Best Simultaneous L^{p} Approximation in the "Sum" Norm

Héctor H. Cuenya ${ }^{\text {i }}$
Departamento de Matematica, FCEFQyN, Universidad Nacional de Río Cuarto
hcuenya@exa.unrc.edu.ar

Claudia N. Rodriguez ${ }^{\text {ii }}$
Departamento de Matematica,FCEFQyN, Universidad Nacional de Río Cuarto
crodriguez@exa.unrc.edu.ar

Received: 15/08/2007; accepted: 28/11/2007.

Abstract

In this paper we consider best simultaneous approximation by algebraic polynomials respect to the norm $\sum_{j=1}^{k}\left\|f_{j}-P\right\|_{p}, 1 \leq p<\infty$. We prove an interpolation property of the best simultaneous approximations and we study the structure of the set of cluster points of the best simultaneous approximations on the interval $[-\epsilon, \epsilon]$, as $\epsilon \rightarrow 0$.

Keywords: Simultaneous approximation, Algebraic polynomials, L^{p}-Norm
MSC 2000 classification: primary 41A28, secondary 41A10

Introduction

Let X be the space of measurable Lebesgue real functions defined on the interval $[-1,1]$. If $h \in X$ and $0<\epsilon \leq 1$ we denote

$$
\|h\|_{p, \epsilon}=\left(\int_{-\epsilon}^{\epsilon}|h(x)|^{p} d x\right)^{\frac{1}{p}} \quad 1 \leq p<\infty
$$

Let $\Pi^{n} \subset X$ be the space of polynomials of degree at most n. Given $h_{i} \in X$, $1 \leq i \leq k$, we consider the norm

$$
\begin{equation*}
\rho_{p, \epsilon}\left(h_{1}, \ldots, h_{k}\right)=\sum_{i=1}^{k}\left\|h_{i}\right\|_{p, \epsilon} \tag{1}
\end{equation*}
$$

We say that $P_{\epsilon} \in \Pi^{n}$ is a $\rho_{p, \epsilon}$-best simultaneous approximation($\rho_{p, \epsilon}$-b.s.a.) in Π^{n} of the functions $f_{i} \in X, 1 \leq i \leq k$, respect to $\rho_{p, \epsilon}$, if

$$
\begin{equation*}
\rho_{p, \epsilon}\left(f_{1}-P_{\epsilon}, \ldots, f_{k}-P_{\epsilon}\right)=\inf _{Q \in \Pi^{n}} \rho_{p, \epsilon}\left(f_{1}-Q, \ldots, f_{k}-Q\right) \tag{2}
\end{equation*}
$$

[^0]In [3] the authors proved that the best approximation to $\frac{1}{n} \sum_{i=1}^{k} f_{i}$ in Π^{n} with the norm $\|.\|_{2, \epsilon}$ are identical with the best simultaneous approximation to $\left\{f_{1}, \ldots, f_{k}\right\}$, with the measure $\sum_{i=1}^{k}\left\|h_{i}\right\|_{2, \epsilon}^{2}$. In this case, there is uniqueness of the b.s.a., however it is easy to see that if $f_{1}, f_{2} \in \Pi^{n}$, then any convex combination of them is a $\rho_{p, \epsilon}$-b.s.a.. Further, even for $p=2$, the previous equivalence is not true, an example is showed in ([4]).

We prove in this paper that if $1<p<\infty$, any $\rho_{p, \epsilon}$ - b.s.a. in Π^{n} of two continuous functions f and g in X, interpolates some convex combination of f and g in at least $n+1$ points. If $p=2$, a similar result is obtained for $\rho_{2, \epsilon^{-}}$ b.s.a. of k continuous functions. For $p=1$ other necessary condition over the $\rho_{1, \epsilon^{-}}$b.s.a. of k continuous functions is established.

For $1<p<\infty$, if we assume that f and g have continuous derivatives up to order n in a neighborhood of 0 , we show that for any net of $\rho_{p, \epsilon}$-b.s.a. in $\Pi^{n}, P_{\epsilon}, \epsilon \rightarrow 0$, there exists a subsequence which converges to some convex combination of the Taylor's polynomials of f and g. We get an analogous result for k functions and $p=2$.

We give an example which shows that, in general, the set of cluster points of $P_{\epsilon}, \epsilon \rightarrow 0$, is not unitary, even if we have uniqueness of the $\rho_{p, \epsilon}$-b.s.a. for each $0<\epsilon$.

Finally, if $1<p<\infty, k=2$, or $p=2, k \geq 2$, we prove that the set of cluster points of P_{ϵ}, as $\epsilon \rightarrow 0$, is a compact and convex set in Π^{n} with the uniform norm.

