous

equations (4) – (6).
Then we put

R
(k,r)
C

def
=(RC,k, . . . ,RC,r) : T r+1

m Q→ W
(k,r) ,

R
(r)
C

def
= R

(0,r)
C , (7)
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which has values, for any jr+1
0 γ ∈ T r+1

m Q, in C
(k,r)

C,R(k−1)(jk
0 γ)

. In [6] it was proved

that C
(r)
C is a submanifold in W(r) and the restriction of R

(r)
C to C

(r)
C is a sur-

jective submersion. Then we can consider the fiber product T kmQ ×
C

(k−1)
C

C
(r)
C

which will be denoted by T kmQ× C
(k,r)
C . In [5] it was proved that the mapping

(πr+1
k ,R

(k,r)
C ) : T r+1

m Q→ T kmQ× C
(k,r)
C

is a surjective submersion.

Similarly let U0E
def
= UE = E∗⊗E⊗∧2 T ∗M , UiE = UE⊗⊗iT ∗M , i ≥ 0,

U(k,r)E = UkE×
M

. . .×
M

UrE. Especially, U(r)E
def
= U(0,r)E. Then UiE and U(k,r)E

are G-gauge-natural bundles of order (1, 0) and the corresponding standard

fibers will be denoted by Ui and U(k,r), where U0
def
= U = IRn∗ ⊗ IRn ⊗∧2 IRm∗,

Ui = U⊗⊗iIRm∗, i ≥ 0, and U(k,r) = Uk×. . .×Ur. Let us denote by (uj
i
λµσ1...σi

)
the coordinates on Ui.

We denote by

RL,i : T i−1
m Q× T i+1

m R→ Ui

the W
(i+2,i+2)
m G-equivariant map associated with the i-th covariant differential

of the curvature tensors of linear connections

∇iR[K] : C∞(Cla M ×
M

Lin E) → C∞(UiE) .

The map RL,i is said to be the formal curvature map of order i of general linear
connections.

Let CL,i ⊂ Ui be a subset given by identities of the i-th covariant differentials
of the curvature tensors of linear connections, i.e., by covariant differentials of
the Bianchi identity and the antisymmetrization of the second order covariant
differentials, see Theorem 11 and Remark 13. So CL,i is given by the following
system of equations

uj
i
(λµσ1)σ2...σi

= 0 , (8)

uj
i
λµσ1...[σj−1σj ]...σi

+ pol(C
(i−2)
C × U

(i−2)) = 0 , (9)

j = 2, . . . , i, where pol(C
(i−2)
C ×U(i−2)) are some polynomials on C

(i−2)
C ×U(i−2).

Let us put C
(r)
L = CL,0 × . . . × CL,r and denote by C

(k,r)

L,r
(k−1)
L

, k ≤ r, the

fiber in r
(k−1)
L ∈ C

(k−1)
L of the canonical projection prrk−1 : C

(r)
L → C

(k−1)
L . For

r < k we put C
(k,r)

L,r
(k−1)
L

= ∅. Let us note that there is an affine structure on the
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projection prrr−1 : C
(r)
L → C

(r−1)
L , [4]. Really, C

(r)
L is a subbundle in C

(r−1)
L ×Ur

given as the solution (for i = r) of the system of nonhomogeneous equations (8)
– (9).

Then we set

R
(k,r)
L

def
=(RL,k, . . . ,RL,r) : T r−1

m Q× T r+1
m R→ U

(k,r) ,

R
(r)
L

def
= R

(0,r)
L ,

which has values in C
(k,r)

L,R
(k−1)
L (jk−2

0 λ,jk
0 γ)

for any (jr−1
0 λ, jr+1

0 γ) ∈ T r−1
m Q×T r+1

m R.

In [4] it was proved that C
(s)
C × C

(r)
L , s ≥ r − 2, r ≥ 0, is a submanifold of

W(s) × U(r) and the restriction

(R
(s)
C ,R

(r)
L ) : T s+1

m Q× T r+1
m R→ C

(s)
C × C

(r)
L

is a surjective submersion. Then we can consider the fiber product

(T k1m Q× T k2m R) ×
C

(k1−1)
C ×C(k2−1)

L

(C
(s)
C × C

(r)
L ) ,

k1 ≥ k2 − 2, and denote it by T k1m Q× T k2m R× C
(k1,s)
C × C

(k2,r)
L .

