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Abstract. In this paper we consider best simultaneous approximation by algebraic polyno-
mials respect to the norm

∑k
j=1 ‖fj −P‖p, 1 ≤ p < ∞. We prove an interpolation property of

the best simultaneous approximations and we study the structure of the set of cluster points
of the best simultaneous approximations on the interval [−ǫ, ǫ], as ǫ → 0.
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Introduction

Let X be the space of measurable Lebesgue real functions defined on the
interval [−1, 1]. If h ∈ X and 0 < ǫ ≤ 1 we denote

‖h‖p,ǫ =
(∫ ǫ

−ǫ
|h(x)|pdx

) 1
p

1 ≤ p <∞.

Let Πn ⊂ X be the space of polynomials of degree at most n. Given hi ∈ X,
1 ≤ i ≤ k, we consider the norm

ρp,ǫ(h1, . . . , hk) =
k∑

i=1

‖hi‖p,ǫ. (1)

We say that Pǫ ∈ Πn is a ρp,ǫ-best simultaneous approximation(ρp,ǫ-b.s.a.)
in Πn of the functions fi ∈ X, 1 ≤ i ≤ k, respect to ρp,ǫ, if

ρp,ǫ(f1 − Pǫ, . . . , fk − Pǫ) = inf
Q∈Πn

ρp,ǫ(f1 −Q, . . . , fk −Q). (2)
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In [3] the authors proved that the best approximation to 1
n

∑k
i=1 fi in Πn

with the norm ‖.‖2,ǫ are identical with the best simultaneous approximation to

{ f1, . . . , fk }, with the measure
∑k

i=1 ‖hi‖22,ǫ. In this case, there is uniqueness of
the b.s.a., however it is easy to see that if f1, f2 ∈ Πn, then any convex combi-
nation of them is a ρp,ǫ-b.s.a.. Further, even for p = 2, the previous equivalence
is not true, an example is showed in ( [4]).

We prove in this paper that if 1 < p < ∞, any ρp,ǫ-b.s.a. in Πn of two
continuous functions f and g in X, interpolates some convex combination of f
and g in at least n + 1 points. If p = 2, a similar result is obtained for ρ2,ǫ-
b.s.a. of k continuous functions. For p = 1 other necessary condition over the
ρ1,ǫ-b.s.a. of k continuous functions is established.

For 1 < p < ∞, if we assume that f and g have continuous derivatives
up to order n in a neighborhood of 0, we show that for any net of ρp,ǫ-b.s.a.
in Πn, Pǫ, ǫ → 0, there exists a subsequence which converges to some convex
combination of the Taylor’s polynomials of f and g. We get an analogous result
for k functions and p = 2.

We give an example which shows that, in general, the set of cluster points
of Pǫ, ǫ→ 0, is not unitary, even if we have uniqueness of the ρp,ǫ-b.s.a. for each
0 < ǫ.

Finally, if 1 < p <∞, k = 2, or p = 2, k ≥ 2, we prove that the set of cluster
points of Pǫ, as ǫ → 0, is a compact and convex set in Πn with the uniform
norm.

1 Interpolating of best simultaneous approximations

We recall a Lemma proved in [6].

1 Lemma. Let M be a linear subspace of X, and f ∈ X \M . Then g∗ ∈M
is a best approximation of f in M if and only if

τ+(f − g∗, g) ≥ 0,

for all g ∈M , where τ+(f, g) = limt→0+
‖f+tg‖−‖f‖

t .

Given k functions f1, . . . , fk, let Pǫ be a ρp,ǫ-b.s.a. of them. If ‖fj−Pǫ‖p,ǫ 6= 0
for all 1 ≤ j ≤ k, we consider the numbers

αj =
‖fj − Pǫ‖−1

p,ǫ∑k
i=1 ‖fi − Pǫ‖−1

p,ǫ

, 1 ≤ j ≤ k.

