Canonical decompositions induced by A-contractions

Laurian Suciu ${ }^{\text {i }}$
Department of Mathematics, West University of Timisoara
laurians2002@yahoo.com

Received: 07/09/2006; accepted: 17/03/2008.

Abstract

The classical Nagy-Foiaş-Langer decomposition of an ordinary contraction is generalized in the context of the operators T on a complex Hilbert space \mathcal{H} which, relative to a positive operator A on \mathcal{H}, satisfy the inequality $T^{*} A T \leq A$. As a consequence, a version of the classical von Neumann-Wold decomposition for isometries is derived in this context. Also one shows that, if $T^{*} A T=A$ and $A T=A^{1 / 2} T A^{1 / 2}$, then the decomposition of \mathcal{H} in normal part and pure part relative to $A^{1 / 2} T$ is just a von Neumann-Wold type decomposition for $A^{1 / 2} T$, which can be completely described. As applications, some facts on the quasi-isometries recently studied in [4], [5], are obtained.

Keywords: A-contraction, A-isometry, quasi-isometry, von Neumann-Wold decomposition.
MSC 2000 classification: primary 47A15, 47A63, secondary 47B20.

1 Introduction and preliminaries

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H}. The range and the null-space of $T \in \mathcal{B}(\mathcal{H})$ are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively.

Let $A \in \mathcal{B}(\mathcal{H})$ be a fixed positive operator, $A \neq 0$. An operator $T \in \mathcal{B}(\mathcal{H})$ is called an A-contraction if it satisfies the inequality

$$
\begin{equation*}
T^{*} A T \leq A \tag{1}
\end{equation*}
$$

where T^{*} stands for the adjoint of T. Also, T is called an A-isometry if the equality occurs in (1). According to [8] we say that T is a pure A-contraction if T is an A-contraction and there exists no non zero subspace in \mathcal{H} which reduces A and T on which T is an A-isometry. Such operators appear in many papers, for instance $[1,2,4,5,7-9]$.

Clearly, an ordinary contraction means an I-contraction, where $I=I_{\mathcal{H}}$ is the identity operator in $\mathcal{B}(\mathcal{H})$. A contraction T is also a $T^{*} T$-contraction and a S_{T}-isometry, where S_{T} is the strong limit of the sequence $\left\{T^{* n} T^{n}: n \geq 1\right\}$.

[^0]According to [4], [5], an operator $T \in \mathcal{B}(\mathcal{H})$ which is a $T^{*} T$-isometry is called a quasi-isometry. A quasi-isometry T is a partial isometry if and only if T is quasinormal, which means that T commutes with $T^{*} T$ ([4], [7]).

If T is a quasinormal contraction then T and T^{*} are $T^{*} T$-contractions such that T and T^{*} commute with $T^{*} T$, these being a particular case of A contractions S satisfying $A S=S A$.

In general, for an A-contraction T on \mathcal{H} one has $A T \neq T A$, and furthermore, T^{*} is not an A-contraction (see [7]). This shows that the properties of A-contractions are quite different from the ones of ordinary contractions. However, an A-contraction T is partially related to the contraction \widehat{T} on $\overline{\mathcal{R}(A)}$ defined (using (1)) by

$$
\begin{equation*}
\widehat{T} A^{1 / 2} h=A^{1 / 2} T h \quad(h \in \mathcal{H}), \tag{2}
\end{equation*}
$$

where $A^{1 / 2}$ is the square root of A. Recall that $\overline{\mathcal{R}(A)}=\overline{\mathcal{R}\left(A^{1 / 2}\right)}$.
If T is a regular A-contraction, that is it satisfies the condition $A T=$ $A^{1 / 2} T A^{1 / 2}$, then it is easy to see that T is a lifting of \widehat{T}, or equivalently, T^{*} is an extension of \widehat{T}^{*}. Even in this case $\mathcal{N}(A)$ is not invariant for T^{*}, in general, (see [7]) but it is immediate from (1) that $\mathcal{N}(A)$ is invariant for T.

This paper deals with some decompositions of \mathcal{H} induced by A-contractions and particularly, A-isometries.

Thus, in Section 2 we find natural generalizations of Nagy-Foiaş-Langer decomposition and of von Neumann-Wold decomposition, in the context of A contractions T with $A T=T A$, that is in the commutative case. As consequences, we recover the normal part and the pure (completely non normal) part, as well as the normal partial isometric part, of a quasinormal contraction.

In Section 3 we completely describe the normal-pure decomposition of \mathcal{H} relative to the operator $A^{1 / 2} T$, when T is a regular A-isometry on \mathcal{H}. In fact, this decomposition is a von-Neumann-Wold type decomposition for $A^{1 / 2} T$, by analogy with the case $A=I$ (when T is an isometry). We give this decomposition in terms of A and T, also using the polar decomposition of $A^{1 / 2} T$.

As applications, we recover and we complete some facts from Section 2, and we also obtain some results concerning the quasi-isometries, recently studied in [4], [5]. More precisely, our characterizations of normal quasi-isometries are related to a problem posed by Patel in Remark 2.1 [4].

2 Decompositions in the commutative case

It is known [8] that for any A-contraction on \mathcal{H} the subspace

$$
\begin{equation*}
\mathcal{N}_{\infty}(A, T)=\bigcap_{n=1}^{\infty} \mathcal{N}\left(A-T^{* n} A T^{n}\right) \tag{3}
\end{equation*}
$$

is invariant for T, but it is not invariant for A, in general. However, this subspace reduces A if T is a regular A-contraction (Theorem 4.6 [8]), but even in this case it is not invariant for T^{*}, as happens when T is an ordinary contraction. When the subspace $\mathcal{N}_{\infty}(A, T)$ reduces A, it is the maximum invariant subspace for A and T on which T is an A-isometry (Proposition 2.1 [8]).

Using this fact, we can now generalize the classical Nagy-Foiaş-Langer theorem ($[2],[10])$ for ordinary contractions, in the context of A-contractions T with $A T=T A$. First we give the following

1 Lemma. For an A-contraction T on \mathcal{H} the following assertions are equivalent:
(i) $A T=T A$;
(ii) $\mathcal{N}(A)$ reduces T, and T is a regular A-contraction;
(iii) T^{*} is a regular A-contraction;
(iv) T^{*} is an A-contraction and either T, or T^{*} is regular.

Proof. Clearly, the implications $(i) \Rightarrow(i i)$ and $(i i i) \Rightarrow(i v)$ are trivial. Now, the assumption (ii) means that $A T=A^{1 / 2} T A^{1 / 2}$ and $\overline{\mathcal{R}(A)}=\overline{\mathcal{R}\left(A^{1 / 2}\right)}$ reduces T, whence we obtain $A^{1 / 2} T=T A^{1 / 2}$ because $A^{1 / 2}$ is injective on $\overline{\mathcal{R}(A)}$. This gives

$$
\widehat{T} A^{1 / 2}=A^{1 / 2} T=T A^{1 / 2}
$$

so that $\widehat{T}=\left.T\right|_{\overline{\mathcal{R}}(A)}$, and later one obtains for $h \in \mathcal{H}$

$$
T A T^{*} h=A^{1 / 2} T T^{*} A^{1 / 2} h=A^{1 / 2} T \widehat{T}^{*} A^{1 / 2} h=A^{1 / 2} \widehat{T} \widehat{T}^{*} A^{1 / 2} h .
$$

Next, since \widehat{T} is a contraction on $\overline{\mathcal{R}(A)}$ it follows that $T A T^{*} \leq A$, that is T^{*} is an A-contraction on \mathcal{H}. Also one has $A^{1 / 2} T^{*}=T^{*} A^{1 / 2}$, or equivalently $A T^{*}=A^{1 / 2} T^{*} A^{1 / 2}$, which means that T^{*} is a regular A-contraction. Hence (ii) implies (iii).