Now we shall prove the technical

15 Lemma. If s ≥ r − 2, k1 ≥ k2 − 2, s + 1 ≥ k1, r + 1 ≥ k2, then the
restricted map

(πs+1
k1

× πr+1
k2

,R
(k1,s)
C ,R

(k2,r)
L ) :

T s+1
m Q× T r+1

m R→ T k1m Q× T k2m R× C
(k1,s)
C × C

(k2,r)
L

is a surjective submersion.

Proof. In [5] it was proved that

(πs+1
k1

,R
(k1,s)
C ) : T s+1

m Q→ T k1m Q× C
(k1,s)
C

is a surjective submersion. The mapping of Lemma 15 is then a surjective
submersion if and only if the mapping (πr+1

k2
,R(k2,r)(js+1

0 λ,−)) : T r+1
m R →

T k2m R×C(k2,r)
L is a surjective submersion for any js+1

0 λ ∈ T s+1
m Q. Let us assume

i = k2, . . . , r. By [4] the mapping R
(i)
L (js+1

0 λ,−) : T i+1
m R → C

(i)
L is a surjective

submersion and we have the commutative diagram

T i+1
m R

R
(i)
L (js+1

0 λ,−)−−−−−−−−−→ C
(i)
L

πi+1
i

y
ypri

i−1

T imR
R

(i−1)
L (js+1

0 λ,−)−−−−−−−−−−→ C
(i−1)
L
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All morphisms in the above diagram are surjective submersions which implies

that the mapping (πi+1
i ,R

(i)
L (js+1

0 λ,−)) : T i+1
m R → T imR ×

C
(i−1)
L

C
(i)
L is a sur-

jection over R
(i−1)
L (js+1

0 λ,−) given by (πi+1
i ,RL,i(j

s+1
0 λ,−)). But the mapping

RL,i(j
s+1
0 λ,−) is affine morphisms over R

(i−1)
L (js+1

0 λ,−) (with respect to the

affine structures on πi+1
i : T i+1

m R → T imR and prii−1 : C
(i)
L → C

(i−1)
L ) which

has a constant rank. So the surjective morphism (πi+1
i ,RL,i(j

s+1
0 λ,−)) has a

constant rank and hence is a submersion. (πr+1
k2

,R
(k2,r)
L (js+1

0 λ,−)) is then a
composition of surjective submersions

(πk2+1
k2

,RL,k2(j
s+1
0 λ,−), id

C
(k2+1,r)
L

) ◦ . . .

. . . ◦ (πrr−1,RL,r−1(j
s+1
0 λ,−), id

C
(r,r)
L

) ◦ (πr+1
r ,RL,r(j

s+1
0 λ,−)) . QED

Let F be a G-gauge-natural bundle of order k, i.e., SF is aW
(k,k)
m G-manifold.

16 Theorem. Let s ≥ r − 2, r + 1, s+ 2 ≥ k ≥ 1. For every W
(s+2,r+1)
m G-

equivariant map
f : T smQ× T rmR→ SF

there exists a unique W
(k,k)
m G-equivariant map

g : T k−2
m Q× T k−1

m R× C
(k−2,s−1)
C × C

(k−1,r−1)
L → SF

satisfying

f = g ◦ (πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L ) .

Proof. Let us consider the space

SC,s
def
= IRm ⊗ SsIRm∗ or SL,r

def
= IRn∗ ⊗ IRn ⊗ SrIRm∗

with coordinates (sλµ1µ2...µs) or (sj
i
µ1...µr), respectively. Let us consider the

action of Gsm on SC,s and the action of W
(r,r)
m G on SL,r given by

s̄λµ1µ2...µs = sλµ1µ2...µs − ãλµ1...µs
, s̄j

i
µ1...µr = sj

i
µ1...µr − ãijµ1...µr

. (10)

From (1), (3) and (10) it is easy to see that the symmetrization maps

σC,s : T smQ→ SC,s+2 , σL,r : T rmR→ SL,r+1

given by

(sλµ1µ2...µr+1) ◦ σC,s = Λ(µ1

λ
µ2,µ3...µs+2) , (sj

i
µ1...µr+1) ◦ σL,r = Kj

i
(µ1,µ2...µr+1)
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are equivariant.
We have the Gs+2

m -equivariant map

ϕC,s
def
=(σC,s, π

s
s−1,RC,s−1)

: T smQ→ SC,s+2 × T s−1
m Q× Ws−1 .

