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Abstract. One of the typical applications of symmetry methods in the study of differential
equations is the searching for symmetry-invariant solutions. I present here a review of some of
the principal techniques related to this idea, together with a comparison between the various
approaches, paying special attention to the notion of conditional symmetry (with a careful
distinction between some different definitions), and to the concept of λ-symmetry. The close
relationship between λ-symmetries for PDE’s and standard symmetries is also pointed out.
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Introduction

This paper is devoted to a review and a revisitation of one of the most
relevant applications of symmetry methods to the study of differential equa-
tions, namely the introduction of various techniques aimed at finding symmetry-
invariant solutions of the given equation (both ordinary, ODE, and partial,
PDE).

Starting from the simplest and standard case of equations admitting an
“exact” symmetry (we will consider only Lie point-symmetries in the classical
meaning), we will consider several generalizations, which include first of all the
case of conditional symmetries (we will show that some care is needed in the
introduction of this notion: indeed, different notions of conditional symmetries
must be distinguished). The relationship between conditional symmetries and
the more recent concept of partial symmetry will be also briefly pointed out.
Great attention will be also devoted to the other recently introduced notion of
λ-symmetries; their role in the study of ODEs (where they have been originally
introduced) turns out to be completely different from their role in the context
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of PDEs. We will point out the close relationship existing, in the case of PDEs,
between λ-symmetries and standard symmetries.

1 Exact symmetries

As already remarked, in the study of symmetry properties of a differential
problem, and in the searching for its symmetry-invariant solutions, the simplest
situation occurs clearly when the given equation admits an “exact” (to be dis-
tinguished from conditional, partial, and so on) symmetry. A popular example
is provided by rotation-invariant equations: symmetry-invariant solutions are
radial ones, as well known.

For the sake of concreteness, we shall consider here only “geometrical” or
Lie point-symmetries, i.e. transformations generated by vector fields X of the
form (sum over repeated indices is always understood)

X = ξi(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua
(1)

where x := (x1, . . . , xp) are the independent variables, u := (u1, . . . , uq) the
dependent ones, and ξi , ϕ

a are given smooth functions. As well known [1,10,14,
19,21,26,28], a differential equation (or a system thereof)

∆:= ∆α(x, u(m)) = 0 ; α = 1, . . . , ν (2)

(where u(m) denotes the functions ua together with their derivatives with respect
to xi up to the order m), admits X as an exact symmetry (or is symmetric under
X) if the following condition is satisfied

X∗(∆)|∆=0 = 0 (3)

with usual notations and standard assumptions (as stated, e.g. , in [19]); we have
denoted byX∗ the “appropriate” prolongation ofX for the equations at hand (or
– alternatively – its infinite prolongation, indeed only a finite number of terms
will appear in calculations). A condition equivalent to (3) (at least under mild
hypotheses, see [19]) is the existence of a matrix functions G = Gαβ(x, u

(m))
such that

(X∗(∆))α = Gαβ ∆β . (4)

The equation (or system of equations) ∆ = 0 is said to be invariant under X
(or to admit X as a strong symmetry) if

X∗(∆) = 0 (5)
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i.e., if Gαβ = 0. It can be shown [1, 4, 6, 19, 23] that if any ∆ = 0 is symmetric
under a vector field X, then, rewriting the equation ∆ = 0 in terms of canonical
coordinates (see below), the problem can be replaced by an equivalent problem
which is invariant under X.

Given a differential problem ∆ = 0 which admits a symmetryX, its solutions
which are invariant under the symmetry X are determined, as well known, by
the system of q conditions

XQ u
a := ϕa − ξi

∂ua

∂xi
= 0 (6)

whereXQ = ϕa(∂/∂ua)−ξi(∂/∂xi) is the vector fieldX written in “evolutionary
form” [19].