Finally, from the hypothesis on T and the assumption (iv) we infer that $\mathcal{N}(A)$ reduces T and also that $A T=A^{1 / 2} T A^{1 / 2}$, or $A T^{*}=A^{1 / 2} T^{*} A^{1 / 2}$. But these imply $A^{1 / 2} T=T A^{1 / 2}$, or equivalently $A T=T A$. Consequently (iv) implies (v), which ends the proof.

QED
We remark from the above proof that under the conditions $(i)-(i v)$ we have $\left.T\right|_{\overline{\mathcal{R}(A)}}=\widehat{T}$, hence T is a contraction on $\overline{\mathcal{R}(A)}$.

2 Theorem. Let T be an A-contraction on \mathcal{H} such that $A T=T A$. Then we have

$$
\begin{align*}
\mathcal{N}_{\infty}^{*}: & =\mathcal{N}_{\infty}(A, T) \cap \mathcal{N}_{\infty}\left(A, T^{*}\right) \tag{4}\\
& =\mathcal{N}(A) \oplus \mathcal{N}\left(I-S_{\widehat{T}}\right) \cap \mathcal{N}\left(I-S_{\widehat{T}^{*}}\right)
\end{align*}
$$

and it is the maximum reducing subspace for A and T on which T and T^{*} are A-isometries. Moreover,

$$
\begin{equation*}
\mathcal{N}_{u}:=\mathcal{N}_{\infty}^{*} \ominus \mathcal{N}(A) \tag{5}
\end{equation*}
$$

is the maximum subspace contained in $\overline{R(A)}$ which reduces T to a unitary operator.

Proof. Let $\mathcal{N}_{\infty}=\mathcal{N}_{\infty}(A, T)$ and $\mathcal{N}_{\infty *}=\mathcal{N}_{\infty}\left(A, T^{*}\right)$. Since $A T=T A$ the subspaces \mathcal{N}_{∞} and $\mathcal{N}_{\infty *}$ reduce A. Now if $h \in \mathcal{N}_{\infty} \cap \mathcal{N}_{\infty *}$ then for every integer $j \geq 1$ we have $A h=T^{* j} A T^{j} h=T^{j} A T^{* j} h$, and for $n \geq 1$ we obtain

$$
\begin{aligned}
T^{* n} A T^{n} T^{*} h & =T^{* n} T^{n} A T^{*} h=T^{* n} T^{n-1} A h \\
& =T^{* n} A T^{n-1} h=T^{*} A h=A T^{*} h
\end{aligned}
$$

Hence $T^{*} h \in \mathcal{N}_{\infty}$, and similarly one has $T h \in \mathcal{N}_{\infty * *}$. Having in view that \mathcal{N}_{∞} and $\mathcal{N}_{\infty *}$ are also invariant for T and T^{*} respectively, it follows that $\mathcal{N}_{\infty}^{*}=\mathcal{N}_{\infty} \cap \mathcal{N}_{\infty *}$ reduces T, and obviously T and T^{*} are A-isometries on \mathcal{N}_{∞}^{*}. In addition, \mathcal{N}_{∞}^{*} is the maximum reducing subspace for A and T on which T and T^{*} are A isometries, because \mathcal{N}_{∞} and $\mathcal{N}_{\infty *}$ have similar properties relative to T and T^{*} respectively, as invariant subspaces.

Now since $\mathcal{N}(A)$ reduces A and T, while T, T^{*} are A-isometries on $\mathcal{N}(A)$, it follows that $\mathcal{N}(A) \subset \mathcal{N}_{\infty}^{*}$. Therefore $\mathcal{G}=\mathcal{N}_{\infty}^{*} \ominus \mathcal{N}(A)$ also reduces A and T, and T, T^{*} are A-isometries on \mathcal{G}, hence we have for $h \in \mathcal{G}$

$$
A T^{*} T h=T^{*} A T h=A h=T A T^{*} h=A T T^{*} h
$$

As $\mathcal{G} \subset \overline{\mathcal{R}(A)}$ and A is injective on $\overline{\mathcal{R}(A)}$, we infer from these relations that T is a unitary operator on \mathcal{G}. Next, let $\mathcal{M} \subset \overline{\mathcal{R}(A)}$ be another subspace which reduces T to a unitary operator. Then for $h \in \mathcal{M}$ and $n \geq 1$ we have

$$
A h=A T^{* n} T^{n} h=A T^{n} T^{* n} h=T^{n} A T^{* n} h=T^{* n} A T^{n} h
$$

which provides that $\mathcal{M} \subset \mathcal{N}_{\infty} \cap \mathcal{N}_{\infty *}$, having in view (3). Hence $\mathcal{M} \subset \mathcal{G}$, what proves the required maximality property of \mathcal{G}.

Finally, it is easy to see from (3) that the subspace \mathcal{N}_{∞} can be expressed as following

$$
\begin{aligned}
\mathcal{N}_{\infty} & =\left\{h \in \mathcal{H}: A h=T^{* n} T^{n} A h, n \geq 1\right\} \\
& =\mathcal{N}(A) \oplus \mathcal{N}\left(A_{0}-S_{\widehat{T}} A_{0}\right)=\mathcal{N}(A) \oplus \mathcal{N}\left(I-S_{\widehat{T}}\right)
\end{aligned}
$$

where $A_{0}=\left.A\right|_{\overline{\mathcal{R}}(A)}, \widehat{T}=\left.T\right|_{\overline{\mathcal{R}(A)}}$. Clearly, we used here that $A T=T A$ and that A_{0} is injective. Analogously (by Lemma 1) one has

$$
\mathcal{N}_{\infty *}=\mathcal{N}(A) \oplus \mathcal{N}\left(I-S_{\widehat{T}^{*}}\right)
$$

and thus one obtains the second equality in (4).

In what follows we say that an operator $T \in \mathcal{B}(\mathcal{H})$ is A-unitary if T and T^{*} are A-isometries. Obviously, if $A T=T A$ then T is A-unitary if and only if T is an A-isometry and T is normal on $\overline{\mathcal{R}(A)}$, or equivalently (by Theorem 2) T is unitary on $\overline{\mathcal{R}(A)}$.

Using this concept, we can generalize in the context of A-contractions the Nagy-Foias-Langer decomposition for contractions.

3 Corollary. Let T be an A-contraction on \mathcal{H} such that $A T=T A$. Then there exists a unique orthogonal decomposition for \mathcal{H} of the form

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{c} \tag{6}
\end{equation*}
$$

where the two subspaces reduce A and T, such that $\mathcal{N}(A) \subset \mathcal{H}_{u}$ and T is A unitary on \mathcal{H}_{u}, while T is a completely non unitary contraction on \mathcal{H}_{c}. In addition one has $\mathcal{H}_{u}=\mathcal{N}_{\infty}^{*}$.

