Best Simultaneous L^p Approximation in the "Sum" Norm

Héctor H. Cuenya ⁱ

Departamento de Matematica, FCEFQyN, Universidad Nacional de Río Cuarto hcuenya@exa.unrc.edu.ar

Claudia N. Rodriguezⁱⁱ

Departamento de Matematica, FCEFQyN, Universidad Nacional de Río Cuarto crodriguez@exa.unrc.edu.ar

Received: 15/08/2007; accepted: 28/11/2007.

Abstract. In this paper we consider best simultaneous approximation by algebraic polynomials respect to the norm $\sum_{j=1}^{k} ||f_j - P||_p$, $1 \le p < \infty$. We prove an interpolation property of the best simultaneous approximations and we study the structure of the set of cluster points of the best simultaneous approximations on the interval $[-\epsilon, \epsilon]$, as $\epsilon \to 0$.

Keywords: Simultaneous approximation, Algebraic polynomials, L^p-Norm

MSC 2000 classification: primary 41A28, secondary 41A10

Introduction

Let X be the space of measurable Lebesgue real functions defined on the interval [-1, 1]. If $h \in X$ and $0 < \epsilon \leq 1$ we denote

$$||h||_{p,\epsilon} = \left(\int_{-\epsilon}^{\epsilon} |h(x)|^p dx\right)^{\frac{1}{p}} \quad 1 \le p < \infty.$$

Let $\Pi^n \subset X$ be the space of polynomials of degree at most n. Given $h_i \in X$, $1 \leq i \leq k$, we consider the norm

$$\rho_{p,\epsilon}(h_1, \dots, h_k) = \sum_{i=1}^k \|h_i\|_{p,\epsilon}.$$
 (1)

We say that $P_{\epsilon} \in \Pi^n$ is a $\rho_{p,\epsilon}$ -best simultaneous approximation($\rho_{p,\epsilon}$ -b.s.a.) in Π^n of the functions $f_i \in X$, $1 \leq i \leq k$, respect to $\rho_{p,\epsilon}$, if

$$\rho_{p,\epsilon}(f_1 - P_{\epsilon}, \dots, f_k - P_{\epsilon}) = \inf_{Q \in \Pi^n} \rho_{p,\epsilon}(f_1 - Q, \dots, f_k - Q).$$
(2)

ⁱThis work was supported by Universidad Nacional de Rio Cuarto and Conicet.

ⁱⁱThis work was supported by Universidad Nacional de Rio Cuarto.

In [3] the authors proved that the best approximation to $\frac{1}{n} \sum_{i=1}^{k} f_i$ in Π^n with the norm $\|.\|_{2,\epsilon}$ are identical with the best simultaneous approximation to $\{f_1, \ldots, f_k\}$, with the measure $\sum_{i=1}^{k} \|h_i\|_{2,\epsilon}^2$. In this case, there is uniqueness of the b.s.a., however it is easy to see that if $f_1, f_2 \in \Pi^n$, then any convex combination of them is a $\rho_{p,\epsilon}$ -b.s.a.. Further, even for p = 2, the previous equivalence is not true, an example is showed in ([4]).

We prove in this paper that if $1 , any <math>\rho_{p,\epsilon}$ -b.s.a. in Π^n of two continuous functions f and g in X, interpolates some convex combination of fand g in at least n + 1 points. If p = 2, a similar result is obtained for $\rho_{2,\epsilon}$ b.s.a. of k continuous functions. For p = 1 other necessary condition over the $\rho_{1,\epsilon}$ -b.s.a. of k continuous functions is established.

For 1 , if we assume that <math>f and g have continuous derivatives up to order n in a neighborhood of 0, we show that for any net of $\rho_{p,\epsilon}$ -b.s.a. in Π^n , P_{ϵ} , $\epsilon \to 0$, there exists a subsequence which converges to some convex combination of the Taylor's polynomials of f and g. We get an analogous result for k functions and p = 2.