1 Interpolating of best simultaneous approximations

We recall a Lemma proved in [6].
1 Lemma. Let M be a linear subspace of X, and $f \in X \backslash \bar{M}$. Then $g^{*} \in M$ is a best approximation of f in M if and only if

$$
\tau_{+}\left(f-g^{*}, g\right) \geq 0
$$

for all $g \in M$, where $\tau_{+}(f, g)=\lim _{t \rightarrow 0^{+}} \frac{\|f+t g\|-\|f\|}{t}$.
Given k functions f_{1}, \ldots, f_{k}, let P_{ϵ} be a $\rho_{p, \epsilon}$-b.s.a. of them. If $\left\|f_{j}-P_{\epsilon}\right\|_{p, \epsilon} \neq 0$ for all $1 \leq j \leq k$, we consider the numbers

$$
\alpha_{j}=\frac{\left\|f_{j}-P_{\epsilon}\right\|_{p, \epsilon}^{-1}}{\sum_{i=1}^{k}\left\|f_{i}-P_{\epsilon}\right\|_{p, \epsilon}^{-1}}, 1 \leq j \leq k .
$$

With this notation we have

2 Theorem. Let $f_{1}, \ldots, f_{k} \in X$ be continuous functions and let P_{ϵ} be a $\rho_{p, \epsilon}-$ b.s.a. in Π^{n} of the functions $f_{i}, 1 \leq i \leq k$. Then
a) If $p=2$, there is $j, 1 \leq j \leq k$, such that $P_{\epsilon}=f_{j}$ on $[-\epsilon, \epsilon]$ or P_{ϵ} interpolates $\sum_{j=1}^{k} \alpha_{j} f_{j}$ in at least $n+1$ points of $[-\epsilon, \epsilon]$.
b) If $1<p<\infty$ and $k=2$, there is $j, 1 \leq j \leq 2$, such that $P_{\epsilon}=f_{j}$ on $[-\epsilon, \epsilon]$ or P_{ϵ} interpolates $\alpha_{1} f_{1}+\alpha_{2} f_{2}$, in at least $n+1$ points of the interval $[-\epsilon, \epsilon]$.
c) If $p=1$, there is $j, 1 \leq j \leq k$, such that $P_{\epsilon}=f_{j}$ on a positive measure subset of $[-\epsilon, \epsilon]$, or there are at least $n+1$ points $x_{i} \in[-\epsilon, \epsilon]$ such that $\sum_{j=1}^{k} \operatorname{sgn}\left(f_{j}-P_{\epsilon}\right)\left(x_{i}\right)=0$.
Proof. For simplicity we omit everywhere the indexes ϵ and p.
If $\left\|f_{j}-P\right\|=0$ for some j the Theorem follows immediately. So, we suppose that $\left\|f_{j}-P\right\| \neq 0$ for all j. First we assume $p>1$. By a straightforward computation and Lemma 1, we obtain

$$
\begin{array}{r}
\lim _{t \rightarrow 0^{+}} \frac{\rho\left(\left(f_{1}, \ldots, f_{k}\right)-(P, \ldots, P)+t(Q, \ldots, Q)\right)-\rho\left(\left(f_{1}, \ldots, f_{k}\right)-(P, \ldots, P)\right)}{t} \\
=\tau_{+}\left(f_{1}-P, Q\right)+\cdots+\tau_{+}\left(f_{k}-P, Q\right)=\int h(x) Q(x) d x \geq 0 \tag{3}
\end{array}
$$

for all $Q \in \Pi^{n}$, where

$$
\begin{equation*}
h(x):=\sum_{j=1}^{k} \frac{1}{\left\|f_{j}-P\right\|^{p-1}}\left|\left(f_{j}-P\right)(x)\right|^{p-1} \operatorname{sgn}\left(f_{j}-P\right)(x) . \tag{4}
\end{equation*}
$$