With this notation we have
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2 Theorem. Let f1, . . . , fk ∈ X be continuous functions and let Pǫ be a
ρp,ǫ-b.s.a. in Πn of the functions fi, 1 ≤ i ≤ k. Then
a) If p = 2, there is j, 1 ≤ j ≤ k, such that Pǫ = fj on [−ǫ, ǫ] or Pǫ interpolates∑k

j=1 αjfj in at least n+ 1 points of [−ǫ, ǫ].

b) If 1 < p <∞ and k = 2, there is j, 1 ≤ j ≤ 2, such that Pǫ = fj on [−ǫ, ǫ] or
Pǫ interpolates α1f1 +α2f2, in at least n+1 points of the interval [−ǫ, ǫ].

c) If p = 1, there is j, 1 ≤ j ≤ k, such that Pǫ = fj on a positive measure
subset of [−ǫ, ǫ], or there are at least n + 1 points xi ∈ [−ǫ, ǫ] such that∑k

j=1 sgn(fj − Pǫ)(xi) = 0.

Proof. For simplicity we omit everywhere the indexes ǫ and p.
If ‖fj−P‖ = 0 for some j the Theorem follows immediately. So, we suppose that
‖fj−P‖ 6= 0 for all j. First we assume p > 1. By a straightforward computation
and Lemma 1, we obtain

lim
t→0+

ρ((f1, . . . , fk)− (P, . . . , P ) + t(Q, . . . , Q))− ρ((f1, . . . , fk)− (P, . . . , P ))

t

= τ+(f1 − P,Q) + · · ·+ τ+(fk − P,Q) =

∫
h(x)Q(x)dx ≥ 0,

(3)

for all Q ∈ Πn, where

h(x) :=
k∑

j=1

1

‖fj − P‖p−1
|(fj − P )(x)|p−1sgn(fj − P )(x). (4)

Suppose that x0, . . . , xm ∈ [−ǫ, ǫ] are the points where the function h changes of
sign. We observe that m ≥ n. In fact, if m < n we can find a polynomial Q ∈ Πn

which changes of sign exactly in these points, so h(x)Q(x) ≤ 0 on the interval
[−ǫ, ǫ] and h(x)Q(x) < 0 on some subset of positive measure. It contradicts (3).
Henceforth we suppose h(xi) = 0, where xi ∈ [−ǫ, ǫ], 0 ≤ i ≤ n.

a) If p = 2, from (3) and (4) we get

P (xi) =
k∑

j=1

αjfj(xi), 0 ≤ i ≤ n. (5)

b) Suppose k = 2, and let x ∈ [−ǫ, ǫ] be such that h(x) = 0. If
(f − P )(x)(g − P )(x) ≥ 0, then f(x) = P (x) = g(x), while
(f − P )(x)(g − P )(x) < 0 implies P (x) = (α1f1 + α2f2)(x). Therefore, in
either case we have P (x) = (α1f1 + α2f2)(x).
In consequence, P (xi) = (α1f1 + α2f2)(xi), 0 ≤ i ≤ n. This proves b).
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c) Assume p = 1. By (3) we get

k∑

j=1

∫

{ fj 6=P }
sgn(fj − P )(x)Q(x)dx+

∫

{ fj=P }
|Q(x)|dx ≥ 0, (6)

for all Q ∈ Πn. If there is j, 1 ≤ j ≤ k, such that P = fj on a positive
measure subset, the result is obvious. Suppose that |{x ∈ [−ǫ, ǫ] | P (x) =
fj(x) }| = 0 for all 1 ≤ j ≤ k. From (6) we get

∫
h(x)Q(x)dx ≥ 0, for all

Q ∈ Πn, where

h(x) :=
k∑

j=1

sgn(fj − P )(x). (7)

By the proof of part a), there are at least n + 1 points xi such that
h(xi) = 0, 0 ≤ i ≤ n. This proves c).