We give an example which shows that, in general, the set of cluster points of P_{ϵ} , $\epsilon \to 0$, is not unitary, even if we have uniqueness of the $\rho_{p,\epsilon}$ -b.s.a. for each $0 < \epsilon$.

Finally, if 1 , <math>k = 2, or p = 2, $k \ge 2$, we prove that the set of cluster points of P_{ϵ} , as $\epsilon \to 0$, is a compact and convex set in Π^n with the uniform norm.

1 Interpolating of best simultaneous approximations

We recall a Lemma proved in [6].

1 Lemma. Let M be a linear subspace of X, and $f \in X \setminus \overline{M}$. Then $g^* \in M$ is a best approximation of f in M if and only if

$$\tau_+(f-g^*,g) \ge 0,$$

for all $g \in M$, where $\tau_+(f,g) = \lim_{t \to 0^+} \frac{\|f+tg\|-\|f\|}{t}$.

Given k functions f_1, \ldots, f_k , let P_{ϵ} be a $\rho_{p,\epsilon}$ -b.s.a. of them. If $||f_j - P_{\epsilon}||_{p,\epsilon} \neq 0$ for all $1 \leq j \leq k$, we consider the numbers

$$\alpha_j = \frac{\|f_j - P_{\epsilon}\|_{p,\epsilon}^{-1}}{\sum_{i=1}^k \|f_i - P_{\epsilon}\|_{p,\epsilon}^{-1}}, \ 1 \le j \le k.$$

With this notation we have

2 Theorem. Let $f_1, \ldots, f_k \in X$ be continuous functions and let P_{ϵ} be a $\rho_{p,\epsilon}$ -b.s.a. in Π^n of the functions $f_i, 1 \leq i \leq k$. Then

- **a)** If p = 2, there is $j, 1 \le j \le k$, such that $P_{\epsilon} = f_j$ on $[-\epsilon, \epsilon]$ or P_{ϵ} interpolates $\sum_{j=1}^{k} \alpha_j f_j$ in at least n+1 points of $[-\epsilon, \epsilon]$.
- **b)** If 1 and <math>k = 2, there is $j, 1 \le j \le 2$, such that $P_{\epsilon} = f_j$ on $[-\epsilon, \epsilon]$ or P_{ϵ} interpolates $\alpha_1 f_1 + \alpha_2 f_2$, in at least n + 1 points of the interval $[-\epsilon, \epsilon]$.
- c) If p = 1, there is $j, 1 \leq j \leq k$, such that $P_{\epsilon} = f_j$ on a positive measure subset of $[-\epsilon, \epsilon]$, or there are at least n + 1 points $x_i \in [-\epsilon, \epsilon]$ such that $\sum_{j=1}^k sgn(f_j P_{\epsilon})(x_i) = 0$.

PROOF. For simplicity we omit everywhere the indexes ϵ and p. If $||f_j - P|| = 0$ for some j the Theorem follows immediately. So, we suppose that $||f_j - P|| \neq 0$ for all j. First we assume p > 1. By a straightforward computation and Lemma 1, we obtain

$$\lim_{t \to 0^+} \frac{\rho((f_1, \dots, f_k) - (P, \dots, P) + t(Q, \dots, Q)) - \rho((f_1, \dots, f_k) - (P, \dots, P))}{t}$$
$$= \tau_+(f_1 - P, Q) + \dots + \tau_+(f_k - P, Q) = \int h(x)Q(x)dx \ge 0,$$
(3)

for all $Q \in \Pi^n$, where

$$h(x) := \sum_{j=1}^{k} \frac{1}{\|f_j - P\|^{p-1}} |(f_j - P)(x)|^{p-1} \operatorname{sgn}(f_j - P)(x).$$
(4)

Suppose that $x_0, \ldots, x_m \in [-\epsilon, \epsilon]$ are the points where the function h changes of sign. We observe that $m \ge n$. In fact, if m < n we can find a polynomial $Q \in \Pi^n$ which changes of sign exactly in these points, so $h(x)Q(x) \le 0$ on the interval $[-\epsilon, \epsilon]$ and h(x)Q(x) < 0 on some subset of positive measure. It contradicts (3). Henceforth we suppose $h(x_i) = 0$, where $x_i \in [-\epsilon, \epsilon], 0 \le i \le n$.