Suppose that $x_{0}, \ldots, x_{m} \in[-\epsilon, \epsilon]$ are the points where the function h changes of sign. We observe that $m \geq n$. In fact, if $m<n$ we can find a polynomial $Q \in \Pi^{n}$ which changes of sign exactly in these points, so $h(x) Q(x) \leq 0$ on the interval $[-\epsilon, \epsilon]$ and $h(x) Q(x)<0$ on some subset of positive measure. It contradicts (3). Henceforth we suppose $h\left(x_{i}\right)=0$, where $x_{i} \in[-\epsilon, \epsilon], 0 \leq i \leq n$.
a) If $p=2$, from (3) and (4) we get

$$
\begin{equation*}
P\left(x_{i}\right)=\sum_{j=1}^{k} \alpha_{j} f_{j}\left(x_{i}\right), \quad 0 \leq i \leq n . \tag{5}
\end{equation*}
$$

b) Suppose $k=2$, and let $x \in[-\epsilon, \epsilon]$ be such that $h(x)=0$. If $(f-P)(x)(g-P)(x) \geq 0$, then $f(x)=P(x)=g(x)$, while $(f-P)(x)(g-P)(x)<0$ implies $P(x)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)$. Therefore, in either case we have $P(x)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)$.
In consequence, $P\left(x_{i}\right)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)\left(x_{i}\right), 0 \leq i \leq n$. This proves b).
c) Assume $p=1$. By (3) we get

$$
\begin{equation*}
\sum_{j=1}^{k} \int_{\left\{f_{j} \neq P\right\}} \operatorname{sgn}\left(f_{j}-P\right)(x) Q(x) d x+\int_{\left\{f_{j}=P\right\}}|Q(x)| d x \geq 0 \tag{6}
\end{equation*}
$$

for all $Q \in \Pi^{n}$. If there is $j, 1 \leq j \leq k$, such that $P=f_{j}$ on a positive measure subset, the result is obvious. Suppose that $\mid\{x \in[-\epsilon, \epsilon] \mid P(x)=$ $\left.f_{j}(x)\right\} \mid=0$ for all $1 \leq j \leq k$. From (6) we get $\int h(x) Q(x) d x \geq 0$, for all $Q \in \Pi^{n}$, where

$$
\begin{equation*}
h(x):=\sum_{j=1}^{k} \operatorname{sgn}\left(f_{j}-P\right)(x) \tag{7}
\end{equation*}
$$

By the proof of part a), there are at least $n+1$ points x_{i} such that $h\left(x_{i}\right)=0,0 \leq i \leq n$. This proves c) .

We recall the Newton's divided difference formula for the interpolation polynomial (see [1]): The polynomial interpolating $h(x)$ of degree n at x_{0}, \ldots, x_{n} is

$$
\begin{equation*}
P(x)=h\left(x_{0}\right)+\left(x-x_{0}\right) h\left[x_{0}, x_{1}\right]+\cdots+\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right) h\left[x_{0}, \ldots, x_{n}\right] \tag{8}
\end{equation*}
$$

where $h\left[x_{0}, \ldots, x_{n}\right]$ denotes the n th-order Newton divided difference. Also, it is well known that

$$
\begin{equation*}
h\left[x_{0}, \ldots, x_{m}\right]=\frac{h^{(m)}(\xi)}{m!} \tag{9}
\end{equation*}
$$

for some ξ in the smallest interval containing x_{0}, \ldots, x_{m}.
Henceforth we denote $T(f)$ the Taylor's polynomial of f at 0 of degree n.
3 Theorem. Let $1<p<\infty$ and let $0<\epsilon_{j} \leq 1$ be a sequence such that $\epsilon_{j} \downarrow 0$. Suppose that $f_{1}, \ldots, f_{k} \in X$ are functions with continuous derivatives up to order n and let $P_{\epsilon_{j}}$ be a $\rho_{p, \epsilon}$-b.s.a. in Π^{n} of f_{1}, \ldots, f_{k}. Then
a) If $p=2$, there exist a subsequence $\epsilon_{j_{s}}$ and $\gamma_{l} \in[0,1], 1 \leq l \leq k$, such that $\sum_{l=1}^{k} \gamma_{l}=1$ and $P_{\epsilon_{j_{s}}} \rightarrow \sum_{l=1}^{k} \gamma_{l} T\left(f_{l}\right)$, as $s \rightarrow \infty$.
b) If $k=2$, there exist a subsequence $\epsilon_{j_{s}}$ and $\gamma_{0} \in[0,1]$ such that

$$
P_{\epsilon_{j_{s}}} \rightarrow \gamma_{0} T\left(f_{1}\right)+\left(1-\gamma_{0}\right) T\left(f_{2}\right), \text { as } s \rightarrow \infty
$$

Here the convergence is uniform on any compact subset of \mathbb{R}.
Proof. We only prove b), the proof of a) is analogous. Suppose that $k=2$. By Theorem 2, b), for each ϵ_{j} there exist $x_{i}=x_{i}\left(\epsilon_{j}\right) \in\left[-\epsilon_{j}, \epsilon_{j}\right], 0 \leq i \leq n$, such that $P_{\epsilon_{j}}$ interpolates $h_{j}:=\gamma_{j} f_{1}+\left(1-\gamma_{j}\right) f_{2}$ in $x_{i}, 0 \leq i \leq n$, where $\gamma_{j} \in[0,1]$.