Proof. By Theorem 2 the subspace $\mathcal{H}_{u}=\mathcal{N}_{\infty}^{*}$ has the required properties. Also, since $\mathcal{H}_{c}=\mathcal{H} \ominus \mathcal{H}_{u} \subset \overline{\mathcal{R}(A)} \ominus \mathcal{N}_{\infty}^{*} \cap \overline{\mathcal{R}(A)}$ and $\left.T\right|_{\overline{\mathcal{R}}(A)}=\widehat{T}$, we infer also from Theorem 2 that T is a completely non unitary contraction on \mathcal{H}_{c}. Thus T has the above quoted properties relative to the decomposition (6). Let now $\mathcal{H}=\mathcal{H}_{u}^{\prime} \oplus \mathcal{H}_{c}^{\prime}$ be another decomposition with $\mathcal{N}(A) \subset \mathcal{H}_{u}^{\prime}$ and \mathcal{H}_{u}^{\prime} be a reducing subspace for A and T, such that T is A-unitary on \mathcal{H}_{u}^{\prime} and T is a completely non unitary contraction on \mathcal{H}_{c}^{\prime}. Then since $\mathcal{N}(A) \subset \mathcal{H}_{u} \cap \mathcal{H}_{u}^{\prime}$, one has

$$
\mathcal{H}_{u} \ominus \mathcal{H}_{u}^{\prime}=\mathcal{H}_{u} \cap \overline{\mathcal{R}(A)} \ominus \mathcal{H}_{u}^{\prime} \cap \overline{\mathcal{R}(A)},
$$

and so $\mathcal{H}_{u} \ominus \mathcal{H}_{u}^{\prime}$ reduces T to a unitary operator (by Theorem 2). But $\mathcal{H}_{u} \ominus \mathcal{H}_{u}^{\prime} \subset$ \mathcal{H}_{c}^{\prime}, hence T is also completely non unitary on $\mathcal{H}_{u} \ominus \mathcal{H}_{u}^{\prime}$. Thus, $\mathcal{H}_{u} \ominus \mathcal{H}_{u}^{\prime}=\{0\}$ that is $\mathcal{H}_{u}=\mathcal{H}_{u}^{\prime}$, and consequently $\mathcal{H}_{c}=\mathcal{H}_{c}^{\prime}$. This shows that the decomposition (6) is unique with respect to the quoted properties.

QED
4 Corollary. If T is a regular A-contraction on \mathcal{H} and A is injective, then T is a contraction on \mathcal{H} and the maximum subspace which reduces T to a unitary operator is

$$
\begin{equation*}
\mathcal{H}_{u}=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right) . \tag{7}
\end{equation*}
$$

Proof. Since $A T=A^{1 / 2} T A^{1 / 2}$ and $A^{1 / 2}$ is injective it follows that $T A^{1 / 2}=$ $A^{1 / 2} T=\widehat{T} A^{1 / 2}$, hence $T A=A T$ and $T=\widehat{T}$, that is T is a contraction on \mathcal{H}. In this case, $\mathcal{H}_{u}=\mathcal{N}_{\infty}^{*}$ has the form (7), having in view (4) and that $\mathcal{N}(A)=$ $\{0\}$.

Clearly, in the case $A=I$ every of the above corollaries just give the Nagy-Foias-Langer theorem concerning the unitary and the completely non unitary part of a contraction.

5 Corollary. Let T be an A-isometry such that T^{*} is a regular pure A contraction on \mathcal{H}. Then T is a shift on \mathcal{H}.

Proof. By Lemma 1 one has $A T=T A$ and since $T^{*} A T=A$, one obtains that $A T^{*} T=A$ on \mathcal{H}. Also, since $\mathcal{N}(A)$ reduces T^{*} to an A-isometry and T^{*} is a pure A-contraction, it follows that $\mathcal{N}(A)=\{0\}$, that is A is injective. Then the previous equality implies $T^{*} T=I$ so that T is an isometry on \mathcal{H}. On the other hand, from Theorem 2 we have that \mathcal{N}_{∞}^{*} reduces T^{*} to an A-isometry, hence $\mathcal{N}_{\infty}^{*}=\{0\}$ (having in view the hypothesis). This implies $\mathcal{H}_{u}=\{0\}$ and by Corollary 4 this means that T is completely non unitary, that is a shift on \mathcal{H}.

QED
As a consequence one obtains a version for A-isometries of the von NeumannWold decomposition $[2,10]$ for isometries.

6 Corollary. Let T be an A-isometry such that $A T=T A$. Then there exists a unique orthogonal decomposition for \mathcal{H} of the form

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{s} \tag{8}
\end{equation*}
$$

where the two subspaces reduce A and T, such that $\mathcal{N}(A) \subset \mathcal{H}_{u}$ and T is A unitary on \mathcal{H}_{u}, while T is a shift on \mathcal{H}_{s}. Moreover, \mathcal{H}_{u} is the normal part for $A^{1 / 2} T$ and we have

$$
\begin{equation*}
\mathcal{H}_{u}=\mathcal{N}(A) \oplus \mathcal{N}\left(I-S_{\widehat{T}^{*}}\right), \quad \mathcal{H}_{s}=\mathcal{N}\left(I-S_{\widehat{T}}\right) \ominus \mathcal{N}\left(I-S_{\widehat{T}^{*}}\right) \tag{9}
\end{equation*}
$$

Proof. Since T is an A-isometry one has $\mathcal{N}_{\infty}(A, T)=\mathcal{H}$, and so $\mathcal{H}_{u}=$ $\mathcal{N}_{\infty}\left(A, T^{*}\right)$ is the subspace from (6) in this case. Also, \mathcal{H}_{u} is the maximum subspace which reduces A and T on which T^{*} is an A-isometry (by Theorem 2). Hence T^{*} is a pure A-contraction on $\mathcal{H}_{s}=\mathcal{H} \ominus \mathcal{H}_{u}$, therefore T is a shift on \mathcal{H}_{s} (by Corollary 5). This gives the decomposition (8) with the required properties relative to T.

Now since T and T^{*} are A-isometries on $\mathcal{H}_{u}, \mathcal{H}_{u}$ will reduces $A^{1 / 2} T$ to a normal operator. Then applying Proposition 2.2 [9] for the regular A-contraction T^{*}, we obtain that \mathcal{H}_{u} is the maximum subspace which reduces $A^{1 / 2} T^{*}=$ $T^{*} A^{1 / 2}$ on which we have $T A T^{*}=A=T^{*} A T$. This means that \mathcal{H}_{u} is the normal part for $T^{*} A^{1 / 2}$, or equivalently for $A^{1 / 2} T$.

Clearly, $\mathcal{H}_{u}=\mathcal{N}_{\infty}^{*}$ has the form from (9) obtained in the proof of Theorem 2. On the other hand, by the same theorem T is unitary on $\mathcal{N}\left(I-S_{\widehat{T}^{*}}\right)$, hence T is an isometry on $\overline{\mathcal{R}(A)}=\mathcal{N}\left(I-S_{\widehat{T}^{*}}\right) \oplus \mathcal{H}_{s}$. This means that $\overline{\mathcal{R}(A)}=\mathcal{N}\left(I-S_{\widehat{T}}\right)$, and thus we find the form of \mathcal{H}_{s} from (9). The proof is finished.

7 Remark. Let T be as in Corollary 6. Since $A=T^{*} T A$ one has $\overline{\mathcal{R}(A)} \subset$ $\mathcal{N}\left(I-T^{*} T\right)$, hence

$$
\mathcal{H}=\mathcal{N}(A) \vee \mathcal{N}\left(I-T^{*} T\right)
$$

but the two subspaces are not orthogonal, in general. In fact, it is easy to see that $\overline{\mathcal{R}(A)}=\mathcal{N}\left(I-T^{*} T\right)$ if and only if $\mathcal{N}\left(I-T^{*} T\right)$ is invariant for T and T is completely non isometric on $\mathcal{N}(A)$.