a) If p = 2, from (3) and (4) we get

$$P(x_i) = \sum_{j=1}^k \alpha_j f_j(x_i), \quad 0 \le i \le n.$$
(5)

b) Suppose k = 2, and let $x \in [-\epsilon, \epsilon]$ be such that h(x) = 0. If $(f - P)(x)(g - P)(x) \ge 0$, then f(x) = P(x) = g(x), while (f - P)(x)(g - P)(x) < 0 implies $P(x) = (\alpha_1 f_1 + \alpha_2 f_2)(x)$. Therefore, in either case we have $P(x) = (\alpha_1 f_1 + \alpha_2 f_2)(x)$. In consequence, $P(x_i) = (\alpha_1 f_1 + \alpha_2 f_2)(x_i), 0 \le i \le n$. This proves b). c) Assume p = 1. By (3) we get

$$\sum_{j=1}^{k} \int_{\{f_j \neq P\}} \operatorname{sgn}(f_j - P)(x)Q(x)dx + \int_{\{f_j = P\}} |Q(x)|dx \ge 0, \quad (6)$$

for all $Q \in \Pi^n$. If there is $j, 1 \leq j \leq k$, such that $P = f_j$ on a positive measure subset, the result is obvious. Suppose that $|\{x \in [-\epsilon, \epsilon] | P(x) = f_j(x)\}| = 0$ for all $1 \leq j \leq k$. From (6) we get $\int h(x)Q(x)dx \geq 0$, for all $Q \in \Pi^n$, where

$$h(x) := \sum_{j=1}^{\kappa} \operatorname{sgn}(f_j - P)(x).$$
(7)

By the proof of part a), there are at least n + 1 points x_i such that $h(x_i) = 0, 0 \le i \le n$. This proves c).

QED

We recall the Newton's divided difference formula for the interpolation polynomial (see [1]): The polynomial interpolating h(x) of degree n at x_0, \ldots, x_n is

$$P(x) = h(x_0) + (x - x_0)h[x_0, x_1] + \dots + (x - x_0)\dots(x - x_{n-1})h[x_0, \dots, x_n],$$
(8)

where $h[x_0, \ldots, x_n]$ denotes the *n*th-order Newton divided difference. Also, it is well known that

$$h[x_0, \dots, x_m] = \frac{h^{(m)}(\xi)}{m!},$$
(9)

for some ξ in the smallest interval containing x_0, \ldots, x_m .

Henceforth we denote T(f) the Taylor's polynomial of f at 0 of degree n.

3 Theorem. Let $1 and let <math>0 < \epsilon_j \leq 1$ be a sequence such that $\epsilon_j \downarrow 0$. Suppose that $f_1, \ldots, f_k \in X$ are functions with continuous derivatives up to order n and let P_{ϵ_j} be a $\rho_{p,\epsilon}$ -b.s.a. in Π^n of f_1, \ldots, f_k . Then

- **a)** If p = 2, there exist a subsequence ϵ_{j_s} and $\gamma_l \in [0,1]$, $1 \le l \le k$, such that $\sum_{l=1}^{k} \gamma_l = 1$ and $P_{\epsilon_{j_s}} \to \sum_{l=1}^{k} \gamma_l T(f_l)$, as $s \to \infty$.
- **b)** If k = 2, there exist a subsequence ϵ_{j_s} and $\gamma_0 \in [0, 1]$ such that $P_{\epsilon_{j_s}} \to \gamma_0 T(f_1) + (1 \gamma_0) T(f_2)$, as $s \to \infty$.

Here the convergence is uniform on any compact subset of \mathbb{R} .