Since $\left\{\gamma_{j}\right\}$ is bounded, there exists a convergent subsequence $\gamma_{j_{s}}$. Suppose that $\gamma_{j_{s}} \rightarrow \gamma_{0} \in[0,1]$ as $s \rightarrow \infty$. From (8) and (9) follows that

$$
\begin{align*}
P_{\epsilon_{j_{s}}}(x)=h_{j_{s}}\left(x_{0}\right)+\left(x-x_{0}\right) h_{j_{s}}^{(1)}(\xi(s, 1))+\cdots & \\
& \cdots+\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right) \frac{h_{j_{s}}^{(n)}(\xi(s, n))}{n!}, \tag{10}
\end{align*}
$$

where $\xi(s, i) \in\left[-\epsilon_{j_{s}}, \epsilon_{j_{s}}\right], 1 \leq i \leq n, s \in \mathbb{N}$. Taking limit for $s \rightarrow \infty$ in (10) and using the continuity of the derivatives of the functions f_{1} and f_{2} we get the Theorem.

Given $f_{1}, \ldots, f_{k} \in X$ we consider the set $\mathcal{H}\left(\rho_{p}\right)=\mathcal{H}\left(\rho_{p} ; f_{1}, \ldots, f_{k}\right)$, defined by

$$
\begin{align*}
& \left\{Q \in \Pi^{n} \mid \exists \text { a sequence of } \rho_{p, \epsilon_{m}} \text {-b.s.a. to } f_{j}, 1 \leq j \leq k,\right. \\
& \left.P_{\epsilon_{m}} \rightarrow Q \text {, as } \epsilon_{m} \downarrow 0\right\} . \tag{11}
\end{align*}
$$

If there exist $T\left(f_{1}\right), \ldots, T\left(f_{k}\right)$, we write

$$
\begin{equation*}
T\left(f_{1}, \ldots, f_{k}\right)=\left\{\sum_{j=1}^{k} \beta_{j} T\left(f_{j}\right) \mid \sum_{j=1}^{k} \beta_{j}=1, \beta_{j} \geq 0,1 \leq j \leq k\right\} . \tag{12}
\end{equation*}
$$

With this notation we immediately get the following Corollary of the Theorem 2.

4 Corollary. Let $n \in \mathbb{N} \cup\{0\}, k \in \mathbb{N}$, and let $f_{1}, \ldots, f_{k} \in X$ be functions with continuous derivatives up to order n in a neighborhood of the origin. We have
a) $\varnothing \neq \mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right) \subset T\left(f_{1}, \ldots, f_{k}\right)$.
b) If $1<p<\infty$, then $\varnothing \neq \mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right) \subset T\left(f_{1}, f_{2}\right)$.

2 The structure of the set $\mathcal{H}\left(\rho_{p}\right)$

In this Section we study the structure of the set $\mathcal{H}\left(\rho_{p}\right)$. As we observe in the Introduction, if $f, g \in \Pi^{n}$ then for all $0<\epsilon \leq 1$ the set of $\rho_{p, \epsilon}$-b.s.a. is the segment $\overline{f g}:=\{\alpha f+(1-\alpha) g \mid \alpha \in[0,1]\}$. So, $\mathcal{H}\left(\rho_{p}\right)=\overline{f g}$. Here, we will give an example where there is uniqueness of the $\rho_{p, \epsilon^{-}}$-b.s.a for all $\epsilon>0$, but the set $\mathcal{H}\left(\rho_{p}\right)$ is not a unitary set.

We introduce some notation. Let $0<a<b<c<d \leq 1$ and let f_{1}, g_{1} be bounded and even measurable Lebesgue real functions defined on $[-d, d]$. Set
$\overline{h_{1}}(x)$ the linear function defined on $[a, b]$, which joins the points $\left(b,-b+\frac{a+d}{2}+1\right)$ and $(a, 1)$, and $h_{1}(x)$ the linear function on $[c, d]$, which joins the points $\left(c,-c+\frac{a+d}{2}+1\right)$ and $(d, 1)$. We define two functions f and g on $[-d, d]$ by:

$$
\begin{gather*}
f(x)= \begin{cases}f_{1}(x) & \text { if } x \in[0, a] \\
\overline{h_{1}}(x) & \text { if } x \in[a, b] \\
-x+\frac{a+d}{2}+1 & \text { if } x \in[b, c] \\
h_{1}(x) & \text { if } x \in[c, d]\end{cases} \tag{13}\\
g(x)= \begin{cases}g_{1}(x) & \text { if } x \in[0, a] \\
0 & \text { if } x \in[a, d]\end{cases} \tag{14}
\end{gather*}
$$

and $f(x)=f(-x), g(x)=g(-x)$ if $x \in[-d, 0]$.
We need the following auxiliary Lemma.
5 Lemma. Let $d>0$ and $\lambda>0$. Then there are real numbers a, b, c with $0<a<b<c<d$ such that any $\rho_{2, d^{-}}$b.s.a. by constants of the functions f and g, defined by (13) and (14), is at most λ.

Proof. Let $E(\gamma):=\|f-\gamma\|_{d}+\|g-\gamma\|_{d}, \gamma \geq \lambda$. We have

$$
\begin{align*}
\|f-\gamma\|_{d}= & \left(\int_{0}^{a} 2\left(f_{1}-\gamma\right)^{2}(x) d x+\int_{a}^{b} 2\left(\overline{h_{1}}(x)-\gamma\right)^{2} d x\right. \\
& \left.+\int_{b}^{c} 2\left(x+\frac{a+d}{2}+1-\gamma\right)^{2} d x+\int_{c}^{d} 2\left(h_{1}(x)-\gamma\right)^{2} d x\right)^{1 / 2} \tag{15}\\
= & :\left(B_{1}(a, \gamma)+B_{2}(a, b, \gamma)+B_{3}(a, b, c, \gamma)+B_{4}(c, \gamma)\right)^{1 / 2}
\end{align*}
$$

and

$$
\begin{align*}
\|g-\gamma\|_{d} & =\left(\int_{0}^{a} 2\left(g_{1}-\gamma\right)^{2}(x) d x+\int_{a}^{d} 2 \gamma^{2} d x\right)^{1 / 2} \tag{16}\\
& =\left(B_{5}(a, \gamma)+2 \gamma^{2}(d-a)\right)^{1 / 2}
\end{align*}
$$

We estimate the derivative of the error function $E(\gamma)$.

$$
\begin{align*}
E^{\prime}(\gamma)=\frac{1}{2}\left(B_{1}+B_{2}+B_{3}+\right. & \left.B_{4}\right)^{-1 / 2}\left(B_{1}^{\prime}+B_{2}^{\prime}+B_{3}^{\prime}+B_{4}^{\prime}\right) \\
& +\frac{1}{2}\left(B_{5}+2 \gamma^{2}(d-a)\right)^{-1 / 2}\left(B_{5}^{\prime}+4 \gamma(d-a)\right) \tag{17}
\end{align*}
$$

Since f_{1} and g_{1} are bounded on $[-d, d]$, it follows that f and g are uniformly bounded, with bound independent on the values a, b and c.

Suppose that $|f(x)| \leq \Gamma$ and $|g(x)| \leq \Gamma$ for all $x \in[-d, d]$ and for all choice of a, b and c. Therefore, the $\rho_{2, \epsilon}$-b.s.a. constant of f and g verifies $|\gamma| \leq \Gamma$. We shall prove that there are a, b and c such that $E^{\prime}(\gamma)>0$ for all $\gamma \in[\lambda, \Gamma]$. Since f_{1}, g_{1}, h_{1}, and $\overline{h_{1}}$ are uniformly bounded, with bound independent on the values a, b and c, we get

$$
\begin{gather*}
\lim _{a \rightarrow 0} B_{1}=\lim _{a, b \rightarrow 0} B_{2}=\lim _{c \rightarrow d} B_{4}=\lim _{a \rightarrow 0} B_{5}=0 \tag{18}\\
\lim _{a \rightarrow 0} B_{1}^{\prime}=\lim _{a, b \rightarrow 0} B_{2}^{\prime}=\lim _{c \rightarrow d} B_{4}^{\prime}=\lim _{a \rightarrow 0} B_{5}^{\prime}=0 \tag{19}\\
\lim _{a, b \rightarrow 0, c \rightarrow d} B_{3}=\frac{d^{3}}{6}+2(1-\gamma)^{2} d, \text { and } \lim _{a, b \rightarrow 0, c \rightarrow d} B_{3}^{\prime}=-4(1-\gamma) d, \tag{20}
\end{gather*}
$$