We also remark that if $A=A^{2}$ then $A^{1 / 2} T=A T$ is an A-isometry and $A T$ commutes with A. In this case is not difficult to see that the corresponding decompositions (8) for the A-isometries T and $A T$ coincide, hence $A T$ is A unitary on \mathcal{H}_{u} and a shift on \mathcal{H}_{s}.

As an application of Theorem 2 we obtain the following
8 Corollary. Let T be a quasinormal contraction on \mathcal{H}. Then the maximum subspace which reduces T to a $T^{*} T$-unitary operator is $\mathcal{N}(T) \oplus \mathcal{N}\left(I-S_{T^{*}}\right)$, and $\mathcal{N}\left(I-S_{T^{*}}\right)$ is the maximum subspace which reduces T to a unitary operator. Hence T is $T^{*} T$-unitary on \mathcal{H} if and only if T is a normal partial isometry.

Proof. The hypothesis on T gives that T is a $T^{*} T$-contraction and T commutes with $T^{*} T$. Since $T T^{*} \leq T^{*} T$ and $\left(T^{*} T\right)^{n}=T^{* n} T^{n}$ for $n \geq 1$, it follows that $T^{n} T^{* n} \leq T^{* n} T^{n}$ and also $I-T^{* n} T^{n} \leq I-T^{n} T^{* n}$ for $n \geq 1$. This implies that $I-S_{T} \leq I-S_{T^{*}}$, whence one obtains

$$
\mathcal{N}\left(I-S_{T^{*}}\right) \subset \mathcal{N}\left(I-S_{T}\right) \subset \overline{\mathcal{R}\left(T^{*}\right)}
$$

But $\overline{\mathcal{R}\left(T^{*}\right)}$ reduces T and $\mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T_{0}^{*}}\right), \mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{T_{0}}\right)$, where $T_{0}=\left.T\right|_{\overline{\mathcal{R}\left(T^{*}\right)}}$. Thus, from Theorem 2 we infer in this case that $\mathcal{N}_{\infty}^{*}=$ $\mathcal{N}(T) \oplus \mathcal{N}\left(I-S_{T^{*}}\right)$, and this subspace and $\mathcal{N}\left(I-S_{T^{*}}\right)$ have the required properties. Clearly, T is a normal partial isometry on \mathcal{N}_{∞}^{*}, and it is easy to see that \mathcal{N}_{∞}^{*} is also the maximum subspace with this property. This fact ensures the last assertion of the corollary.

In the sequel we denote as usually $|T|=\left(T^{*} T\right)^{1 / 2}$, that is the module of T.
9 Corollary. Let T be a quasinormal contraction on \mathcal{H} with the polar decomposition $T=W|T|$. Then the normal part in \mathcal{H} for T is

$$
\mathcal{H}_{n}=\mathcal{N}(T) \oplus \mathcal{N}\left(I-S_{W^{*}}\right)
$$

where $\mathcal{N}\left(I-S_{W^{*}}\right)$ is the unitary part in \mathcal{H} for W. Also, the pure part in \mathcal{H} for T is

$$
\mathcal{H}_{p}=\mathcal{N}\left(S_{W^{*}}\right) \ominus \mathcal{N}(T)
$$

that is the shift part in $\overline{\mathcal{R}\left(T^{*}\right)}$ for W.
Proof. Since T is quasinormal, W is a quasinormal partial isometry with $\mathcal{N}(W)=\mathcal{N}(T)$ satisfying $W T^{*} T=T^{*} T W$, hence W is also a $T^{*} T$-isometry. Then by Corollary 8 the maximum reducing subspace for W and $T^{*} T$ on which W is $T^{*} T$-unitary is $\mathcal{H}_{n}=\mathcal{N}(T) \oplus \mathcal{N}\left(I-S_{W^{*}}\right)$, and by Corollary $6, \mathcal{H}_{n}$ is
also the normal part for $|T| W=T$. Since $S_{W^{*}}=S_{W^{*}}^{2}$ (W being quasinormal; see [2], [8]) one has

$$
\mathcal{H}=\mathcal{N}\left(S_{W^{*}}-S_{W^{*}}^{2}\right)=\mathcal{N}\left(S_{W^{*}}\right) \oplus \mathcal{N}\left(I-S_{W^{*}}\right)
$$

hence the pure part in \mathcal{H} for T is the subspace $\mathcal{H}_{p}=\mathcal{H} \ominus \mathcal{H}_{n}=\mathcal{N}\left(S_{W^{*}}\right) \ominus \mathcal{N}(T)$. But $\mathcal{N}\left(\underline{I-S_{W^{*}}}\right)$ is the unitary part of W, and so it follows that \mathcal{H}_{p} is the shift part in $\overline{\mathcal{R}\left(T^{*}\right)}$ for the isometry $\left.W\right|_{\overline{\mathcal{R}\left(T^{*}\right)}}$.

3 Von Neumann-Wold type decomposition for $A^{1 / 2} T$

As we remarked, the decomposition (8) gives the normal and pure subspaces for the operator $A^{1 / 2} T$ in the special case when the A-isometry T satisfies the condition $A T=T A$, these subspaces being expressed in the terms of the operators $S_{\widehat{T}}$ and $S_{\widehat{T}^{*}}$ where $\widehat{T}=\left.T\right|_{\overline{\mathcal{R}}(A)}$. More general, if instead of condition $A T=T A$ we ask $A^{1 / 2} T$ to be quasinormal, then Corollary 9 gives the above quoted subspaces in the terms of the partial isometry from the polar decomposition of $A^{1 / 2} T$. But in this last case, these subspaces can be intrinsic described in the terms of A and T, and thus we obtain a von Neumann-Wold type decomposition for $A^{1 / 2} T$, as below. Recall that a subspace $\mathcal{G} \subset \mathcal{H}$ is wandering for a sequence $\left\{S_{n}: n \geq 1\right\} \subset \mathcal{B}(\mathcal{H})$ if $S_{n} \mathcal{G} \perp S_{m} \mathcal{G}, n \neq m$.

10 Theorem. Let T be a regular A-isometry on \mathcal{H}. Then $\mathcal{L}=\mathcal{N}\left(T^{*} A^{1 / 2}\right)$ is a wandering subspace for the operators $A^{1 / 2} T^{n}(n \geq 0)$, and the maximum subspace which reduces $A^{1 / 2} T$ to a normal operator is

$$
\begin{equation*}
\mathcal{H}_{n}=\bigcap_{n=0}^{\infty}\left(T^{* n} A^{1 / 2}\right)^{-1} \mathcal{L}^{\perp} \tag{10}
\end{equation*}
$$

Moreover, \mathcal{H}_{n} is invariant for A and T, and $A^{1 / 2} T$ is a pure injective quasinormal operator on the subspace

$$
\begin{equation*}
\mathcal{H} \ominus \mathcal{H}_{n}=\bigoplus_{n=0}^{\infty} \overline{A^{1 / 2} T^{n} \mathcal{L}}=\bigvee_{n=0}^{\infty} A^{1 / 2} T^{n}(\mathcal{L} \ominus \mathcal{N}(A)) \tag{11}
\end{equation*}
$$

Proof. Let A and T be as above. It is easy to see that, because $A=T^{*} A T$, the regularity condition $A T=A^{1 / 2} T A^{1 / 2}$ is equivalent to the fact that $A^{1 / 2} T$ is quasinormal. Also we have $\left|A^{1 / 2} T\right|=A^{1 / 2}, \mathcal{N}(A)=\mathcal{N}\left(A^{1 / 2} T\right)$ and $\overline{\mathcal{R}(A)}=$ $\overline{\mathcal{R}\left(T^{*} A^{1 / 2}\right)}$.