PROOF. We only prove b), the proof of a) is analogous. Suppose that k = 2. By Theorem 2, b), for each ϵ_j there exist $x_i = x_i(\epsilon_j) \in [-\epsilon_j, \epsilon_j], 0 \le i \le n$, such that P_{ϵ_j} interpolates $h_j := \gamma_j f_1 + (1 - \gamma_j) f_2$ in $x_i, 0 \le i \le n$, where $\gamma_j \in [0, 1]$. Since $\{\gamma_j\}$ is bounded, there exists a convergent subsequence γ_{j_s} . Suppose that $\gamma_{j_s} \to \gamma_0 \in [0, 1]$ as $s \to \infty$. From (8) and (9) follows that

$$P_{\epsilon_{j_s}}(x) = h_{j_s}(x_0) + (x - x_0)h_{j_s}^{(1)}(\xi(s, 1)) + \dots$$
$$\dots + (x - x_0)\dots(x - x_{n-1})\frac{h_{j_s}^{(n)}(\xi(s, n))}{n!}, \quad (10)$$

where $\xi(s,i) \in [-\epsilon_{j_s}, \epsilon_{j_s}], 1 \leq i \leq n, s \in \mathbb{N}$. Taking limit for $s \to \infty$ in (10) and using the continuity of the derivatives of the functions f_1 and f_2 we get the Theorem.

Given $f_1, \ldots, f_k \in X$ we consider the set $\mathcal{H}(\rho_p) = \mathcal{H}(\rho_p; f_1, \ldots, f_k)$, defined by

$$\{ Q \in \Pi^n \mid \exists \text{ a sequence of } \rho_{p,\epsilon_m} \text{-b.s.a. to } f_j, 1 \le j \le k, \\ P_{\epsilon_m} \to Q, \text{ as } \epsilon_m \downarrow 0 \}.$$
(11)

If there exist $T(f_1), \ldots, T(f_k)$, we write

$$T(f_1, \dots, f_k) = \left\{ \sum_{j=1}^k \beta_j T(f_j) \Big| \sum_{j=1}^k \beta_j = 1, \beta_j \ge 0, 1 \le j \le k \right\}.$$
 (12)

With this notation we immediately get the following Corollary of the Theorem 2.

4 Corollary. Let $n \in \mathbb{N} \cup \{0\}$, $k \in \mathbb{N}$, and let $f_1, \ldots, f_k \in X$ be functions with continuous derivatives up to order n in a neighborhood of the origin. We have

- a) $\varnothing \neq \mathcal{H}(\rho_2; f_1, \ldots, f_k) \subset T(f_1, \ldots, f_k).$
- **b)** If $1 , then <math>\emptyset \neq \mathcal{H}(\rho_p; f_1, f_2) \subset T(f_1, f_2)$.

2 The structure of the set $\mathcal{H}(\rho_p)$

In this Section we study the structure of the set $\mathcal{H}(\rho_p)$. As we observe in the Introduction, if $f, g \in \Pi^n$ then for all $0 < \epsilon \leq 1$ the set of $\rho_{p,\epsilon}$ -b.s.a. is the segment $\overline{fg} := \{ \alpha f + (1 - \alpha)g \mid \alpha \in [0, 1] \}$. So, $\mathcal{H}(\rho_p) = \overline{fg}$. Here, we will give an example where there is uniqueness of the $\rho_{p,\epsilon}$ -b.s.a for all $\epsilon > 0$, but the set $\mathcal{H}(\rho_p)$ is not a unitary set.

We introduce some notation. Let $0 < a < b < c < d \leq 1$ and let f_1, g_1 be bounded and even measurable Lebesgue real functions defined on [-d, d]. Set $\overline{h_1}(x)$ the linear function defined on [a, b], which joins the points $(b, -b + \frac{a+d}{2} + 1)$ and (a, 1), and $h_1(x)$ the linear function on [c, d], which joins the points $(c, -c + \frac{a+d}{2} + 1)$ and (d, 1). We define two functions f and g on [-d, d] by:

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in [0, a] \\ \overline{h_1}(x) & \text{if } x \in [a, b] \\ -x + \frac{a+d}{2} + 1 & \text{if } x \in [b, c] \\ h_1(x) & \text{if } x \in [c, d], \end{cases}$$
(13)

$$g(x) = \begin{cases} g_1(x) & \text{if } x \in [0, a] \\ 0 & \text{if } x \in [a, d], \end{cases}$$
(14)

and f(x) = f(-x), g(x) = g(-x) if $x \in [-d, 0].$

We need the following auxiliary Lemma.