On the other hand we define the Gs+2
m -equivariant map

ψC,s : SC,s+2 × T s−1
m Q× Ws−1 → T smQ

over the identity of T s−1
m Q by the following coordinate expression

Λµ
λ
ν,ρ1...ρs = sλµνρ1...ρs + lin(wµ

λ
νρ1...ρs − pol(T s−1

m Q)) , (11)

where lin denotes the linear combination with real coefficients which arises in
the following way. We recall that RC,s−1 gives the coordinate expression

Λµ
λ
ν,ρ1...ρs − Λµ

λ
ρ1,νρ2...ρs = wµ

λ
νρ1...ρs − pol(T s−1

m Q)) . (12)

We can write

Λµ
λ
ν,ρ1...ρs = sλµνρ1...ρs + (Λµ

λ
ν,ρ1...ρs − Λ(µ

λ
ν,ρ1...ρs)) .

Then the term in brackets can be written as a linear combination of terms of
the type

Λµ
λ
ν,ρiρ1...ρi−1ρi+1...ρs − Λµ

λ
ρi,νρ1...ρi−1ρi+1...ρs ,

i = 1, . . . , s, and from (12) we get (11).
Moreover,

ψC,s ◦ ϕC,s = idT s
mQ .

Similarly we have the W
(r+1,r+1)
m G-equivariant map

ϕL,r
def
=(σL,r, idT r−2

m Q×πrr−1,RL,r−1)

: T r−2
m Q× T rmR→ SL,r+1 × T r−2

m Q× T r−1
m R× Ur−1

and we define the W
(r+1,r+1)
m G-equivariant map

ψL,r : SL,r+1 × T r−2
m Q× T r−1

m R× Ur−1 → T r−2
m Q× T rmR

over the identity of T r−2
m Q× T r−1

m R by the following coordinate expression

Kj
i
λ,ρ1...ρr = sj

i
λρ1...ρr + lin(uj

i
λρ1...ρr − pol(T r−2

m Q× T r−1
m R)) , (13)
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where lin denotes the linear combination with real coefficients which arises in
the following way. We recall that RL,r−1 gives the coordinate expression

Kj
i
λ,ρ1...ρr −Kj

i
ρ1,λρ2...ρr = uj

i
λρ1...ρr − pol(T r−2

m Q× T r−1
m R)) . (14)

We can write

Kj
i
λ,ρ1...ρr = sj

i
λρ1...ρr + (Kj

i
λ,ρ1...ρr −Kj

i
(λ,ρ1...ρr)) .

Then the term in brackets can be written as a linear combination of terms of
the type

Kj
i
λ,ρiρ1...ρi−1ρi+1...ρr −Kj

i
ρi,λρ1...ρi−1ρi+1...ρr ,

i = 1, . . . , r, and from (14) we get (13).

Moreover,

ψL,r ◦ ϕL,r = idT r−2
m Q×T r

mR
.

Now we have to distinguish three possibilities.

A) Let s = r− 1. We have the same orders of groups Gr+1
m and W

(r+1,r+1)
m G

acting on T r−1
m Q and T rmR.

Let us denote by

Ar
def
= T r−2

m Q× T r−1
m R× Wr−2 × Ur−1 .

Then the map f ◦ (ψC,r−1, ψL,r) : SC,r+1 × SL,r+1 × Ar → SF satisfies the con-

ditions of the orbit reduction Theorem 5 for the group epimorphism πr+1,r+1
r,r :

W
(r+1,r+1)
m G → W

(r,r)
m G and the surjective submersion pr3 : SC,r+1 × SL,r+1 ×

Ar → Ar. Indeed, the space SC,r+1×SL,r+1 is a Br+1,r+1
r,r G-orbit. Moreover, (10)

implies that the action of Br+1,r+1
r,r G on SC,r+1 × SL,r+1 is simply transitive.