Let $\mathcal{L}:=\mathcal{N}\left(T^{*} A^{1 / 2}\right)$. Clearly, $\mathcal{N}(A) \subset \mathcal{L}$ and \mathcal{L} reduces A because $T^{*} A^{1 / 2} A=A T^{*} A^{1 / 2}$. In fact, one has

$$
A^{1 / 2} \mathcal{L}=\mathcal{N}\left(T^{*}\right) \cap \mathcal{R}\left(A^{1 / 2}\right)=\mathcal{L} \cap \mathcal{R}\left(A^{1 / 2}\right)
$$

Let us prove that \mathcal{L} is a wandering subspace for the operators $A^{1 / 2} T^{n}, n \geq 0$, that is $A^{1 / 2} T^{n} \mathcal{L} \perp A^{1 / 2} T^{m} \mathcal{L}$ for $n \neq m$. Indeed, for $l, l^{\prime} \in \mathcal{L}$ we have if $n \geq 1$ and $m=0$,

$$
\left\langle A^{1 / 2} T^{n} l, A^{1 / 2} l^{\prime}\right\rangle=\left\langle l, T^{* n} A l^{\prime}\right\rangle=\left\langle l, T^{*(n-1)} A^{1 / 2} T^{*} A^{1 / 2} l^{\prime}\right\rangle=0
$$

and if $n, m \geq 1, m<n$, then

$$
\begin{aligned}
\left\langle A^{1 / 2} T^{n} l, A^{1 / 2} T^{m} l^{\prime}\right\rangle & =\left\langle l, T^{* n} A T^{m} l^{\prime}\right\rangle=\left\langle l, T^{*(n-m)} T^{* m} A T^{m} l^{\prime}\right\rangle \\
& =\left\langle l, T^{*(n-m)} A l^{\prime}\right\rangle=\left\langle l, T^{*(n-m-1)} A^{1 / 2} T^{*} A^{1 / 2} l^{\prime}\right\rangle \\
& =0
\end{aligned}
$$

Here we used the fact that T^{m} is also a regular A-isometry for $m \geq 1$.
Now we define the subspace

$$
\mathcal{H}_{p}:=\bigoplus_{n=0}^{\infty} \overline{A^{1 / 2} T^{n} \mathcal{L}}=\bigvee_{n=0}^{\infty} A^{1 / 2} T^{n} \mathcal{L}=\bigvee_{n=0}^{\infty} A^{1 / 2} T^{n}(\mathcal{L} \ominus \mathcal{N}(A))
$$

which is invariant for $A^{1 / 2} T^{m}(m \geq 0)$ because using the regularity condition one obtains for $n, m \geq 0$,

$$
A^{1 / 2} T^{m} A^{1 / 2} T^{n} \mathcal{L}=A T^{m+n} \mathcal{L}=A^{1 / 2} T^{m+n} A^{1 / 2} \mathcal{L} \subset A^{1 / 2} T^{m+n} \mathcal{L} \subset \mathcal{H}_{p}
$$

In particular, \mathcal{H}_{p} reduces A. Also, \mathcal{H}_{p} is invariant for $T^{* m} A^{1 / 2}, m \geq 1$. For this, firstly we remark that $T^{*} A \mathcal{L}=\{0\}$ since $A^{1 / 2} \mathcal{L} \subset \mathcal{L}$. So, if $m \geq n \geq 0$ then

$$
T^{* m} A^{1 / 2} A^{1 / 2} T^{n} \mathcal{L}=T^{* m-n} A \mathcal{L}=\{0\}
$$

and in the case $m<n$ we get

$$
\begin{gathered}
T^{* m} A^{1 / 2} A^{1 / 2} T^{n} \mathcal{L}=T^{* m} A T^{m} T^{n-m} \mathcal{L}=T^{* m} A^{1 / 2} T^{m} A^{1 / 2} T^{n-m} \mathcal{L}= \\
A T^{n-m} \mathcal{L} \subset \mathcal{H}_{p}
\end{gathered}
$$

because $T^{* m} A^{1 / 2} T^{m}=A^{1 / 2}, T$ being also a regular $A^{1 / 2}$-contraction (by Theorem $2.6[8]$). Thus it follows that \mathcal{H}_{p} reduce $A^{1 / 2} T^{n}$ for any n. Now we remark that \mathcal{H}_{p} is invariant for T^{*} because

$$
T^{*} A^{1 / 2} T^{n} \mathcal{L}=T^{*} A^{1 / 2} T T^{n-1} \mathcal{L}=A^{1 / 2} T^{n-1} \mathcal{L} \subset \mathcal{H}_{p}
$$

if $n \geq 1$, and $T^{*} A^{1 / 2} \mathcal{L}=\{0\}$ (the case $n=0$).
Next, we prove that

$$
\mathcal{H}_{q}:=\mathcal{H} \ominus \mathcal{H}_{p}=\bigcap_{n=0}^{\infty}\left(A^{1 / 2} T^{n} \mathcal{L}\right)^{\perp}
$$

is the maximum subspace which reduces $A^{1 / 2} T$ to a normal operator. First, it is easy to see that

$$
\mathcal{H}_{q}=\left\{h \in \mathcal{H}: T^{* n} A^{1 / 2} h \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}, n \geq 0\right\}=\bigcap_{n=0}^{\infty}\left(T^{* n} A^{1 / 2}\right)^{-1} \mathcal{L}^{\perp}
$$

Let D be the self-commutator of $A^{1 / 2} T$, that is

$$
D=T^{*} A T-A^{1 / 2} T T^{*} A^{1 / 2}=A^{1 / 2}\left(I-T T^{*}\right) A^{1 / 2}
$$

Clearly $D \mathcal{L} \subset A \mathcal{L} \subset \mathcal{L}$, hence \mathcal{L} is a reducing subspace for D. It is also known from Theorem 1.4 [3] that the maximum subspace which reduces $A^{1 / 2} T$ to a normal operator is

$$
\mathcal{H}_{n}=\left\{h \in \mathcal{H}: D T^{* n} A^{1 / 2} h=0, n \geq 0\right\}
$$

We will show that $\mathcal{H}_{q}=\mathcal{H}_{n}$.
Let $h \in \mathcal{H}_{q}, h=l+k$ where $l \in \mathcal{L}$ and $k \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}$. Let $\left\{h_{n}\right\} \subset \mathcal{H}$ such that $k=\lim _{n} A^{1 / 2} T h_{n}$. Then $A^{1 / 2}(h-k) \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}$ and $A^{1 / 2} l \in \mathcal{L}$, therefore $A^{1 / 2} l=0$ and $A^{1 / 2} h=A^{1 / 2} k$. Thus we obtain

$$
\begin{aligned}
& A^{1 / 2} T T^{*} A^{1 / 2} h=A^{1 / 2} T T^{*} A^{1 / 2} k=\lim _{n} A^{1 / 2} T T^{*} A^{1 / 2} A^{1 / 2} T h_{n} \\
&=\lim _{n} A^{1 / 2} T A h_{n}=\lim _{n} A A^{1 / 2} T h_{n}=A k=A h
\end{aligned}
$$

which means $D h=0$. Hence $D \mathcal{H}_{q}=\{0\}$, that is the operator $A^{1 / 2} T$ is normal on \mathcal{H}_{q}, which gives the inclusion $\mathcal{H}_{q} \subset \mathcal{H}_{n}$.