uniformly on $\gamma \in[\lambda, \Gamma]$.
From (18), (19) and (20) we get

$$
\begin{equation*}
\lim _{a, b \rightarrow 0, c \rightarrow d} E^{\prime}(\gamma)=(2 d)^{1 / 2}\left(\left(\frac{d^{2}}{12}+(1-\gamma)^{2}\right)^{-1 / 2}(\gamma-1)+1\right), \tag{21}
\end{equation*}
$$

uniformly on $\gamma \in[\lambda, \Gamma]$.
Consider the function $S(x)=-x\left(A+x^{2}\right)^{-1 / 2}+1$ with $A>0$. It is easy to see that $S(x) \geq 1-(A+1)^{-1 / 2}$ on the interval $(-\infty, 1]$. In fact, if $x \leq 0, S(x) \geq 1$. If $0<x \leq 1, S(x)$ is a decreasing function and $S(1)=1-(A+1)^{-1 / 2}$. From (21) with $A=\frac{d^{2}}{12}$ and $x=1-\gamma$, we obtain

$$
\begin{equation*}
\lim _{a, b \rightarrow 0, c \rightarrow d} E^{\prime}(\gamma) \geq(2 d)^{1 / 2}\left(1-\left(\frac{d^{2}}{12}+1\right)^{-1 / 2}\right) \tag{22}
\end{equation*}
$$

for all $\gamma \in[\lambda, \Gamma]$.
From (22) immediately follows that there exist a, b, and c such that $E^{\prime}(\gamma)>0$, for all $\gamma \in[\lambda, \Gamma]$. As a consequence any constant $\rho_{2, d}$-b.s.a., say γ, of f and g defined by (13) and (14) for those values of a, b and c, verifies $\gamma \leq \lambda$. QED

6 Remark. Similarly to Lemma 5 , given $d>0$ and $0<\lambda<1$, we can find real numbers a, b, c with $0<a<b<c<d$ such that any constant $\rho_{2, d}$-b.s.a. on the interval $[-d, d]$ of the functions $f-1$ and $g+1$, where f and g are given by (13) and (14) respectively, is greater or equal than $1-\lambda$.

The following Lemma was proved in [5], Theorem 4, (a) in a more general way.

7 Lemma. Let $1<p<\infty, 0<d \leq 1$, and let $f_{1}, \ldots, f_{k} \in \mathcal{C}([-d, d], \mathbb{R})$. Then the set S_{d} of $\rho_{p, d}$-b.s.a. of $f_{j}, 1 \leq j \leq k$, from Π^{n}, is a unitary set or there exists $i, 1 \leq i \leq k-1$, such that $f_{j} \in\left\{\alpha f_{i+1}+(1-\alpha) f_{i} \mid \alpha \geq 1\right\}, i+1 \leq j \leq k$, $f_{j} \in\left\{\alpha f_{i+1}+(1-\alpha) f_{i} \mid \alpha \leq 0\right\}, 1 \leq j \leq i$, and S_{d} is the segment $\overline{f_{i} f_{i+1}}$.

Now, we are in conditions to give the example mentioned at begin of this Section.

8 Example. Let $\epsilon_{k}, \eta_{k}, \bar{\eta}_{k}, \delta_{k}$, and $\bar{\delta}_{k}, k \in \mathbb{N}$ be five sequences of real numbers satisfying
(1) $\epsilon_{1}=1$,
(2) $\epsilon_{2 k}<\bar{\eta}_{2 k-1}<\eta_{2 k-1}<\epsilon_{2 k-1}$,
(3) $\epsilon_{2 k+1}<\bar{\delta}_{2 k}<\delta_{2 k}<\epsilon_{2 k}$,
(4) $\epsilon_{k} \downarrow 0$.

We consider two functions f and g defined on $[-1,1]$ by:

$$
\begin{gather*}
f(x)= \begin{cases}1 & \text { if } x=1 \\
1 & \text { if } x \in\left[\epsilon_{2 k+1}, \epsilon_{2 k}\right] \\
\bar{h}_{2 k-1}(x) & \text { if } x \in\left[\epsilon_{2 k}, \bar{\eta}_{2 k-1}\right] \\
-x+\frac{\epsilon_{2 k}+\epsilon_{2 k-1}}{2}+1 & \text { if } x \in\left[\bar{\eta}_{2 k-1}, \eta_{2 k-1}\right] \\
h_{2 k-1}(x) & \text { if } x \in\left[\eta_{2 k-1}, \epsilon_{2 k-1}\right],\end{cases} \tag{23}\\
g(x)= \begin{cases}0 & \text { if } x=0 \\
0 & \text { if } x \in\left[\epsilon_{2 k}, \epsilon_{2 k-1}\right] \\
\bar{l}_{2 k}(x) & \text { if } x \in\left[\epsilon_{2 k+1}, \bar{\delta}_{2 k}\right] \\
-x+\frac{\epsilon_{2 k}+\epsilon_{2 k+1}}{2}+1 & \text { if } x \in\left[\bar{\delta}_{2 k}, \delta_{2 k}\right] \\
l_{2 k}(x) & \text { if } x \in\left[\delta_{2 k}, \epsilon_{2 k}\right]\end{cases} \tag{24}
\end{gather*}
$$