5 Lemma. Let d > 0 and $\lambda > 0$. Then there are real numbers a, b, c with 0 < a < b < c < d such that any $\rho_{2,d}$ -b.s.a. by constants of the functions f and g, defined by (13) and (14), is at most λ .

PROOF. Let $E(\gamma) := \|f - \gamma\|_d + \|g - \gamma\|_d, \ \gamma \ge \lambda$. We have

$$\|f - \gamma\|_{d} = \left(\int_{0}^{a} 2(f_{1} - \gamma)^{2}(x)dx + \int_{a}^{b} 2(\overline{h_{1}}(x) - \gamma)^{2}dx + \int_{b}^{c} 2(x + \frac{a+d}{2} + 1 - \gamma)^{2}dx + \int_{c}^{d} 2(h_{1}(x) - \gamma)^{2}dx\right)^{1/2}$$
(15)
=: $(B_{1}(a, \gamma) + B_{2}(a, b, \gamma) + B_{3}(a, b, c, \gamma) + B_{4}(c, \gamma))^{1/2},$

and

$$||g - \gamma||_d = \left(\int_0^a 2(g_1 - \gamma)^2(x)dx + \int_a^d 2\gamma^2 dx\right)^{1/2}$$

=: $\left(B_5(a, \gamma) + 2\gamma^2(d - a)\right)^{1/2}$. (16)

We estimate the derivative of the error function $E(\gamma)$.

$$E'(\gamma) = \frac{1}{2}(B_1 + B_2 + B_3 + B_4)^{-1/2}(B'_1 + B'_2 + B'_3 + B'_4) + \frac{1}{2}(B_5 + 2\gamma^2(d-a))^{-1/2}(B'_5 + 4\gamma(d-a)).$$
(17)

Since f_1 and g_1 are bounded on [-d, d], it follows that f and g are uniformly bounded, with bound independent on the values a, b and c.

Suppose that $|f(x)| \leq \Gamma$ and $|g(x)| \leq \Gamma$ for all $x \in [-d, d]$ and for all choice of a, b and c. Therefore, the $\rho_{2,\epsilon}$ -b.s.a. constant of f and g verifies $|\gamma| \leq \Gamma$. We shall prove that there are a, b and c such that $E'(\gamma) > 0$ for all $\gamma \in [\lambda, \Gamma]$. Since f_1 , g_1 , h_1 , and $\overline{h_1}$ are uniformly bounded, with bound independent on the values a, b and c, we get

$$\lim_{a \to 0} B_1 = \lim_{a, b \to 0} B_2 = \lim_{c \to d} B_4 = \lim_{a \to 0} B_5 = 0,$$
(18)

$$\lim_{a \to 0} B'_1 = \lim_{a,b \to 0} B'_2 = \lim_{c \to d} B'_4 = \lim_{a \to 0} B'_5 = 0,$$
(19)

$$\lim_{a,b\to 0,c\to d} B_3 = \frac{d^3}{6} + 2(1-\gamma)^2 d, \text{ and } \lim_{a,b\to 0,c\to d} B'_3 = -4(1-\gamma)d,$$
(20)

uniformly on $\gamma \in [\lambda, \Gamma]$. From (18), (19) and (20) we get

$$\lim_{a,b\to 0,c\to d} E'(\gamma) = (2d)^{1/2} \left(\left(\frac{d^2}{12} + (1-\gamma)^2 \right)^{-1/2} (\gamma-1) + 1 \right), \qquad (21)$$

uniformly on $\gamma \in [\lambda, \Gamma]$.