Hence there exists a unique W
(r,r)
m G-equivariant map

gr : Ar = T r−2
m Q× T r−1

m R× Wr−2 × Ur−1 → SF

such that the following diagram

SC,r+1 × SL,r+1 ×Ar
(ψC,r−1,ψL,r)−−−−−−−−−→ T r−1

m Q× T rmR
f−−−−→ SF

pr3

y (πr−1
r−2×πr

r−1,RC,r−2,RL,r−1)

y idSF

y

Ar
idAr−−−−→ Ar

gr−−−−→ SF
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commutes. So f ◦ (ψC,r−1, ψL,r) = gr ◦ pr3 and if we compose both sides with
(ϕC,r−1, ϕL,r), by considering

pr3 ◦(ϕC,r−1, ϕL,r) = (πr−1
r−2 × πrr−1,RC,r−2,RL,r−1),

we obtain

f = gr ◦ (πr−1
r−2 × πrr−1,RC,r−2,RL,r−1) .

In the second step we consider the same construction for the map gr and
obtain the commutative diagram

SC,r × SL,r ×Ar−1 × Wr−2 × Ur−1

(ψC,r−2,ψL,r−1,idWr−2×Ur−1
)

−−−−−−−−−−−−−−−−−−−→
pr3,4,5

y

Ar−1 × Wr−2 × Ur−1

idAr−1×Wr−2×Ur−1−−−−−−−−−−−−−→

Ar
gr−−−−→ SF

(πr−2
r−3×π

r−1
r−2 ,RC,r−3,RL,r−2,idWr−2×Ur−1

)

y idSF

y

Ar−1 × Wr−2 × Ur−1
gr−1−−−−→ SF

So that there exists a unique W
(r−1,r−1)
m G-equivariant map gr−1 : Ar−1×Wr−2×

Ur−1 → SF such that

gr = gr−1 ◦ (πr−2
r−3 × πr−1

r−2,RC,r−3,RL,r−2, idWr−2×Ur−1),

i.e.

f = gr−1 ◦ (πr−1
r−3 × πrr−2,RC,r−3,RC,r−2,RL,r−2,RL,r−1) .

Proceeding in this way we get in the last step a unique W
(k,k)
m G-equivariant

map

gk : T k−2
m Q× T k−1

m R× W
(k−2,r−2) × U

(k−1,r−1) → SF

such that

f = gk ◦ (πr−1
k−2 × πrk−1,R

(k−2,r−2)
C ,R

(k−1,r−1)
L ) .

B) Let s = r − 2. We have the action of the group Gr
m on T r−2

m Q and the

action of the group W
(r+1,r+1)
m G on T rmR.
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Then the map f ◦ (idT r−2
m Q, ψL,r) : SL,r+1 × T r−2

m Q × T r−1
m R × Ur−1 → SF

satisfies the conditions of the orbit reduction theorem 5 for the group epi-

morphism πr+1,r+1
r,r : W

(r+1,r+1)
m G → W

(r,r)
m G and the surjective submersion

pr2,3,4 : SL,r+1 × T r−2
m Q × T r−1

m R × Ur−1 → T r−2
m Q × T r−1

m R × Ur−1. Indeed,

the space SL,r+1 is a Br+1,r+1
r,r G-orbit. Let us note that the action of Br+1,r+1

r,r G
on SL,r+1 is transitive, but not simple transitive. Hence there exists a unique

W
(r,r)
m G-equivariant map gr : T r−2

m Q × T r−1
m R × Ur−1 → SF such that the fol-

lowing diagram

SL,r+1 × T r−2
m Q× T r−1

m R× Ur−1

(id
T

r−2
m Q

,ψL,r)

−−−−−−−−−→
pr2,3,4

y

T r−2
m Q× T r−1

m R× Ur−1

id
T

r−2
m Q×T

r−1
m R×Ur−1−−−−−−−−−−−−−−→

T r−2
m Q× T rmR

f−−−−→ SF

(id
T

r−2
m Q

×πr
r−1,RL,r−1)

y idSF

y

T r−2
m Q× T r−1

m R× Ur−1
gr−−−−→ SF

commutes. So f ◦(idT r−2
m Q, ψL,r) = gr ◦pr2,3,4 and if we compose both sides with

(idT r−2
m Q, ϕL,r), by considering

pr2,3,4 ◦(idT r−2
m Q, ϕL,r) = (idT r−2

m Q×πrr−1,RL,r−1),

we obtain

f = gr ◦ (idT r−2
m Q×πrr−1,RL,r−1) .