where $h_{2 k-1}, \bar{h}_{2 k-1}, l_{2 k}$ and $\bar{l}_{2 k}$ are linear functions chosen in a such way that f and g be continuous functions on $[0,1]$. Finally, we put $f(x)=f(-x), g(x)=$ $g(-x)$ if $x \in[-1,0]$. We can choose the sequences $\epsilon_{k}, \eta_{k}, \bar{\eta}_{k}, \delta_{k}$, and $\bar{\delta}_{k}$, such that any constant $\rho_{2, \epsilon_{2 k+1}}$-b.s.a. is at most $\frac{1}{3}$, and any constant $\rho_{2, \epsilon_{2 k}}$-b.s.a. is greater or equal than $\frac{2}{3}$. In fact, it is sufficient to apply the Lemma 5 and the Remark 6 alternatively with $d=\epsilon_{k}, k \in \mathbb{N}$, and $\lambda=\frac{1}{3}$.

9 Remark. Since $f \notin \Pi^{n}$ and $g \notin \Pi^{n}$ on $[-\epsilon, \epsilon]$, for all $0<\epsilon \leq 1$, the Lemma 7 implies uniqueness of the $\rho_{2, \epsilon}$-b.s.a. by constants for all $0<\epsilon \leq 1$.

Next, we give the main Theorem of this Section.
10 Theorem. Let $n \in \mathbb{N} \cup\{0\}, k \in \mathbb{N}$, and $1<p<\infty$. Let $f_{1}, \ldots, f_{k} \in X$ be functions with continuous derivatives up to order n. Then $\mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right)$ and $\mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)$ are convex and compact sets in Π^{n} with the uniform norm.

Proof. Let $P_{j} \in \mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right)\left(P_{j} \in \mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)\right)$ be a sequence such that $P_{j} \rightarrow P_{0} \in \Pi^{n}$, as $j \rightarrow \infty$. For each $j \in \mathbb{N}$ there exists ϵ_{j} such that $\left\|P_{\epsilon_{j}}-P_{j}\right\|<\frac{1}{j}$. We can choose ϵ_{j} such that $\epsilon_{j+1}<\frac{\epsilon_{j}}{2}$, then $\epsilon_{j} \rightarrow 0$ and

$$
\left\|P_{\epsilon_{j}}-P_{0}\right\| \leq\left\|P_{\epsilon_{j}}-P_{j}\right\|+\left\|P_{j}-P_{0}\right\| \rightarrow 0 \text { as } j \rightarrow \infty .
$$

It follows that $P_{0} \in \mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right)\left(P_{0} \in \mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)\right)$. So, these sets are closed.

By Corollary 4 we have $\mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right) \subset T\left(f_{1}, \ldots, f_{k}\right)$, and $\mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right) \subset$ $T\left(f_{1}, f_{2}\right)$. This proves that the sets are bounded, so they are compact.

Next we prove the convexity of the set $\mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)$.
Let S_{d} be as in Lemma 7. If for some $0<d \leq 1, S_{d}$ is not unitary set, the Lemma 7 implies that $S_{d}=\overline{f_{1} f_{2}}$. It is easy to see that $S_{\epsilon}=\overline{f_{1} f_{2}}$ for all $0<\epsilon \leq d$. So, $\mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)=\overline{f_{1} f_{2}}$.

Now suppose that S_{ϵ} is a unitary set for all $0<\epsilon \leq 1$. We write $S(\epsilon)=P_{\epsilon}$. The function $S:(0,1] \rightarrow \Pi^{n}$ is continuous. In fact, if $0<a_{j} \leq 1, j \in \mathbb{N}$, is a real number sequence such that $a_{j} \rightarrow a>0$, as $j \rightarrow \infty$, then $\|h\|_{p, a_{j}} \rightarrow\|h\|_{p, a}$ for all continuous function $h \in X$. Thus $\rho_{p, a_{j}}\left(h_{1}, h_{2}\right) \rightarrow \rho_{p, a}\left(h_{1}, h_{2}\right)$, as $j \rightarrow \infty$ for all pair of continuous functions in X. Since there exists a unique $\rho_{p, a}$-b.s.a. of f_{1} and f_{2}, the Polya's algorithm, (see [2]), implies that $S\left(a_{j}\right) \rightarrow S(a)$, as $j \rightarrow \infty$.