Now let $h \in \mathcal{H}_{n}$. Since $\left(A^{1 / 2} T\right)^{*} h \in \mathcal{H}_{n}$ one has $D T^{*} A^{1 / 2} h=0$, hence using the regularity condition on A and T we obtain

$$
\begin{aligned}
A T^{*} A^{1 / 2} h & =A^{1 / 2} T T^{*} A^{1 / 2} T^{*} A^{1 / 2} h=A^{1 / 2} T A^{1 / 4} T^{*} A^{1 / 2} T^{*} A^{1 / 4} h \\
& =A^{1 / 2} T A^{1 / 2} T^{* 2} A^{1 / 2} h=A T T^{* 2} A^{1 / 2} h
\end{aligned}
$$

This implies by the injectivity of $A^{1 / 2}$ on his range that

$$
T^{*} A h=A^{1 / 2} T^{*} A^{1 / 2} h=A^{1 / 2} T T^{* 2} A^{1 / 2} h \in \mathcal{R}\left(A^{1 / 2} T\right)
$$

Now using an approximation polynomial for the square root $A^{1 / 2}$ (as in [6], pg. 261), one infers that $T^{*} A^{1 / 2} h \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}$. This yields to $T^{* 2} A h=\left(T^{*} A^{1 / 2}\right)^{2} h \in$ $\overline{\mathcal{R}\left(A^{1 / 2} T\right)}$, and as above $T^{* 2} A^{1 / 2} h \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}$. Then by induction one obtains $T^{* n} A^{1 / 2} h \in \overline{\mathcal{R}\left(A^{1 / 2} T\right)}$ for any $n \geq 1$, which gives $h \in \mathcal{H}_{q}$. Therefore we have $\mathcal{H}_{n} \subset \mathcal{H}_{q}$ and finally $\mathcal{H}_{n}=\mathcal{H}_{q}$.

Consequently, \mathcal{H}_{n} has the form (11), and $\mathcal{N}(A) \subset \mathcal{H}_{n}$ because $\mathcal{N}(A) \subset \mathcal{L}$, which implies that $\mathcal{H}_{p}=\mathcal{H} \ominus \mathcal{H}_{n}$ reduces $A^{1 / 2} T$ to a pure injective quasinormal operator. The proof is finished.

Theorem 10 can be completed by the following
11 Theorem. Let T be a regular A-isometry on \mathcal{H} and V be the unique partial isometry on \mathcal{H} satisfying $V A^{1 / 2}=A^{1 / 2} T$ and $\mathcal{N}(V)=\mathcal{N}(A)$. Then the subspaces from (10) and (11) have the form

$$
\begin{equation*}
\mathcal{H}_{n}=\bigcap_{n=0}^{\infty} V^{n} \mathcal{H} \oplus \mathcal{N}(A)=\bigcap_{n=0}^{\infty} V_{0}^{n} \overline{\mathcal{R}(A)} \oplus \mathcal{N}(A) \tag{12}
\end{equation*}
$$

and respectively

$$
\begin{equation*}
\mathcal{H} \ominus \mathcal{H}_{n}=\bigoplus_{n=0}^{\infty} V^{n}\left(\mathcal{N}\left(V^{*}\right) \ominus \mathcal{N}(A)\right)=\bigoplus_{n=0}^{\infty} V_{0}^{n} \mathcal{N}\left(V_{0}^{*}\right) \tag{13}
\end{equation*}
$$

where $V_{0}=\left.V\right|_{\overline{\mathcal{R}(A)}}$ is an isometry on $\overline{\mathcal{R}(A)}$. Furthermore, we have

$$
\begin{equation*}
\mathcal{L}=\mathcal{N}\left(V^{*}\right)=\mathcal{N}\left(V_{0}^{*}\right) \oplus \mathcal{N}(A)=\left(A^{1 / 2}\right)^{-1}\left(\mathcal{N}\left(V_{0}^{*}\right)\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{A^{1 / 2} \mathcal{L}}=\mathcal{L} \cap \overline{\mathcal{R}(A)}=\mathcal{N}\left(V_{0}^{*}\right) \tag{15}
\end{equation*}
$$

In particular, one has $\mathcal{L}=\mathcal{N}\left(V_{0}^{*}\right)$ if and only if A is injective.
Proof. Let A, T, V as above. Then $A^{1 / 2} T$ is quasinormal and $A^{1 / 2} T=$ $V A^{1 / 2}$ is just the polar decomposition of $A^{1 / 2} T$ because $\left|A^{1 / 2} T\right|=A^{1 / 2}$ and $\mathcal{N}(V)=\mathcal{N}\left(A^{1 / 2} T\right)=\mathcal{N}(A)$. Also, $\mathcal{N}\left(V^{*}\right)=\mathcal{N}\left(T^{*} A^{1 / 2}\right)=\mathcal{L}$ and V commutes with $A^{1 / 2}$, hence $\mathcal{N}(A)$ reduces V. Thus for $h \in \mathcal{H}$ we have

$$
V A^{1 / 2} h=A^{1 / 2} T h=V_{0} A^{1 / 2} h
$$

therefore $\left.V\right|_{\overline{\mathcal{R}(A)}}=V_{0}$ and V_{0} is an isometry on $\overline{\mathcal{R}(A)}$ because V is a partial isometry with $\mathcal{N}(V)=\mathcal{N}(A)$. In addition one has

$$
\mathcal{N}\left(V_{0}^{*}\right)=\mathcal{N}\left(V^{*}\right) \cap \overline{\mathcal{R}(A)}=\mathcal{L} \cap \overline{\mathcal{R}(A)}
$$

or equivalently $\mathcal{L}=\mathcal{N}\left(V_{0}^{*}\right) \oplus \mathcal{N}(A)$. Also, for $h \in \mathcal{H}$ we have (T being a regular $A^{1 / 2}$-contraction)

$$
T^{*} A^{1 / 2} h=A^{1 / 4} V_{0}^{*} A^{1 / 4} h=V_{0}^{*} A^{1 / 2} h
$$

because V_{0} commutes with $\left.A^{1 / 2}\right|_{\overline{\mathcal{R}}(A)}$. Hence $h \in \mathcal{L}$ if and only if $A^{1 / 2} h \in \mathcal{N}\left(V_{0}^{*}\right)$, which gives that $\mathcal{L}=\left(A^{1 / 2}\right)^{-1} \mathcal{N}\left(V_{0}^{*}\right)$. Thus, all relations (14) and the second relation from (15) are proved.

Next, obviously one has $\overline{A^{1 / 2} \mathcal{L}} \subset \mathcal{L} \cap \overline{\mathcal{R}(A)}$. Conversely, let $h \in \mathcal{L} \cap \overline{\mathcal{R}(A)}$ such that $h \perp A^{1 / 2} \mathcal{L}$. Then $A h \in A^{1 / 2} \mathcal{L}$, so $h \perp A h$ which gives $A^{1 / 2} h=0$. Hence $h \in \overline{\mathcal{R}(A)} \cap \mathcal{N}(A)$, that is $h=0$. Thus we infer that $\overline{A^{1 / 2} \mathcal{L}}=\mathcal{L} \cap \overline{\mathcal{R}(A)}$, this being the first relation from (15).