Further we proceed as in the second step in A) and we get a unique W
(k,k)
m G-

equivariant map

gk : T k−2
m Q× T k−1

m R× W
(k−2,r−3) × U

(k−1,r−1) → SF

such that

f = gk ◦ (πr−2
k−2 × πrk−1,R

(k−2,r−3)
C ,R

(k−1,r−1)
L ) .

C) Let s > r − 1. We have the action of the group W
(s+2,r+1)
m G on T smQ ×

T rmR.

By [5] there exists a W
(r+1,r+1)
m G-equivariant mapping

gr+1 : T r−1
m Q× T rmR× W

(r−1,s−1) → SF
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such that
f = gr+1 ◦ (πsr−1 × idT r

mR,R
(r−1,s−1)
C ) .

gr+1 is then the mapping satisfying the condition A), i.e. there is a unique

W
(k,k)
m G-equivariant map

gk : T k−2
m Q× T k−1

m R× W
(k−2,r−2) × U

(k−1,r−1) → SF

such that

gr+1 = gk ◦ (πr−2
k−2 × πrk−1,R

(k−2,r−2)
C ,R

(k−1,r−1)
L ) ,

i.e.,

f = gk ◦ (πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L ) .

Summarizing all cases we have

f = gk ◦ (πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )

for any s ≥ r − 2 and the restriction of gk to T r−2
m Q × T r−1

m R × C
(k−2,s−1)
C ×

C
(k−1,r−1)
L is uniquely determined map g we wished to find. QED

In the above Theorem 16 we have found a map g which factorizes f , but we
did not prove, that

(πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L ) :

T smQ× T rmR→ T k−2
m Q× T k−1

m R× C
(k−2,s−1)
C × C

(k−1,r−1)
L

satisfy the orbit conditions, namely we did not prove that

(πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )−1(jk−2

0 λ, jk−1
0 γ, r

(k−2,s−1)
C , r

(k−1,r−1)
L )

is a Bs+2,r+1
k,k G-orbit for any (jk−2

0 λ, jk−1
0 γ, r

(k−2,s−1)
C , r

(k−1,r−1)
L ) ∈ T k−2

m Q ×
T k−1
m R× C

(k−2,s−1)
C × C

(k−1,r−1)
L . Now we shall prove it.

17 Lemma. If (js0λ, j
r
0γ), (j

s
0λ́, j

r
0 γ́) ∈ T smQ× T rmR satisfy

(πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )(js0λ, j

r
0γ) =

(πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )(js0λ́, j

r
0 γ́) ,

then there is an element h ∈ Bs+2,r+1
k,k G such that h . (js0λ́, j

r
0 γ́) = (js0λ, j

r
0γ).
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Proof. Consider the orbit set (T smQ×T rmR)/Bs+2,r+1
k,k G. This is a W

(k,k)
m G-

set. Clearly the factor projection

p : T smQ× T rmR→ (T smQ× T rmR)/Bs+2,r+1
k,k G

is a W
(s+2,r+1)
m G-map. By Theorem 16 there is a W

(k,k)
m G-equivariant map

g : T k−2
m Q× T k−1

m R× C
(k−2,s−1)
C × C

(k−1,r−1)
L → (T smQ× T rmR)/Bs+2,r+1

k,k G

satisfying p = g ◦ (πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L ). If

(πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )(js0λ, j

r
0γ)

= (πsk−2 × πrk−1,R
(k−2,s−1)
C ,R

(k−1,r−1)
L )(js0λ́, j

r
0 γ́)

= (jk−2
0 λ, jk−1

0 γ, r
(k−2,s−1)
C , r

(k−1,r−1)
L ) ,

then

p(js0λ, j
r
0γ) = g(jk−2

0 λ, jk−1
0 γ, r

(k−2,s−1)
C , r

(k−1,r−1)
L ) = p(js0λ́, j

r
0 γ́) ,

i.e. (js0λ, j
r
0γ), (j

s
0λ́, j

r
0 γ́) are in the same Bs+2,r+1

k,k G-orbit, proving Lemma 17.
QED

The space T k−2
m Q × T k−1

m R × C
(k−2,s−1)
C × C

(k−1,r−1)
L is a left W

(k,k)
M G-

space corresponding to the G-gauge-natural bundle Jk−2 Cla M ×
M

Jk−1 Lin E ×
M

C
(k−2,s−1)
C M×

M

C
(k−1,r−1)
L E. Setting ∇(k,s) = (∇k, . . . ,∇s), then, as a direct con-

sequence of Theorem 16, we obtain the first k-th order valued reduction theorem
for linear and classical connections in the form.