Let $P_{1}, P_{2} \in \mathcal{H}\left(\rho_{p}\right), P_{1} \neq P_{2}$ and $P_{3}=\alpha P_{1}+(1-\alpha) P_{2}$, with $0<\alpha<1$. By definition of $\mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)$ there exist two sequences $\epsilon_{j} \rightarrow 0$ and $\epsilon_{j}^{\prime} \rightarrow 0$ such that

$$
\begin{equation*}
P_{\epsilon_{j}} \rightarrow P_{1}, \quad P_{\epsilon_{j}^{\prime}} \rightarrow P_{2}, \text { as } j \rightarrow \infty . \tag{25}
\end{equation*}
$$

Without loss generality, we can suppose that $\epsilon_{1}>\epsilon_{1}^{\prime}>\epsilon_{2}>\epsilon_{2}^{\prime}>\ldots$. Let U be a hyperplane in Π^{n} orthogonal to the segment $\overline{P_{1} P_{2}}$, with respect to the inner product in Π^{n}, which contains to P_{3}, i.e.,

$$
U=\left\{Q+P_{3} \mid Q \in \Pi^{n} \text { and } Q \cdot\left(P_{1}-P_{2}\right)=0\right\} .
$$

Since U is a closed set the distance of P_{1} to U and the distance of P_{2} to U are both positive. Thus (25) implies that there exists N such that for $j>N$, $S\left(\epsilon_{j}\right)$ and $S\left(\epsilon_{j}^{\prime}\right)$ live in different semi-planes respect to U. Let $j>N$. As $S(x)$ is a continuous function, $S\left(\left(\epsilon_{j}^{\prime}, \epsilon_{j}\right)\right)$ is a connected arc set in Π^{n}. Therefore $U \cap S\left(\left(\epsilon_{j}^{\prime}, \epsilon_{j}\right)\right) \neq \emptyset$. In consequence, we can find $\epsilon_{j}^{\prime \prime}, \epsilon_{j}^{\prime}<\epsilon_{j}^{\prime \prime}<\epsilon_{j}$, such that $P_{\epsilon_{j}^{\prime \prime}} \in U$. On the other hand, Theorem 3 implies that there exist a subsequence of $\left\{\epsilon_{j}^{\prime \prime}\right\}$, which we denote again by $\epsilon_{j}^{\prime \prime}$, and $0 \leq \beta \leq 1$ such that

$$
S\left(\epsilon_{j}^{\prime \prime}\right) \rightarrow \beta T\left(f_{1}\right)+(1-\beta) T\left(f_{2}\right) .
$$

Since $S\left(\epsilon_{j}^{\prime \prime}\right) \in U, j>N$, and U is a closed set, then $\beta T\left(f_{1}\right)+(1-\beta) T\left(f_{2}\right) \in U$. In addition, $U \cap T\left(f_{1}, f_{2}\right)=\left\{P_{3}\right\}$, so we get $P_{3}=\beta T\left(f_{1}\right)+(1-\beta) T\left(f_{2}\right)$, i.e., $P_{3} \in \mathcal{H}\left(\rho_{p} ; f_{1}, f_{2}\right)$.

The convexity of $\mathcal{H}\left(\rho_{2} ; f_{1}, \ldots, f_{k}\right)$ follows analogously. The proof is complete.

References

[1] E.K. Atkinson: An Introduction To Numerical Analysis,J ohn Wiley and Sons. Second edition, Singapore, (1989).
[2] M.A. Griesel: A Generalized Pólya Algorithm, J. Aprox. Theory, 12 (1974), 160-164.
[3] A.S.V. Holland and B.N. Sahney: Some Remarks On Best Simultaneous Approximation, Theory Approx. Proc. Conf. Calgary (1975), (1976), 332-337.
[4] Y. Karakus: On Simultaneous Approximation, Note Mat., 21 (2002), 71-76.
[5] P.D. Milman: On Best Simultaneous Approximation in Normed Linear Spaces, J. Approx. Theory, 20 (1977), 223-238.
[6] A. Pinkus: On L^{1} Approximation, Cambridge Tracts In Mathematics, 93, (1988).

[^0]: ${ }^{\text {i }}$ This work was supported by Universidad Nacional de Rio Cuarto and Conicet.
 ${ }^{\text {ii }}$ This work was supported by Universidad Nacional de Rio Cuarto.