QED

We recall the Newton’s divided difference formula for the interpolation poly-
nomial (see [1]): The polynomial interpolating h(x) of degree n at x0, . . . , xn is

P (x) = h(x0)+(x−x0)h[x0, x1]+ · · ·+(x−x0) . . . (x−xn−1)h[x0, . . . , xn], (8)

where h[x0, . . . , xn] denotes the nth-order Newton divided difference. Also, it is
well known that

h[x0, . . . , xm] =
h(m)(ξ)

m!
, (9)

for some ξ in the smallest interval containing x0, . . . , xm.
Henceforth we denote T (f) the Taylor’s polynomial of f at 0 of degree n.

3 Theorem. Let 1 < p < ∞ and let 0 < ǫj ≤ 1 be a sequence such that
ǫj ↓ 0. Suppose that f1, . . . , fk ∈ X are functions with continuous derivatives up
to order n and let Pǫj be a ρp,ǫ-b.s.a. in Πn of f1, . . . , fk. Then

a) If p = 2, there exist a subsequence ǫjs and γl ∈ [0, 1], 1 ≤ l ≤ k, such that∑k
l=1 γl = 1 and Pǫjs →

∑k
l=1 γlT (fl), as s→∞.

b) If k = 2, there exist a subsequence ǫjs and γ0 ∈ [0, 1] such that
Pǫjs → γ0T (f1) + (1− γ0)T (f2), as s→∞.

Here the convergence is uniform on any compact subset of R.

Proof. We only prove b), the proof of a) is analogous. Suppose that k = 2.
By Theorem 2, b), for each ǫj there exist xi = xi(ǫj) ∈ [−ǫj , ǫj ], 0 ≤ i ≤ n, such
that Pǫj interpolates hj := γjf1 + (1− γj)f2 in xi, 0 ≤ i ≤ n, where γj ∈ [0, 1].
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Since {γj} is bounded, there exists a convergent subsequence γjs . Suppose that
γjs → γ0 ∈ [0, 1] as s→∞. From (8) and (9) follows that

Pǫjs (x) = hjs(x0) + (x− x0)h(1)js (ξ(s, 1)) + · · ·

· · ·+ (x− x0) · · · (x− xn−1)
h
(n)
js

(ξ(s, n))

n!
, (10)

where ξ(s, i) ∈ [−ǫjs , ǫjs ], 1 ≤ i ≤ n, s ∈ N. Taking limit for s → ∞ in (10)
and using the continuity of the derivatives of the functions f1 and f2 we get the
Theorem. QED

Given f1, . . . , fk ∈ X we consider the set H(ρp) = H(ρp; f1, . . . , fk), defined
by

{Q ∈ Πn | ∃ a sequence of ρp,ǫm-b.s.a. to fj , 1 ≤ j ≤ k,
Pǫm → Q, as ǫm ↓ 0 }. (11)

If there exist T (f1), . . . , T (fk), we write

T (f1, . . . , fk) =





k∑

j=1

βjT (fj)
∣∣∣
k∑

j=1

βj = 1, βj ≥ 0, 1 ≤ j ≤ k



 . (12)

With this notation we immediately get the following Corollary of the Theorem
2.

4 Corollary. Let n ∈ N ∪ {0}, k ∈ N, and let f1, . . . , fk ∈ X be functions
with continuous derivatives up to order n in a neighborhood of the origin. We
have

a) ∅ 6= H(ρ2; f1, . . . , fk) ⊂ T (f1, . . . , fk).

b) If 1 < p <∞, then ∅ 6= H(ρp; f1, f2) ⊂ T (f1, f2).

2 The structure of the set H(ρp)
In this Section we study the structure of the set H(ρp). As we observe in

the Introduction, if f , g ∈ Πn then for all 0 < ǫ ≤ 1 the set of ρp,ǫ-b.s.a. is the
segment fg := {αf + (1− α)g | α ∈ [0, 1] }. So, H(ρp) = fg. Here, we will give
an example where there is uniqueness of the ρp,ǫ-b.s.a for all ǫ > 0, but the set
H(ρp) is not a unitary set.