Let us assume from now on, and unless stated otherwise, that our problem
is a single PDE for only one independent variable u = u(x) (i.e. q = 1); then,
from the solution of the first-order PDE XQu = 0, one determines a set of new
coordinates s, z and w, called canonical or symmetry-adapted variables (see
e.g. [1, 19] and also [6]), where z, w are X−invariant variables, and the vector
field X, and its prolongation X∗ as well, take the form

X = X∗ =
∂

∂s
(7)

Expressing the original equation in terms of the new variables z, w, one obtains
a reduced differential equation, say

∆̂(z, w) = 0 (8)

for the X−invariant function w = w(z). This procedure is well known, and
several relevant examples can be found in the literature, and we do not insist on
this point. See [23,30] for a careful discussion about this procedure. If the PDE
involves a function of two dependent variables only, then the reduced equation
is just a ODE.

2 Conditional and “weak” conditional symmetries

It is well known that the idea and the method presented in the above section
work even if X is not an exact symmetry for the problem, but is a conditional
symmetry [2,3,9,15,27]. According to a current definition, a vector field X is a
conditional symmetry for ∆ = 0 if it is an exact symmetry for the system

∆ = 0 Q := XQu := ϕ− ξiui = 0 (9)
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(clearly, ui = ∂u/∂xi), or if

X∗(∆)|Σ = 0 (10)

where Σ is the set of the simultaneous solutions of the two equations in (9),
plus (possibly) some differential consequences of the second one: indeed, the
equation Q = 0, which is a first-order equation, must be used together with the
differential equations ∆ = 0 and X∗(∆) = 0 which are in general of order larger
than one; then also differential consequences of Q = 0 must be introduced.
Therefore—in defining conditional symmetry in this sense—it is understood
that the system (9) must include the suitable differential consequences of the
“invariant-surface condition” Q = 0, and X is requested to be an exact sym-
metry of this enlarged system (see [19, 20, 22, 23, 29] for a precise and detailed
discussion on this point and the related notion of degenerate systems of PDE).

But at this point a careful distinction is necessary.

Indeed, another definition is that X is a conditional symmetry for ∆ = 0 if
the system (9) admits some solutions.

While it is true that if û is a solution to (9) then also the following

X∗(∆)|u=bu = 0 (11)

is satisfied, the converse of the statement is – strictly speaking – not true.
Consider for instance (this example is due to Olver and Rosenau [20]) the heat
equation ut − uxx = 0 and the vector field

X = x
∂

∂x
− t

∂

∂t
+ 3x3 ∂

∂u
(12)

It is easy to verify that X∗(∆)|Σ does not vanish identically; on the other hand,
if one looks for solutions of the system (9), one finds from Q = 0

u = w(z) + x3 with z = xt

and substituting into the heat equation gives

t3wzz − z(wz − 6) = 0 (13)

which is not a “pure” ODE for w(z), but an equation containing also the “non-
invariant” variable t. One may actually obtain X−invariant solutions to equa-
tion (13) by imposing wzz = 0 and wz = 6, which produces some solutions û
which in fact satisfy (11). But this situation is clearly different from the “pure”
conditional symmetry case, i.e. where (10) is identically satisfied. What hap-
pens in the above example is that (12) is a symmetry of a new system which is
obtained enlarging (9) according to a different prescription, i.e. in such a way
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to include all compatibility conditions of the differential consequences of both
equations in (9) (or the “integrability conditions”) [19,20,23]. The counterpart
of this fact is that, while in the first case, i.e. according to the first definition of
conditional symmetry, the reduced equation is a single equation for w = w(z)
(just as in the case of exact symmetry, see (8)), in the other case one obtains a
“combination” of equations of the form, as in (13)

R1(s, z, w)∆̂1(z, w) +R2(s, z, w)∆̂2(z, w) + . . . = 0 (14)

where R` are some coefficients depending also on some non-invariant coordinate
s. Clearly, if one looks for invariant solutions, one must solve the system of
equations ∆̂` = 0 in (14); in particular, when only two independent variables
are involved, in the first case the reduced equation is a single ODE, whereas
in the second case, as in the example above, the reduced equation takes the
form (14) of a combination of ODE’s.