Consider the function $S(x) = -x(A+x^2)^{-1/2} + 1$ with A > 0. It is easy to see that $S(x) \ge 1 - (A+1)^{-1/2}$ on the interval $(-\infty, 1]$. In fact, if $x \le 0$, $S(x) \ge 1$. If $0 < x \le 1$, S(x) is a decreasing function and $S(1) = 1 - (A+1)^{-1/2}$. From (21) with $A = \frac{d^2}{12}$ and $x = 1 - \gamma$, we obtain

$$\lim_{a,b\to 0,c\to d} E'(\gamma) \ge (2d)^{1/2} \left(1 - \left(\frac{d^2}{12} + 1\right)^{-1/2} \right),\tag{22}$$

for all $\gamma \in [\lambda, \Gamma]$.

From (22) immediately follows that there exist a, b, and c such that $E'(\gamma) > 0$, for all $\gamma \in [\lambda, \Gamma]$. As a consequence any constant $\rho_{2,d}$ -b.s.a., say γ , of f and gdefined by (13) and (14) for those values of a, b and c, verifies $\gamma \leq \lambda$.

6 Remark. Similarly to Lemma 5, given d > 0 and $0 < \lambda < 1$, we can find real numbers a, b, c with 0 < a < b < c < d such that any constant $\rho_{2,d}$ -b.s.a. on the interval [-d, d] of the functions f - 1 and g + 1, where f and g are given by (13) and (14) respectively, is greater or equal than $1 - \lambda$.

The following Lemma was proved in [5], Theorem 4, (a) in a more general way.

7 Lemma. Let $1 , <math>0 < d \leq 1$, and let $f_1, \ldots, f_k \in \mathcal{C}([-d, d], \mathbb{R})$. Then the set S_d of $\rho_{p,d}$ -b.s.a. of f_j , $1 \leq j \leq k$, from Π^n , is a unitary set or there exists $i, 1 \leq i \leq k-1$, such that $f_j \in \{ \alpha f_{i+1} + (1-\alpha)f_i \mid \alpha \geq 1 \}, i+1 \leq j \leq k$, $f_j \in \{ \alpha f_{i+1} + (1-\alpha)f_i \mid \alpha \leq 0 \}, 1 \leq j \leq i$, and S_d is the segment $\overline{f_i f_{i+1}}$. Now, we are in conditions to give the example mentioned at begin of this Section.

8 Example. Let ϵ_k , η_k , $\overline{\eta}_k$, δ_k , and $\overline{\delta}_k$, $k \in \mathbb{N}$ be five sequences of real numbers satisfying

- (1) $\epsilon_1 = 1$,
- $(2) \ \epsilon_{2k} < \overline{\eta}_{2k-1} < \eta_{2k-1} < \epsilon_{2k-1},$
- (3) $\epsilon_{2k+1} < \overline{\delta}_{2k} < \delta_{2k} < \epsilon_{2k}$,
- (4) $\epsilon_k \downarrow 0$.

We consider two functions f and g defined on [-1, 1] by:

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 1 & \text{if } x \in [\epsilon_{2k+1}, \epsilon_{2k}] \\ \overline{h}_{2k-1}(x) & \text{if } x \in [\epsilon_{2k}, \overline{\eta}_{2k-1}] \\ -x + \frac{\epsilon_{2k} + \epsilon_{2k-1}}{2} + 1 & \text{if } x \in [\overline{\eta}_{2k-1}, \eta_{2k-1}] \\ h_{2k-1}(x) & \text{if } x \in [\eta_{2k-1}, \epsilon_{2k-1}], \end{cases}$$
(23)
$$g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 0 & \text{if } x \in [\epsilon_{2k}, \epsilon_{2k-1}] \\ \overline{l}_{2k}(x) & \text{if } x \in [\epsilon_{2k+1}, \overline{\delta}_{2k}] \\ -x + \frac{\epsilon_{2k} + \epsilon_{2k+1}}{2} + 1 & \text{if } x \in [\overline{\delta}_{2k}, \delta_{2k}] \\ l_{2k}(x) & \text{if } x \in [\delta_{2k}, \epsilon_{2k}], \end{cases}$$
(24)