We introduce some notation. Let 0 < a < b < c < d ≤ 1 and let f1, g1 be
bounded and even measurable Lebesgue real functions defined on [−d, d]. Set
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158 H. H. Cuenya and C. N. Rodriguez

h1(x) the linear function defined on [a, b], which joins the points (b,−b+ a+d
2 +1)

and (a, 1), and h1(x) the linear function on [c, d], which joins the points
(c,−c+ a+d

2 + 1) and (d, 1). We define two functions f and g on [−d, d] by:

f(x) =





f1(x) if x ∈ [0, a]

h1(x) if x ∈ [a, b]

−x+ a+d
2 + 1 if x ∈ [b, c]

h1(x) if x ∈ [c, d],

(13)

g(x) =

{
g1(x) if x ∈ [0, a]

0 if x ∈ [a, d],
(14)

and f(x) = f(−x), g(x) = g(−x) if x ∈ [−d, 0].
We need the following auxiliary Lemma.

5 Lemma. Let d > 0 and λ > 0. Then there are real numbers a, b, c with
0 < a < b < c < d such that any ρ2,d-b.s.a. by constants of the functions f and
g, defined by (13) and (14), is at most λ.

Proof. Let E(γ) := ‖f − γ‖d + ‖g − γ‖d, γ ≥ λ. We have

‖f − γ‖d = (

∫ a

0
2(f1 − γ)2(x)dx+

∫ b

a
2(h1(x)− γ)2dx

+

∫ c

b
2(x+

a+ d

2
+ 1− γ)2dx+

∫ d

c
2(h1(x)− γ)2dx)1/2

=: (B1(a, γ) +B2(a, b, γ) +B3(a, b, c, γ) +B4(c, γ))
1/2,

(15)

and

‖g − γ‖d =
(∫ a

0
2(g1 − γ)2(x)dx+

∫ d

a
2γ2dx

)1/2

=:
(
B5(a, γ) + 2γ2(d− a)

)1/2
.

(16)

We estimate the derivative of the error function E(γ).

E′(γ) =
1

2
(B1 +B2 +B3 +B4)

−1/2(B′
1 +B′

2 +B′
3 +B′

4)

+
1

2
(B5 + 2γ2(d− a))−1/2(B′

5 + 4γ(d− a)). (17)

Since f1 and g1 are bounded on [−d, d], it follows that f and g are uniformly
bounded, with bound independent on the values a, b and c.
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Suppose that |f(x)| ≤ Γ and |g(x)| ≤ Γ for all x ∈ [−d, d] and for all choice of a,
b and c. Therefore, the ρ2,ǫ-b.s.a. constant of f and g verifies |γ| ≤ Γ. We shall
prove that there are a, b and c such that E′(γ) > 0 for all γ ∈ [λ,Γ]. Since f1,
g1, h1, and h1 are uniformly bounded, with bound independent on the values a,
b and c, we get

lim
a→0

B1 = lim
a,b→0

B2 = lim
c→d

B4 = lim
a→0

B5 = 0, (18)

lim
a→0

B′
1 = lim

a,b→0
B′

2 = lim
c→d

B′
4 = lim

a→0
B′

5 = 0, (19)

lim
a,b→0,c→d

B3 =
d3

6
+ 2(1− γ)2d, and lim

a,b→0,c→d
B′

3 = −4(1− γ)d, (20)

uniformly on γ ∈ [λ,Γ].
From (18), (19) and (20) we get

lim
a,b→0,c→d

E′(γ) = (2d)1/2

((
d2

12
+ (1− γ)2

)−1/2

(γ − 1) + 1

)
, (21)

uniformly on γ ∈ [λ,Γ].
Consider the function S(x) = −x(A+ x2)−1/2 + 1 with A > 0. It is easy to see
that S(x) ≥ 1− (A+1)−1/2 on the interval (−∞, 1]. In fact, if x ≤ 0, S(x) ≥ 1.
If 0 < x ≤ 1, S(x) is a decreasing function and S(1) = 1 − (A + 1)−1/2. From