Let us now remark that, in the example above, appending to the system (9)
the new equation ∆(1) := X∗(∆) = 0, i.e. ut + 2uxx − 18x = 0, the vector field
X becomes an exact symmetry of this augmented system. (It should be clear
that this new equation is not to be confused with the differential consequences
of ∆ = 0.) This suggests the following definition, which allows us to intro-
duce a precise “classification” which distinguishes different types of conditional
symmetries.

1 Definition. Given a PDE ∆ = 0, a vector field X is a weak conditional
symmetry of order r > 1 if the system

∆ = 0 , ∆(1) := X∗(∆) = 0, . . . , X∗(∆(r−1)) = 0 (15)

Q = 0 (16)

together with the differential consequences of (16), admits X as an exact sym-
metry, or – equivalently – if X satisfies

Q = ∆ = ∆(1) = . . . = ∆(r) = 0. (17)

Clearly, the case r = 1 corresponds to the first definition of “standard” or
“true” conditional symmetry. It should be remarked incidentally that systems
of equations as above may have no solutions at all. It is well known indeed that,
even in the case of exact symmetries, it can happen – although unlikely – that
the system ∆ = Q = 0 does not admit solutions, i.e. that no invariant solutions
exist. It is therefore understood that all the systems we are going to consider
from now on, do admit some solutions.
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2.1 Partial symmetries

Let us remark that, if in the previous Definition one removes the invariance
condition Q = 0, then one would obtain the definition of partial symmetry [5,7];
indeed, if the system (15) admits, with r > 1, the symmetry X, then the so-
lutions to (15) form a proper subset of the solution manifold S∆ of the initial
equation ∆ = 0, and this subset is a symmetric set of solutions, i.e. a subset of
solutions which are transformed into one another by the transformations gener-
ated byX. This set, globally invariant underX, may contain or notX−invariant
solutions; accordingly, partial symmetries generalize the notion of conditional
symmetry and weak conditional symmetry, and are in some sense intermediate
between conditional symmetries and exact symmetries (which clearly correspond
to r = 1 in the definition (15)).

2.2 Examples

Let us illustrate and compare the different notions of symmetries considered
up to now by means of some examples. These examples look really extremely
simple, however it can be remarked that in all of them the vector field involved
is the generator of translations along one variable (denoted in the examples
below by t), and this is precisely the form of any vector field once written in
canonical coordinates, see (7); therefore, the following examples can be viewed
in some sense as the prototypical examples of the different notions of symmetries
introduced above (see also [6]).

1) Consider the PDE for u = u(x, t)

∆ := ut + t(uxx − u) = 0

The vector field

X =
∂

∂t
(18)

is a “true” conditional symmetry for this equation, indeed the condition Q = 0,
i.e. ut = 0, is (trivially) an exact symmetry for the system ∆ = Q = 0, and –
accordingly – produces a reduced equation uxx = u which is a “pure” ODE, as
in (8).

2) The same vector field (18) is instead a weak conditional symmetry for the
equation

∆ := ut + uxx − u+ t(ux − u) = 0

Indeed, it is an exact symmetry of the enlarged system (notice in particular that
X∗ = ∂/∂t and therefore conditions (15) greatly simplify, see [6])

Q = ut = 0 , ∆ = 0 , ∆(1) =
∂∆

∂t
= ux − u = 0
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and the invariance condition ut = 0 produces, as expected, a “combination” of
two ODE’s, as in (14).

3) In the case of the ODE

∆ := ut − utt + uxx − u+ t(ux − u) = 0

the vector field (18) is both a weak conditional symmetry and a partial sym-
metry. Indeed, the invariance condition ut = 0 gives as above a combination
of two ODE’s with invariant solution u = c expx. But if we relax the condi-
tion Q = 0, and consider the additional condition ∆(1) = X∗(∆) = 0 which is
now ux − u = 0, we see that X∗ = ∂/∂t is an exact symmetry of the enlarged
system ∆ = ∆(1) = 0, and we find the larger “symmetric set” of solutions
u = c expx+ c1 exp(x+ t).

For other examples of weak and partial symmetries see [5–7].

3 λ−symmetries

Another important generalization of the notion of exact symmetries, also
related to the problem of finding invariant solutions, is provided by the notion
of λ−symmetries [13, 17,18,24].