where h_{2k-1} , \overline{h}_{2k-1} , l_{2k} and \overline{l}_{2k} are linear functions chosen in a such way that fand g be continuous functions on [0, 1]. Finally, we put f(x) = f(-x), g(x) = g(-x) if $x \in [-1, 0]$. We can choose the sequences ϵ_k , η_k , $\overline{\eta}_k$, δ_k , and $\overline{\delta}_k$, such that any constant $\rho_{2,\epsilon_{2k+1}}$ -b.s.a. is at most $\frac{1}{3}$, and any constant $\rho_{2,\epsilon_{2k}}$ -b.s.a. is greater or equal than $\frac{2}{3}$. In fact, it is sufficient to apply the Lemma 5 and the Remark 6 alternatively with $d = \epsilon_k$, $k \in \mathbb{N}$, and $\lambda = \frac{1}{3}$.

9 Remark. Since $f \notin \Pi^n$ and $g \notin \Pi^n$ on $[-\epsilon, \epsilon]$, for all $0 < \epsilon \le 1$, the Lemma 7 implies uniqueness of the $\rho_{2,\epsilon}$ -b.s.a. by constants for all $0 < \epsilon \le 1$.

Next, we give the main Theorem of this Section.

10 Theorem. Let $n \in \mathbb{N} \cup \{0\}$, $k \in \mathbb{N}$, and $1 . Let <math>f_1, \ldots, f_k \in X$ be functions with continuous derivatives up to order n. Then $\mathcal{H}(\rho_2; f_1, \ldots, f_k)$ and $\mathcal{H}(\rho_p; f_1, f_2)$ are convex and compact sets in Π^n with the uniform norm.

PROOF. Let $P_j \in \mathcal{H}(\rho_2; f_1, \ldots, f_k)$ $(P_j \in \mathcal{H}(\rho_p; f_1, f_2))$ be a sequence such that $P_j \to P_0 \in \Pi^n$, as $j \to \infty$. For each $j \in \mathbb{N}$ there exists ϵ_j such that $\|P_{\epsilon_j} - P_j\| < \frac{1}{j}$. We can choose ϵ_j such that $\epsilon_{j+1} < \frac{\epsilon_j}{2}$, then $\epsilon_j \to 0$ and

$$||P_{\epsilon_j} - P_0|| \le ||P_{\epsilon_j} - P_j|| + ||P_j - P_0|| \to 0 \text{ as } j \to \infty.$$

It follows that $P_0 \in \mathcal{H}(\rho_2; f_1, \ldots, f_k)$ $(P_0 \in \mathcal{H}(\rho_p; f_1, f_2))$. So, these sets are closed.

By Corollary 4 we have $\mathcal{H}(\rho_2; f_1, \ldots, f_k) \subset T(f_1, \ldots, f_k)$, and $\mathcal{H}(\rho_p; f_1, f_2) \subset T(f_1, f_2)$. This proves that the sets are bounded, so they are compact.

Next we prove the convexity of the set $\mathcal{H}(\rho_p; f_1, f_2)$.

Let S_d be as in Lemma 7. If for some $0 < d \leq 1$, S_d is not unitary set, the Lemma 7 implies that $S_d = \overline{f_1 f_2}$. It is easy to see that $S_{\epsilon} = \overline{f_1 f_2}$ for all $0 < \epsilon \leq d$. So, $\mathcal{H}(\rho_p; f_1, f_2) = \overline{f_1 f_2}$.