Now, from (11) we obtain

$$
\begin{aligned}
\mathcal{H} \ominus \mathcal{H}_{n}=\bigvee_{n=0}^{\infty} A^{1 / 2} T^{n} \mathcal{L}=\bigvee_{n=0}^{\infty} & V^{n} \overline{A^{1 / 2} \mathcal{L}} \\
& =\bigoplus_{n=0}^{\infty} V^{n}\left(\mathcal{N}\left(V^{*}\right) \ominus \mathcal{N}(A)\right)=\bigoplus_{n=0}^{\infty} V_{0}^{n} \mathcal{N}\left(V_{0}^{*}\right)
\end{aligned}
$$

which give the relations (12). This shows that $\mathcal{H} \ominus \mathcal{H}_{n}$ is the shift part in $\overline{\mathcal{R}(A)}$ for the isometry V_{0}, hence we have

$$
\overline{\mathcal{R}(A)} \ominus\left(\mathcal{H} \ominus \mathcal{H}_{n}\right)=\bigcap_{n=0}^{\infty} V_{0}^{n} \overline{\mathcal{R}(A)}=\bigcap_{n=0}^{\infty} V^{n} \mathcal{H}
$$

and finally we obtain the relations (12). It is clear from (14) that $\mathcal{L}=\mathcal{N}\left(V_{0}^{*}\right)$ if and only if A is injective. This ends the proof.

According to [9], an operator $T \in \mathcal{B}(\mathcal{H})$ is called an A-weighted isometry if $T^{*} T=A$. Then we can also describe the above subspace \mathcal{H}_{n} using this concept, as follows.

12 Proposition. Let T be a regular A-isometry on \mathcal{H} and \mathcal{H}_{n} be as above. Then \mathcal{H}_{n} is the maximum subspace which reduces A and $A^{1 / 2} T$ on which $\left(A^{1 / 2} T\right)^{*}$ is an A-weighted isometry. Moreover, one has $\mathcal{H}_{n}=\mathcal{R}_{u} \oplus \mathcal{N}(A)$, where \mathcal{R}_{u} is the unitary part in $\overline{\mathcal{R}(A)}$ for V_{0}, V_{0} being as in Theorem 11. In addition, $\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}$ is an A-isometry on \mathcal{R}_{u}.

Proof. From (12) we infer $\mathcal{H}_{n}=\mathcal{R}_{u} \oplus \mathcal{N}(A)$ and as $A^{1 / 2} T$ is normal on \mathcal{H}_{n} we obtain $A^{1 / 2} T T^{*} A^{1 / 2}=A$ on \mathcal{H}_{n}, and this means that $\left(A^{1 / 2} T\right)^{*}$ is an A-weighted isometry on \mathcal{H}_{n}. Conversely, both the previous relation and the hypothesis $T^{*} A T=A$ imply that $A^{1 / 2} T$ is normal, hence any reducing subspace for A and $A^{1 / 2} T$ on which $T^{*} A^{1 / 2}$ is an A-weighted isometry is contained in \mathcal{H}_{n}. In conclusion, \mathcal{H}_{n} is the maximum subspace with the above quoted property.

Now since \mathcal{H}_{n} is invariant for T and A, \mathcal{R}_{u} will be invariant for A and $\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}$, and we prove that $\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}$ is an A-isometry on \mathcal{R}_{u}. Let $h \in \mathcal{R}_{u}$. As $\mathcal{R}_{u} \subset \overline{\mathcal{R}(A)}$ we have $h=\lim _{n} A^{1 / 2} h_{n}$ for some sequence $\left\{h_{n}\right\} \subset \mathcal{H}$. Then if P_{n} is the orthogonal projection onto \mathcal{H}_{n}, we have

$$
\begin{aligned}
& A^{1 / 2}\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*} h=A^{1 / 2} P_{n} T^{*} h=P_{n} A^{1 / 2} T^{*} h=P_{n}\left(\lim _{n} A^{1 / 2} T^{*} A^{1 / 2} h_{n}\right) \\
&=P_{n} \lim _{n} T^{*} A h_{n}=P_{n} T^{*} A^{1 / 2} h=T^{*} A^{1 / 2} h
\end{aligned}
$$

because \mathcal{H}_{n} reduces A and $A^{1 / 2} T$. Next we obtain

$$
\left\|A^{1 / 2}\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*} h\right\|^{2}=\left\|T^{*} A^{1 / 2} h\right\|^{2}=\left\langle A^{1 / 2} T T^{*} A^{1 / 2} h, h\right\rangle=\langle A h, h\rangle=\left\|A^{1 / 2} h\right\|^{2}
$$

because $A^{1 / 2} T$ is normal on \mathcal{R}_{u}. This relation just shows that the operator $\left.\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}\right|_{\mathcal{R}_{u}}$ is an $\left.A\right|_{\mathcal{R}_{u}}$-isometry on \mathcal{R}_{u}. This ends the proof.

QED
Remark from the above proof that in fact we have

$$
A^{1 / 2}\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*} h=\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*} A^{1 / 2} h \quad\left(h \in \mathcal{R}_{u}\right)
$$

that is $\left.\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}\right|_{\mathcal{R}_{u}}$ commutes with $\left.A^{1 / 2}\right|_{\mathcal{R}_{u}}$, but $\left(\left.T\right|_{\mathcal{H}_{n}}\right)^{*}$ and $\left.A^{1 / 2}\right|_{\mathcal{H}_{n}}$ are not commutative on all \mathcal{H}_{n}, in general. Concerning the commutative case we have the following proposition, where by (i) we recover the fact that the above subspace \mathcal{H}_{n} coincides with the subspace \mathcal{H}_{u} from (8), and by (ii) and (iii) we characterize the subspace $\mathcal{H}_{n} \ominus \mathcal{N}(A)$ and $\mathcal{H} \ominus \mathcal{H}_{n}$ respectively, as reducing subspaces for A and T, in \mathcal{H}.

13 Proposition. Let T be an A-isometry on \mathcal{H} such that $A T=T A$. Then the following assertions hold:
(i) \mathcal{H}_{n} is the maximum reducing subspace for A and T, on which T^{*} is an A-isometry.
(ii) $\mathcal{R}_{u}=\mathcal{H}_{n} \ominus \mathcal{N}(A)$ is the maximum subspace which reduces T to a unitary operator such that $\mathcal{R}_{u}=\overline{A \mathcal{R}_{u}}$.
(iii) $\mathcal{H}_{p}=\mathcal{H} \ominus \mathcal{H}_{n}$ is the maximum subspace which reduces T to a shift such that $\mathcal{H}_{p}=\overline{A \mathcal{H}_{p}}$.

In particular, if A is injective then T is an isometry and $\mathcal{H}=\mathcal{H}_{n} \oplus \mathcal{H}_{p}$ is the von Neumann-Wold decomposition for T.

Proof. Let V be the isometry from Theorem 11. Under the assumption $A T=T A$ we have $V A^{1 / 2}=A^{1 / 2} T=T A^{1 / 2}$, and we infer that $\left.T\right|_{\overline{\mathcal{R}(A)}}=$ $\left.V\right|_{\overline{\mathcal{R}(A)}}=V_{0}$ so that T is an isometry on $\overline{\mathcal{R}(A)}$. Hence, from Theorem 11 we have that \mathcal{R}_{u} reduces A and T such that T is unitary on \mathcal{R}_{u}, which implies that T^{*} is an A-isometry on \mathcal{H}_{n}. So, $\mathcal{H}_{n} \subset \mathcal{H}_{u}$ (the subspace from (8)) and trivially $\mathcal{H}_{u} \subset \mathcal{H}_{n}$ because $\mathcal{H}_{u} \ominus \mathcal{N}(A)$ reduces T to a normal operator. This gives the assertion (i).