We only recall here the basic definitions, starting from the case of a single
dependent variable u = u(x) of the p independent variables x.

2 Definition. Given p smooth functions λi = λi(x, u
(1)), satisfying the

compatibility conditions
Diλj = Djλi (19)

where Di denotes the total derivative with respect to xi, the (infinite) λ-prolon-
gation X∗

[λ] of a vector field X

X = ξi(x, u)
∂

∂xi
+ ϕ(x, u)

∂

∂u

is defined by (see [11,12,17,18])

X∗
[λ] = X +

∑

J

Φ
[λ]
J

∂

∂uJ
(20)

where J = (j1, . . . , jp) are multiindices and the coefficients Φ
[λ]
J are defined

recursively, putting for simplicity ΨJ := Φ
[λ]
J , by

ΨJ,i = (Di + λi) ΨJ − uJ,k (Di + λi) ξk (21)

with Ψ0 = ϕ.
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Clearly, standard prolongation [19] is recovered if λi = 0. For instance, the
relationship between the coefficients ΨJ of the second λ−prolongation and the
coefficients ΦJ of the standard prolongation of the same vector field X is

Ψi = Φi + λiQ ; Ψij = Φij + λi(DjQ) + λj(DiQ) + (Diλj + λiλj)Q (22)

where Q = ϕ− ξiui.
It is not difficult to see (cf. [11, 12]) that the coefficients ΨJ differ from the

coefficients ΦJ of the standard prolongation by terms which are linear combi-
nations of Q and of its differential consequences DJQ. It follows that ΨJ = ΦJ

on the subspace IX of X-invariant functions, identified by the vanishing of Q
and DJQ for all multiindices J . This also implies that the space IX is invariant
under X∗

[λ]. See [11,12] for details.

We now give the other basic definition related to this notion.

3 Definition. Given p smooth functions λi = λi(x, u
(1)), satisfying (19), a

differential equation ∆ = 0 is said to be λ−symmetric under a vector field X if

X∗
[λ] ∆|∆=0 = 0 (23)

or, in a more refined geometrical language, a vector field X in the space M of
independent and dependent variables is a λ-symmetry of the differential equa-
tion ∆ = 0 of order n, if the λ-prolonged vector field in the jet space J (n)M is
tangent to the solution manifold S∆ ⊂ J (n)M .

The notion of λ−symmetry admits a very interesting and deep geometrical
interpretation, which however goes beyond the scope of this presentation [8,11,
12].

Notice that we have assumed here that λi = λi(x, u
(1)); this guarantees that

if X is a Lie point-symmetry, then its λ-prolongation is a proper (rather than
generalized) vector field in each jet space J (k)M ; the possibility of extending
our discussion to more general functions λi, and therefore to generalized λ-
symmetries, is certainly open and interesting, but we will not consider here this
generalization.

To a clear examination and comparison of the peculiar properties of λ-
symmetries it is convenient to distinguish their application to different cases.
Although the notion of λ−symmetries has been introduced in the context of
ODE’s, where they play a very relevant role [17,18,24], it is more convenient for
our purposes to postpone a (short) discussion of the case of ODE’s after that
of “scalar” PDE’s.

1) “Scalar” PDE’s
Let ∆ = 0 be a PDE for a single function u = u(x) (i.e. q = 1) of the p

variables x. It can be proved the following [8]:
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4 Theorem. Given p functions λi(x, u
(1)) satisfying (19) and a vector field

X, the λ−prolongation X∗
[λ] of X is proportional (“collinear”) to the standard

prolongation of another vector field X̃. Precisely, there exists a nonvanishing
function γ = γ(x, u) satisfying

λi = Di γ/γ = Di(log |γ|) (24)

such that
X∗

[λ] = γ−1 X̃∗ where X̃ = γ X. (25)

As a consequence, if X is a λ−symmetry for a PDE ∆ = 0, then there exists a
vector field X̃ defined as above which is a standard symmetry for this equation,
and viceversa.