18 Theorem. Let s ≥ r−2, r+1, s+2 ≥ k ≥ 1. Let F be a G-gauge-natural
bundle of order k. All natural differential operators

f : C∞(Cla M ×
M

Lin E) → C∞(FE)

which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form

f(jsΛ, jrK) = g(jk−2Λ, jk−1K,∇(k−2,s−1)R[Λ],∇(k−1,r−1)R[K])

where g is a unique natural operator

g : Jk−2 Cla M ×
M

Jk−1 Lin E ×
M

C
(k−2,s−1)
C M ×

M

C
(k−1,r−1)
L E → FE .

19 Remark. From the proof of Theorem 16 it follows that the operator g
is the restriction of a zero order operator defined on the k-th order G-gauge-
natural bundle Jk−2 Cla M ×

M

Jk−1 Lin E ×
M

W(k−2,s−1)M ×
M

U(k−1,r−1)E.
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4 The second k-th order valued reduction theorem

for linear and classical connections

Write (Ep1,p2
q1,q2 )i

def
= Ep1,p2

q1,q2 ⊗⊗iT ∗M , i ≥ 0, and set

(Ep1,p2
q1,q2 )(k,r)

def
=(Ep1,p2

q1,q2 )k ×
M

. . . ×
M

(Ep1,p2
q1,q2 )r , (Ep1,p2

q1,q2 )(r)
def
=(Ep1,p2

q1,q2 )(0,r) .

The i-th order covariant differential of sections of Ep1,p2
q1,q2 with respect to (Λ,K)

is a natural operator

∇i : C∞(Cla M ×
M

Lin E ×
M

Ep1,p2
q1,q2 ) → C∞((Ep1,p2

q1,q2 )i)

which is of order (i− 1) with respect to classical and linear connections and of
order i with respect to sections of Ep1,p2

q1,q2 . Let us note that Ep1,p2
q1,q2 is a (1, 0)-order

G-gauge-natural bundle and let us denote by V
def
= ⊗p1IRn ⊗⊗q1IRn∗ ⊗p2 IRm ⊗

⊗q2IRm∗ its standard fiber with coordinates (vA) = (v
i1...ip1λ1...λp2
j1...jq1µ1...µq2

). By Vi or

V (k,r) def
= Vk × . . .× Vr, V

(r) def
= V (0,r), we denote the standard fibers of (Ep1,p2

q1,q2 )i
or (Ep1,p2

q1,q2 )(k,r), respectively.

Hence we have the associated W
(i+1,i+1)
m G-equivariant map, denoted by the

same symbol,

∇i : T i−1
m Q× T i−1

m R× T imV → Vi .

If (vA, vAλ, . . . , v
A
λ1...λi

) are the induced jet coordinates on T imV (symmetric
in all subscripts) and (V A

λ1...λi
) are the canonical coordinates on Vi, then ∇i is

of the form

(V A
λ1...λi

) ◦ ∇i (15)

= vAλ1...λi
+ pol(T i−1

m Q× T i−1
m R× T i−1

m V ) ,

where pol is a polynomial on T i−1
m Q× T i−1

m R× T i−1
m V .

We define the k-th order formal Ricci equations, k ≥ 2, as follows. For k = 2
we have by Remark 13

V A
[λµ] − pol(C

(0)
C × C

(0)
L × V ) = 0 . (E2)

For k > 2, (Ek) is obtained by the formal covariant differentiating of (E2) −
(Ek−1) and antisymmetrization of the last two formal covariant differentials.
They are of the form

V A
λ1...[λiλi+1]...λk

− pol(C
(k−2)
C × C

(k−2)
L × V (k−2)) = 0 , (Ek)

i = 1, . . . , k − 1.
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20 Definition. The k-th order formal Ricci subspace Z (k) ⊂ C
(k−2)
C ×

C
(k−2)
L × V (k) is defined by equations (E2), . . . , (Ek), k ≥ 2. For k = 0, 1 we

set Z(0) = V and Z(1) = V (1).