(21) with A = d2

12 and x = 1− γ, we obtain

lim
a,b→0,c→d

E′(γ) ≥ (2d)1/2

(
1−

(
d2

12
+ 1

)−1/2
)
, (22)

for all γ ∈ [λ,Γ].
From (22) immediately follows that there exist a, b, and c such that E′(γ) > 0,
for all γ ∈ [λ,Γ]. As a consequence any constant ρ2,d-b.s.a., say γ, of f and g
defined by (13) and (14) for those values of a, b and c, verifies γ ≤ λ. QED

6 Remark. Similarly to Lemma 5, given d > 0 and 0 < λ < 1, we can find
real numbers a, b, c with 0 < a < b < c < d such that any constant ρ2,d-b.s.a.
on the interval [−d, d] of the functions f − 1 and g+1, where f and g are given
by (13) and (14) respectively, is greater or equal than 1− λ.

The following Lemma was proved in [5], Theorem 4, (a) in a more general
way.

7 Lemma. Let 1 < p < ∞, 0 < d ≤ 1, and let f1, . . . , fk ∈ C([−d, d],R).
Then the set Sd of ρp,d-b.s.a. of fj, 1 ≤ j ≤ k, from Πn, is a unitary set or there
exists i, 1 ≤ i ≤ k−1, such that fj ∈ {αfi+1+(1−α)fi | α ≥ 1 }, i+1 ≤ j ≤ k,
fj ∈ {αfi+1 + (1− α)fi | α ≤ 0 }, 1 ≤ j ≤ i, and Sd is the segment fifi+1.

_____________________________________________________________________________________



160 H. H. Cuenya and C. N. Rodriguez

Now, we are in conditions to give the example mentioned at begin of this
Section.

8 Example. Let ǫk, ηk, ηk, δk, and δk, k ∈ N be five sequences of real
numbers satisfying

(1) ǫ1 = 1,

(2) ǫ2k < η2k−1 < η2k−1 < ǫ2k−1,

(3) ǫ2k+1 < δ2k < δ2k < ǫ2k,

(4) ǫk ↓ 0.

We consider two functions f and g defined on [−1, 1] by:

f(x) =





1 if x = 1

1 if x ∈ [ǫ2k+1, ǫ2k]

h2k−1(x) if x ∈ [ǫ2k, η2k−1]

−x+
ǫ2k+ǫ2k−1

2 + 1 if x ∈ [η2k−1, η2k−1]

h2k−1(x) if x ∈ [η2k−1, ǫ2k−1],

(23)

g(x) =





0 if x = 0

0 if x ∈ [ǫ2k, ǫ2k−1]

l2k(x) if x ∈ [ǫ2k+1, δ2k]

−x+
ǫ2k+ǫ2k+1

2 + 1 if x ∈ [δ2k, δ2k]

l2k(x) if x ∈ [δ2k, ǫ2k],

(24)

where h2k−1, h2k−1, l2k and l2k are linear functions chosen in a such way that f
and g be continuous functions on [0, 1]. Finally, we put f(x) = f(−x), g(x) =
g(−x) if x ∈ [−1, 0]. We can choose the sequences ǫk, ηk, ηk, δk, and δk, such
that any constant ρ2,ǫ2k+1

-b.s.a. is at most 1
3 , and any constant ρ2,ǫ2k -b.s.a. is

greater or equal than 2
3 . In fact, it is sufficient to apply the Lemma 5 and the

Remark 6 alternatively with d = ǫk, k ∈ N, and λ = 1
3 .

9 Remark. Since f /∈ Πn and g /∈ Πn on [−ǫ, ǫ], for all 0 < ǫ ≤ 1, the
Lemma 7 implies uniqueness of the ρ2,ǫ-b.s.a. by constants for all 0 < ǫ ≤ 1.

Next, we give the main Theorem of this Section.