The construction of the function γ starting from equations (19) corresponds
to finding a “potential” function P (x, u) such that λi = Di(P ); clearly, some
difficulty may arise if the problem is posed in the large; then in general the
result may hold only locally. For a full and detailed discussion on this point,
see [8, 11,12].

To illustrate the above theorem, let us write explicitly the coefficients Φ̃i, Φ̃ij

of the standard second prolongation of the vector field X̃ = γX and compare
with the analogous coefficients Φi, Φij of X and respectively Ψi ,Ψij (see (22))
of its λ−prolongation: one finds, using also (24),

Φ̃i = γ Φi + (Diγ)Q = γΨi

Φ̃ij = γ Φij + (Diγ)(DjQ) + (Djγ)(DiQ) + (Dijγ)Q = γΨij

Let us now remark that if a vector field X0 is an exact symmetry of a given
equation ∆ = 0, then β X0, for any function β(x, u), is in general not an exact
symmetry, but only a (standard) conditional symmetry for that equation. We
can then characterize λ−symmetries in this way:

5 Corollary. A vector field X is a λ−symmetry of ∆ = 0 if and only if
it is a conditional symmetry of the special form X = βX̃ where X̃ is an exact
symmetry of ∆ = 0.

It is also clear that, for what concerns the problem of finding invariant
solutions, the procedure in the case of λ−symmetries is exactly the same as for
standard symmetries, and that the invariant solutions under λ−symmetries are
exactly the same as the invariant solutions under the “collinear” exact symmetry
X̃ = γ X defined above.

2) ODE’s
The notion of λ−symmetry is particularly useful in the context of ODE’s,

where indeed they are able to provide a reduction of the order of the equation,
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precisely as in the case of exact symmetries [17, 18, 24]. Here, the situation is
completely different with respect to the case of PDEs, at least for two basic
reasons:
a) First of all, the introduction of the collinear “exact” symmetry X̃ is here
not always possible. There are indeed several possibilities: in the cases where a
function γ(x, u) satisfying λ = Dx(γ)/γ, as in (24), can be found, then the λ-
symmetry is equivalent to the standard symmetry X̃, according to Theorem 1.
But if e.g. λ = λ(u), then γ takes the form

γ(x, u) = exp
[ ∫ x

λ(u(x′))dx′
]

and the standard symmetry X̃ would become a nonlocal symmetry (see [17,18,
24], and also [8] for extending the notion of exponential nonlocal symmetries).
But clearly it can also happen that no function γ is admitted (e.g., if λ = u2

x).
b) Secondly, λ−symmetries in the case of ODE’s not only lead to a reduction of
the order of the equation, but are also able to give the most general solution of
the equation; in the case of PDE’s, the reduction is drastically different being
obtained via the restriction to invariant solutions, i.e. the solutions satisfying
the condition Q = 0.

We do not insist on this point, which is well known and admits many in-
teresting applications, and relevant generalizations as well (e.g. the notion of
telescopic vector field [24]).

3) “Vector” PDE’s
We consider finally the case of “vector” PDE’s, i.e. PDE involving q > 1

functions ua = ua(x). Now the definitions of λ–prolongation and of λ–symmetry
are more involved. We have to introduce p square (q×q) matrices Λi = Λi(x, u

(1)),
depending on xi, u

a and on the first-order derivatives ∂ua/∂xi (at least if we
want to consider only proper and not generalized symmetries, as already re-
marked), and satisfying the new compatibility conditions [11,12]

DiΛj −DjΛi + [Λi,Λj ] = 0 (26)

Given the vector field X

X = ξi(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua

the coefficients
(
Φ[λ]

)a
J

, which shall be denoted by Ψa
J (or by ΨJ when no

confusion is possible) of its λ−prolongation

X∗
[λ] = X +

∑

a

∑

J

Ψa
J

∂

∂uaJ
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are now defined recursively by

Ψa
J,i = [Diδ

ab + (Λi)
ab]Ψb

J − (ua)J,kDiξk − (Λi)
ab(ub)J,kξk (27)

with Ψa
0 = ϕa and uai = ∂ua/∂xi. For instance, we get

Ψa
i = Φa

i + (ΛiQ)a

where Φa
J are the coefficients of standard prolongation [19], and Qa = ϕa−ξiuai ;

similarly,

Ψa
ij = Φa

ij + (Λi(DjQ))a + (Λj(DiQ))a + ((DiΛj + ΛiΛj)Q)a

One can see in particular that the identity Ψij = Ψji is guaranteed precisely by
the compatibility condition (26).