In [4] it was proved that Z(k) is a submanifold of C
(k−2)
C ×C(k−2)

L ×V (k) and
the restricted morphism

(R
(k−2)
C ,R

(k−2)
L ,∇(k)) : T k−1

m Q× T k−1
m R× T kmV → Z(k)

is a surjective submersion. Let us consider the projection prrk : Z(r) → Z(k). We
have an affine structure on fibres of the projection prrr−1 : Z(r) → Z(r−1). It

follows from the fact that Z(r) is a subbundle in Z(r−1)× (CC,r−2×CL,r−2×Vr)
given as the space of solutions of the system of nonhomogeneous equations

(Er). Let us denote by Z
(k,r)

z(k−1) the fiber in z(k−1) ∈ Z(k−1) of the projection

prrk−1 : Z(r) → Z(k−1). Then we can consider the fiber product over Z (k−1)

(T k−2
m Q× T k−2

m R× T k−1
m V ) ×

Z(k−1)
Z(r)

and denote it by
T k−2
m Q× T k−2

m R× T k−1
m V × Z(k,r) .

21 Lemma. If r + 1 ≥ k ≥ 1, then the restricted morphism

(πr−1
k−2 × πr−1

k−2 × πrk−1) × (R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r)) :

: T r−1
m Q× T r−1

m R× T rmV → T k−2
m Q× T k−2

m R× T k−1
m V × Z(k,r)

is a surjective submersion.

Proof. The proof of Lemma 21 follows from the commutative diagram

T r−1
m Q× T r−1

m R× T rmV
(R

(r−2)
C ,R

(r−2)
L ,∇(r))−−−−−−−−−−−−−→ Z(r)

πr−1
k−2×π

r−1
k−2×πr

k−1

y
yprr

k−1

T k−2
m Q× T k−2

m R× T k−1
m V

(R
(k−3)
C ,R

(k−3)
L ,∇(k−1))−−−−−−−−−−−−−−−→ Z(k−1)

where all morphisms are surjective submersions. Hence

(πr−1
k−2 × πr−1

k−2 × πrk−1) × (R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r)) (16)

is surjective. For k = r the map

(R
(r−2,r−2)
C = RC,r−2,R

(r−2,r−2)
L = RL,r−2,∇(r,r) = ∇r)

is an affine morphism over (R
(r−3)
C ,R

(r−3)
L ,∇(r−1)) with constant rank, i.e. (πr−1

r−2×
πr−1
r−2 × πrr−1) × (RC,r−2,RL,r−2,∇r) is a submersion. The mapping (16) is then

a composition of surjective submersions. QED
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22 Theorem. Let SF be a left W
(k,k)
m G-manifold. For every W

(r+1,r+1)
m G-

equivariant map f : T r−1
m Q×T r−1

m R×T rmV → SF there exists a unique W
(k,k)
m G-

equivariant map g : T k−2
m Q× T k−2

m R× T k−1
m V × Z(k,r) → SF such that

f = g ◦ (πr−1
k−2 × πr−1

k−2 × πrk−1,R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r)) .

Proof. Consider the map

(idT r−1
m Q× idT r−1

m R×πrk−1,∇(k,r)) : T r−1
m Q× T r−1

m R× T rmV →
→ T r−1

m Q× T r−1
m R× T k−1

m V × V (k,r)

and denote by Ṽ (k,r) ⊂ T r−1
m Q × T r−1

m R × T k−1
m V × V (k,r) its image. By (15),

the restricted morphism

∇̃(k,r) : T r−1
m Q× T r−1

m R× T rmV → Ṽ (k,r)

is bijective for every (jr−1
0 λ, jr−1

0 γ) ∈ T r−1
m Q × T r−1

m R, so that ∇̃(k,r) is an
equivariant diffeomorphism. Define

(R̃
(k−2,r−2)
C , R̃

(k−2,r−2)
L ) : Ṽ (k,r) → T k−2

m Q× T k−2
m R× T k−1

m V × Z(k,r)

by

(R̃
(k−2,r−2)
C , R̃

(k−2,r−2)
L )(jr−1

0 λ, jr−1
0 γ, jk−1

0 µ, v) =

= (jk−2
0 λ, jk−2

0 γ, jk−1
0 µ,R

(k−2,r−2)
C (jr−1

0 λ),R
(k−2,r−2)
L (jr−1

0 λ, jr−1
0 γ), v) ,

(jr−1
0 λ, jr−1

0 γ, jk−1
0 µ, v) ∈ Ṽ (k,r). By Lemma 15 (R̃

(k−2,r−2)
C , R̃

(k−2,r−2)
L ) is a sur-

jective submersion.