Now one has $\overline{A \mathcal{R}_{u}} \subset \mathcal{R}_{u}$, and if $h \in \mathcal{R}_{u} \ominus \overline{A \mathcal{R}_{u}}$ then $A h=0$ that is $h \in \mathcal{N}(A)$, and since $\mathcal{R}_{u} \subset \overline{\mathcal{R}(A)}$ we have $h=0$. Hence $\mathcal{R}_{u}=\overline{A \mathcal{R}_{u}}$, and T is unitary on \mathcal{R}_{u}. Let $\mathcal{M} \subset \mathcal{H}$ be another subspace having the above properties of \mathcal{R}_{u}. Since
$\left.T\right|_{\mathcal{M}}$ is unitary and $T=V_{0}$ is completely non unitary on $\mathcal{H} \ominus \mathcal{H}_{n}$, it follows that $\mathcal{M} \subset \mathcal{H}_{n}$. Thus we obtain

$$
\mathcal{M}=\overline{A \mathcal{M}} \subset \overline{A \mathcal{H}_{n}}=\overline{A \mathcal{R}_{u}}=\mathcal{R}_{u}
$$

and consequently \mathcal{R}_{u} has the required properties in (ii).
Next, from Theorem 11 we have that \mathcal{H}_{p} reduces T to a shift because $T=V_{0}$ on \mathcal{H}_{p}. As \mathcal{H}_{p} also reduces A and $\mathcal{H}_{p} \subset \overline{\mathcal{R}(A)}$, one obtains (as for \mathcal{R}_{u}) that $\mathcal{H}_{p}=\overline{\mathcal{H}_{p}}$. If $\mathcal{M} \subset \mathcal{H}$ is another subspace which reduces T to a shift such that $\mathcal{M}=\overline{A \mathcal{M}}$, then $\mathcal{M} \subset \overline{\mathcal{R}(A)}$ and from the assertion (ii) it follows that $\mathcal{M} \subset \overline{\mathcal{R}(A)} \ominus \mathcal{R}_{u}=\mathcal{H}_{p}$. So \mathcal{H}_{p} has the required properties in (iii).

Clearly, if $\mathcal{N}(A)=\{0\}$ one has $T=V$, therefore T is an isometry on \mathcal{H}, while $\mathcal{H}_{n}=\mathcal{R}_{u}$ and \mathcal{H}_{p} are the unitary and shift parts in \mathcal{H} for T, respectively. The proof is finished.

As an application to quasi-isometries we have the following
14 Corollary. Let T be a quasi-isometry on \mathcal{H} such that $|T| T$ is a quasinormal operator. Then $|T| T$ is normal if and only if

$$
\mathcal{N}\left(T^{* 2} T\right)=\mathcal{N}(T)
$$

Proof. From the hypothesis we infer that T is a $T^{*} T$-isometry which is also regular because $S=|T| T$ is quasinormal. Let $T=W|T|$ be the polar decomposition of T. Then Theorem 2.1 [4] ensures that $|T| W$ is a partial isometry with $\mathcal{N}(|T| W)=\mathcal{N}(|T|)=\mathcal{N}(|S|)$. Hence $S=|T| W|T|$ is the polar decomposition of S. Now the corresponding subspace from (13) which reduce S to a pure operator is

$$
\mathcal{H}_{p}=\bigoplus_{n=0}^{\infty} S^{n}\left(\mathcal{N}\left(W^{*}|T|\right) \ominus \mathcal{N}(T)\right)
$$

But we have

$$
\mathcal{N}\left(W^{*}|T|\right)=\mathcal{N}\left(S^{*}\right)=\mathcal{N}\left(T^{*}|T|\right)=\mathcal{N}\left(T^{*}|T|^{2}\right)=\mathcal{N}\left(T^{* 2} T\right)
$$

where we used the fact that $T^{*}|T|^{2}=|T| T^{*}|T|$ (T being a regular $T^{*} T$-contraction) and that $\mathcal{N}(T)=\mathcal{N}(|T|), \mathcal{N}\left(T^{*}\right)=\mathcal{N}\left(T T^{*}\right)$. Thus we conclude that S is normal if and only if $\mathcal{H}_{p}=\{0\}$, or equivalent $\mathcal{N}\left(T^{* 2} T\right)=\mathcal{N}(T)$. QED

15 Remark. In general one has $T^{* 2} T \neq T^{*}$ even if T is a quasi-isometry and $|T| T$ is quasinormal, for instance if T is the operator on \mathbb{C}^{2} given by

$$
T=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) .
$$

But any quasi-isometry T with $\|T\|=1$ satisfies $T^{* 2} T=T^{*}$ (see [4], [9]). In this last case, the assumption that $|T| T$ is quasinormal leads to the fact that $|T| T=T$ and that $T^{*} T=\left(T^{*} T\right)^{2}$, that is T is a quasinormal partial isometry. Indeed, supposing that $|T| T$ is quasinormal, one has $T^{*} T^{2}=|T| T|T|$ because $\| T|T|=|T|$. Then with the above remark one obtains $T=|T| T|T|$, whence one infers

$$
T^{*} T=|T| T^{*}|T|^{2} T|T|=|T| T^{* 2} T^{2}|T|=|T| T^{*} T|T|=\left(T^{*} T\right)^{2} .
$$

So $T^{*} T$ is an orthogonal projection, or equivalently T is a partial isometry, and hence $T^{*} T=|T|$. Finally, it follows

$$
|T| T=T^{*} T^{2}=T
$$

therefore T is a quasinormal partial isometry.
Clearly, any quasinormal partial isometry $T \neq 0$ is a quasi-isometry with $\|T\|=1$. Having in view this fact, we obtain from Corollary 14 the following

16 Corollary. Let T be a quasinormal partial isometry. Then T is normal if and only if $\mathcal{N}(T)=\mathcal{N}\left(T^{*}\right)$.

Proof. Since T is a quasi-isometry and $\|T\|=1$ (supposing $T \neq 0$), we have $T^{*}=T^{* 2} T$ by Remark 15. Thus, if $\mathcal{N}(T)=\mathcal{N}\left(T^{*}\right)$ then $|T| T$ is normal by Corollary 14, and from above remark we find $T=|T| T$, hence T is normal. The converse assertion is trivial.

QED
This corollary can be also obtained from Theorem 2.6 [4].

References

[1] G. Cassier: Generalized Toeplitz operators, restrictions to invariant subspaces and similarity problems, Journal of Operator Theory, no. 531 (2005), 101-140.
[2] C. S. Kubrusly: An introduction to Models and Decompositions in Operator Theory, Birkhäuser, Boston, (1997).
[3] M. Martin, M. Putinar: Lectures on Hyponormal Operators, Birkháuser, Basel, (1989).
[4] S. M. Patel: A note on quasi-isometries, Glasnik Matematicki, Vol. 35 (55) (2000), 307-312.
[5] S. M. Patel: A note on quasi-isometries II, Glasnik Matematicki, Vol. 38 (58) (2003), 111-120.
[6] F. Riesz, B. Sz.-NAGY: Leģns d'analyse fonctionelle, Akadémiai Kiadó, Budapest, (1970).
[7] L. Suciu: Orthogonal decompositions induced by generalized contractions, Acta Sci. Math. (Szeged), 70 (2004), 751-765.
[8] L. Suciu: Some invariant subspaces for A-contractions and applications, Extracta Mathematicae, 21 (3) (2006), 221-247.
[9] L. Suciu: Maximum subspaces related to A-contractions and quasinormal operators, Journal of the Korean Mathematical Society, no. 145 (2008), 205-219.
[10] B.Sz.-Nagy, C. Foisş: Harmonic Analysis of Operators on Hilbert Space, Budapest-Amsterdam-London, (1970).

[^0]: ${ }^{i}$ This research was supported by the Contract CEEX 957/28.06.2005.