The results of Theorem 1 can be essentially extended also to this case; to
this end, it is convenient to write the vector field X in its evolutionary from,
namely

XQ := Qa
∂

∂ua
= (ϕa − ξiu

a
i )

∂

∂ua
(28)

Introducing the shorthand notation Y for the (infinite) λ-prolongation of XQ,
we then have the following:

6 Theorem. Let Y be the λ-prolongation of the vector field XQ with some
given q × q matrices Λi satisfying (26). Then there exists an invertible matrix
function γ = γ(x, u) such that

Y = γ−1X∗
γQ (29)

where X∗
γQ is the standard prolongation of the evolutionary vector field

X eQ := γXQ = XγQ (30)

The matrix γ is related to the Λi by the equation

Λi = γ−1(Diγ) (31)

As a consequence, if XQ is a λ-symmetry for a system of equations ∆α = 0,
then there is a vector field X eQ = XγQ which is standard symmetry for ∆α = 0.

Proof (a sketch). The proof requires some refined techniques from dif-
ferential geometry [8,16,25]. The idea is the following: introducing the operator
∇i

(∇i)
ab := Diδ

ab + (Λi)
ab (32)
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we immediately deduce that the compatibility condition (26) becomes

[∇i,∇j ] = 0 (33)

which generalizes the scalar condition (19). It can be shown that this implies the
existence (at least locally) of an invertible matrix function γ(x, u) such that (29)
is satisfied. Conversely, if Λi satisfy (29), then also (26) (or (33)) hold, indeed

DiΛj = Di(γ
−1)Dj(γ) + γ−1Dij(γ) = γ−1Di(γ)γ

−1Dj(γ) + γ−1Dij(γ)
= ΛiΛj + γ−1Dij(γ)

It now remains to show that for the coefficients Ψa
J of Y one has Ψa

J = (γ−1)abΦ̃b
J

= (γ−1Φ̃J)
a where Φ̃a

J are the coefficients of the standard prolongation of X eQ =

XγQ. Let us consider only the first prolongation (higher-orders may be dealt
with recursively):

Φ̃a
i = Di(γQ)a = (Diγ

ab)Qb + γabDiQ
b = γab

(
(ΛQ)b +DiQ

b
)

= (γΨi)
a

thanks to (29). QED

3.1 Partial and weak conditional λ-symmetries

Clearly, also partial λ-symmetries (see Section 2.1) for PDEs can be intro-
duced [8]. Indeed, given a PDE (or a system thereof) ∆ = 0 and a vector field
XQ with λ-prolongation Y , let us assume that

Y (∆) |∆=0 6= 0 (34)

Then, we can consider ∆(1) := Y (∆) = 0 as a new equation and check whether
Y is a λ-symmetry for the enlarged system ∆ = ∆(1) = 0 (possibly iterating
the procedure to some order r > 1), exactly as in (15). It is now clear that, if
this is the case, the reduction procedure by means of the condition Q = 0 will
transform the partial λ-symmetry into a weak conditional symmetry, giving rise
to equations of the form (15). The final example in this paper will illustrate this
case.

3.2 Examples

We have seen that any λ-symmetry X can be replaced by an equivalent
standard symmetry X̃ = γX. As already remarked, this equivalence is granted
in general only locally, being connected to the existence of a function (or a
matrix function) γ which is obtained by “integration” of the differential form
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µ := λidxi (or µ := Λidxi) via the compatibility conditions (19) (or (26)).
For a full discussion of this point and of various related differential geometric
aspects we refer to [8,11,12]. Let us also point out that actually the compatibility
conditions (19) or (26) need not hold necessarily in all points of the space J (n)M ,
but only along the solution manifold S∆ of the differential problem ∆ = 0;
pursuing this idea, one could show that in this case there is an equivalence of
λ-symmetries with standard “nonlocal symmetries of exponential type”, but we
will not consider here this possibility (see [8]).