Thus, Lemma 15 and Lemma 17 imply that (R̃
(k−2,r−2)
C , R̃

(k−2,r−2)
L ) satis-

fies the orbit conditions for the group epimorphism πr+1,r+1
k,k : W

(r+1,r+1)
m G →

W
(k,k)
m G and there exists a uniqueW

(k,k)
m G-equivariant map g : T k−2

m Q×T k−2
m R×

T k−1
m V × Z(k,r) → SF such that the diagram

Ṽ (k,r) (e∇(k,r))−1

−−−−−−→

(eR(k−2,r−2)
C ,eR(k−2,r−2)

L )

y

T k−2
m Q× T k−2

m R× T k−1
m V × Z(k,r) id−−−−→

T r−1
m Q× T r−1

m R× T rmV
f−−−−→ SF

(πr−1
k−2×π

r−1
k−2×πr

k−1,R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r))

y idSF

y

T k−2
m Q× T k−2

m R× T k−1
m V × Z(k,r) g−−−−→ SF
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commutes. Hence f ◦ (∇̃(k,r))−1 = g ◦ (R̃
(k−2,r−2)
C , R̃

(k−2,r−2)
L ). Composing both

sides with ∇̃(k,r), by considering

(R̃
(k−2,r−2)
C , R̃

(k−2,r−2)
L ) ◦ ∇̃(k,r) =

(πr−1
k−2 × πr−1

k−2 × πrk−1,R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r)),

we get

f = g ◦ (πr−1
k−2 × πr−1

k−2 × πrk−1,R
(k−2,r−2)
C ,R

(k−2,r−2)
L ,∇(k,r)) . QED

T k−2
m Q×T k−2

m R×T k−1
m V ×Z(k,r) is closed with respect to the action of the

groupW
(k,k)
m G. The corresponding natural bundle is Jk−2 Cla M ×

M

Jk−2 Lin E×
M

Jk−1Ep1,p2
q1,q2 ×

M

Z(k,r)E . Then the second k-th order valued reduction theorem for

linear and classical connections can be formulated as follows.

23 Theorem. Let F be a G-gauge-natural bundle of order k ≥ 1 and let
r+1 ≥ k. All natural differential operators f : C∞(Cla M ×

M

Lin E ×
M

Ep1,p2
q1,q2 ) →

C∞(FE) of order r with respect sections of Ep1,p2
q1,q2 are of the form

f(jr−1Λ, jr−1K, jrΦ) =

g(jk−2Λ, jk−2K, jk−1Φ,∇(k−2,r−2)R[Λ],∇(k−2,r−2)R[K],∇(k,r)Φ)

where g is a unique natural operator

g : Jk−2 Cla M ×
M

Jk−2 Lin E ×
M

Jk−1Ep1,p2
q1,q2 ×

M

Z(k,r)E → FE .

24 Remark. The order (r − 1) of the above operators with respect to
linear and classical connections is the minimal order we have to use. The second
reduction theorem can be easily generalized for any operators of orders s1 or s2
with respect to connections Λ orK, respectively, where s1 ≥ s2−2, s1, s2 ≥ r−1.
Then

f(js1Λ, js2K, jrΦ) =

g(jk−2Λ, jk−2K, jk−1Φ,∇(k−2,s1−1)R[Λ],∇(k−2,s2−1)R[K],∇(k,r)Φ) .

25 Remark. It is easy to see that the second reduction theorem can be

generalized for any number of fields
i
Φ, i = 1, . . . ,m, of order (1, 0) and that any

finite order operator

f(js1Λ, js2K, jri
i
Φ) , s1, s2 ≥ max(ri) − 1 , s1 ≥ s2 − 2 ,

factorizes through jk−2Λ, jk−2K, jk−1
i
Φ and sufficiently high covariant differen-

tials of R[Λ], R[K],
i
Φ.
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