Now suppose that S_{ϵ} is a unitary set for all $0 < \epsilon \leq 1$. We write $S(\epsilon) = P_{\epsilon}$. The function $S: (0,1] \to \Pi^n$ is continuous. In fact, if $0 < a_j \leq 1, j \in \mathbb{N}$, is a real number sequence such that $a_j \to a > 0$, as $j \to \infty$, then $\|h\|_{p,a_j} \to \|h\|_{p,a_j}$ for all continuous function $h \in X$. Thus $\rho_{p,a_j}(h_1, h_2) \to \rho_{p,a}(h_1, h_2)$, as $j \to \infty$ for all pair of continuous functions in X. Since there exists a unique $\rho_{p,a}$ -b.s.a. of f_1 and f_2 , the Polya's algorithm, (see [2]), implies that $S(a_j) \to S(a)$, as $j \to \infty$.

Let $P_1, P_2 \in \mathcal{H}(\rho_p), P_1 \neq P_2$ and $P_3 = \alpha P_1 + (1 - \alpha)P_2$, with $0 < \alpha < 1$. By definition of $\mathcal{H}(\rho_p; f_1, f_2)$ there exist two sequences $\epsilon_j \to 0$ and $\epsilon'_j \to 0$ such that

$$P_{\epsilon_j} \to P_1, \ P_{\epsilon'_i} \to P_2, \text{as } j \to \infty.$$
 (25)

Without loss generality, we can suppose that $\epsilon_1 > \epsilon'_1 > \epsilon_2 > \epsilon'_2 > \ldots$ Let U be a hyperplane in Π^n orthogonal to the segment $\overline{P_1P_2}$, with respect to the inner product in Π^n , which contains to P_3 , i.e.,

$$U = \{ Q + P_3 \mid Q \in \Pi^n \text{ and } Q \cdot (P_1 - P_2) = 0 \}.$$

Since U is a closed set the distance of P_1 to U and the distance of P_2 to U are both positive. Thus (25) implies that there exists N such that for j > N, $S(\epsilon_j)$ and $S(\epsilon'_j)$ live in different semi-planes respect to U. Let j > N. As S(x) is a continuous function, $S((\epsilon'_j, \epsilon_j))$ is a connected arc set in Π^n . Therefore $U \cap S((\epsilon'_j, \epsilon_j)) \neq \emptyset$. In consequence, we can find ϵ''_j , $\epsilon'_j < \epsilon''_j < \epsilon_j$, such that $P_{\epsilon''_j} \in U$. On the other hand, Theorem 3 implies that there exist a subsequence of $\{\epsilon''_i\}$, which we denote again by ϵ''_i , and $0 \leq \beta \leq 1$ such that

$$S(\epsilon_i'') \rightarrow \beta T(f_1) + (1-\beta)T(f_2).$$

Since $S(\epsilon_j'') \in U$, j > N, and U is a closed set, then $\beta T(f_1) + (1 - \beta)T(f_2) \in U$. In addition, $U \cap T(f_1, f_2) = \{P_3\}$, so we get $P_3 = \beta T(f_1) + (1 - \beta)T(f_2)$, i.e., $P_3 \in \mathcal{H}(\rho_p; f_1, f_2)$.

The convexity of $\mathcal{H}(\rho_2; f_1, \ldots, f_k)$ follows analogously. The proof is complete. [QED]

References

- E.K. ATKINSON: An Introduction To Numerical Analysis, J ohn Wiley and Sons. Second edition, Singapore, (1989).
- [2] M.A. GRIESEL: A Generalized Pólya Algorithm, J. Aprox. Theory, 12 (1974), 160–164.
- [3] A.S.V. HOLLAND AND B.N. SAHNEY: Some Remarks On Best Simultaneous Approximation, Theory Approx. Proc. Conf. Calgary (1975), (1976), 332–337.
- [4] Y. KARAKUS: On Simultaneous Approximation, Note Mat., 21 (2002), 71–76.
- [5] P.D. MILMAN: On Best Simultaneous Approximation in Normed Linear Spaces, J. Approx. Theory, 20 (1977), 223–238.
- [6] A. PINKUS: On L^1 Approximation, Cambridge Tracts In Mathematics, 93, (1988).