We will now give an example of a λ-symmetry for a PDE which is only lo-
cally equivalent to a standard symmetry: this fact is reflected by the presence
of a multivalued function γ. The two other examples presented below concern
systems of two PDEs; in both cases we will give the matrix γ, and obtain the
symmetry-invariant solution imposing the invariance condition Qa = 0, exactly
as in the case of conditional symmetries (specifically: in Example 2 a standard
conditional symmetry is involved, in the final Example a weak conditional sym-
metry of order r = 2).

1) This is an example in the punctured plane R2 − {0}. With x1 = x , x2 = y,
let X be given by the standard rotation generator

X = y
∂

∂x
− x

∂

∂y

Writing for ease of notation r2 = x2 + y2, let λ1 = (−y/r2) and λ2 = (x/r2);
this corresponds to

γ = exp[arctan(y/x)] := exp(θ) ,

and then to the vector field X̃ = [exp(θ)]∂θ. Note that here γ is well defined
only locally, as it is a multivalued function. One can check that

ζ1 := eθuθ and ζ2 := e2θ(uθθ + uθ)

are invariant under the λ-prolongation of the above vector field X. In the x, y
coordinates (but retaining the notation θ := arctan(y/x)) these read

ζ1 = (exp θ) (xuy − yux),
ζ2 = (exp(2θ)) (y2uxx + x2uyy − 2xyuxy − xux − yuy + xuy − yux ).

Let ζ3 be any smooth nontrivial function ζ3 = ζ3(r, ur, urr). Then any PDE of
the form

∆ := F (ζ1, ζ2, ζ3) = 0
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is a second-order equation invariant under the λ-prolongation of X. Its symme-
try reduction gives an ODE of the form

∆̂ = F̂ (r, wr, wrr) := F (0, 0, ζ3) = 0

for the function u = w(r).

2) In this and the last example we will consider the case of two dependent
variables (i.e. q = 2) and two independent variables; we shall write u1 = u(x, y)
and u2 = v(x, y). It is not difficult to verify that any system of the form

ux = −vxG(x) + vxf(y, u, v, vy, xvx)
uy = xvx log(|vx|) + g(y, u, v, vy, xvx)

where G and f, g are arbitrary functions of the indicated arguments, admits the
vector field

X = x
∂

∂x

as λ−symmetry with Λi given by

Λ1 =

(
0 Gx(x)
0 0

)
; Λ2 =

(
0 1
0 0

)

The matrix γ is given by

γ =

(
1 G(x) + y
0 1

)

The reduction, imposing Qa = 0, i.e., ux = vx = 0, gives u = u(y), v = v(y); the
first equation turns out to be identically satisfied, and the second one becomes
an equation involving u, v with their derivatives with respect to y.

3) With the same notations as in the example above, now consider the system

ux = −vx log(|vx|) + v
vx = 2vy − y2 + uy + (vx − vy)

2

with the vector field

X =
∂

∂x
+ v

∂

∂u

and with

Λ1 =

(
1 0
0 1

)
; Λ2 =

(
0 0
0 1

)

corresponding to a matrix function γ

γ =

(
expx 0

0 exp(x+ y)

)
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Direct computation shows thatX is a partial λ-symmetry of this system: indeed,
according to Section 3.1, the first application of the λ-prolongation does not give
zero but produces the new system

0 = 0 ; vx = vy

and one needs another application of the λ-prolongation of X. The reduction
procedure, imposing Qa = 0, i.e. ux = v, vx = 0 or v = v(y), u = w(y) + xv(y),
gives

wy + xvy + v2
y + 2vy − y2 = 0

which has the form (15), as expected in the case of weak λ-symmetries (cf.
Definition 1 and Sections 2.1 and 3.1); this forces vy = 0 and leads to the
solution u = y3/3 + cx, v = c = const.
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