10 Theorem. Let n ∈ N ∪ {0}, k ∈ N, and 1 < p < ∞. Let f1, . . . , fk ∈ X
be functions with continuous derivatives up to order n. Then H(ρ2; f1, . . . , fk)
and H(ρp; f1, f2) are convex and compact sets in Πn with the uniform norm.
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Proof. Let Pj ∈ H(ρ2; f1, . . . , fk) (Pj ∈ H(ρp; f1, f2)) be a sequence such
that Pj → P0 ∈ Πn, as j → ∞. For each j ∈ N there exists ǫj such that
‖Pǫj − Pj‖ < 1

j . We can choose ǫj such that ǫj+1 <
ǫj
2 , then ǫj → 0 and

‖Pǫj − P0‖ ≤ ‖Pǫj − Pj‖+ ‖Pj − P0‖ → 0 as j →∞.

It follows that P0 ∈ H(ρ2; f1, . . . , fk) (P0 ∈ H(ρp; f1, f2)). So, these sets are
closed.

By Corollary 4 we haveH(ρ2; f1, . . . , fk) ⊂ T (f1, . . . , fk), andH(ρp; f1, f2) ⊂
T (f1, f2). This proves that the sets are bounded, so they are compact.

Next we prove the convexity of the set H(ρp; f1, f2).
Let Sd be as in Lemma 7. If for some 0 < d ≤ 1, Sd is not unitary set,

the Lemma 7 implies that Sd = f1f2. It is easy to see that Sǫ = f1f2 for all
0 < ǫ ≤ d. So, H(ρp; f1, f2) = f1f2.

Now suppose that Sǫ is a unitary set for all 0 < ǫ ≤ 1. We write S(ǫ) = Pǫ.
The function S : (0, 1] → Πn is continuous. In fact, if 0 < aj ≤ 1, j ∈ N, is a
real number sequence such that aj → a > 0, as j → ∞, then ‖h‖p,aj → ‖h‖p,a
for all continuous function h ∈ X. Thus ρp,aj (h1, h2) → ρp,a(h1, h2), as j → ∞
for all pair of continuous functions in X. Since there exists a unique ρp,a-b.s.a.
of f1 and f2, the Polya’s algorithm, (see [2]), implies that S(aj) → S(a), as
j →∞.

Let P1, P2 ∈ H(ρp), P1 6= P2 and P3 = αP1 + (1 − α)P2, with 0 < α < 1.
By definition of H(ρp; f1, f2) there exist two sequences ǫj → 0 and ǫ′j → 0 such
that

Pǫj → P1, Pǫ′j → P2, as j →∞. (25)

Without loss generality, we can suppose that ǫ1 > ǫ′1 > ǫ2 > ǫ′2 > . . .. Let U be
a hyperplane in Πn orthogonal to the segment P1P2, with respect to the inner
product in Πn, which contains to P3, i.e.,

U = {Q+ P3 | Q ∈ Πn and Q · (P1 − P2) = 0 }.

Since U is a closed set the distance of P1 to U and the distance of P2 to U
are both positive. Thus (25) implies that there exists N such that for j > N,
S(ǫj) and S(ǫ

′
j) live in different semi-planes respect to U . Let j > N . As S(x)

is a continuous function, S((ǫ′j , ǫj)) is a connected arc set in Πn. Therefore
U ∩ S((ǫ′j , ǫj)) 6= ∅. In consequence, we can find ǫ′′j , ǫ

′
j < ǫ′′j < ǫj , such that

Pǫ′′j ∈ U . On the other hand, Theorem 3 implies that there exist a subsequence

of { ǫ′′j }, which we denote again by ǫ′′j , and 0 ≤ β ≤ 1 such that

S(ǫ′′j )→ βT (f1) + (1− β)T (f2).
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Since S(ǫ′′j ) ∈ U , j > N , and U is a closed set, then βT (f1)+ (1−β)T (f2) ∈ U .
In addition, U ∩ T (f1, f2) = {P3 }, so we get P3 = βT (f1) + (1− β)T (f2), i.e.,
P3 ∈ H(ρp; f1, f2).

The convexity ofH(ρ2; f1, . . . , fk) follows analogously. The proof is complete.
QED
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