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Transitive Subgeometry Partitions
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Abstract. The subgeometry partitions of PG(n− 1, qm) that admit point-transitive groups
are completely determined as those partitions by subgeometries isomorphic to PG(n/(n,m)−
1, q(n,m)) arising from AG(m, qn).
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1 Introduction

Recently, new types of subgeometry partitions of PG(n − 1, qm) by sub-
geometries isomorphic to PG(n − 1, q) are constructed in Johnson [1]. These
partitions are called ‘mth-root subgeometry partitions’, where (m,n) = 1 and
certain other restrictions apply. Furthermore, these subgeometries admit a group
acting transitively on the set of subgeometries. Actually, other than these ex-
amples, very little is known about general subgeometry partitions. Are there
other examples?

In this note, we show that every affine space AG(m, qn) produces subgeome-
try partitions of PG(n− 1, qm) by subgeometries isomorphic to PG(n/(m,n)−
1, q(m,n)). Indeed, these subgeometry partitions admit a collineation group that
is transitive on the points of PG(n− 1, qm). Probably the main point is that it
is easy to construct subgeometry partitions but we also show, using a straight-
forward application of results of Kantor, that the converse theorem is valid and
prove the following general theorem.

1 Theorem. A subgeometry partition of a projective space admits a point
transitive group if and only if it is the subgeometry arising from an affine space
AG(m, qn), producing a partition of PG(n−1, qm) by subgeometries isomorphic
to PG(n/(n,m)− 1, q(n,m)).
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2 Field Subgeometry Partitions

Consider GF (qmn)∗. Define ”points” as elements of GF (qmn)∗ and ”com-
ponents” as the images of GF (qn) under the group GF (qmn)∗. Then there are
(qmn− 1)/(qn− 1) components, so we have a transitive spread of n-dimensional
GF (q)-subspaces of the associated m-dimensional vector space over GF (qn).
That is, suppose GF (qn) and GF (qn)a for a ∈ GF (qmn)∗ share a non-zero el-
ement b, so that b = ca, for b, c ∈ GF (qn)∗, then c ∈ GF (qn). Consider the
group GF (qm)∗. This group acts on the spread and the subgroup that fixes the
component GF (qn) is GF (q(m,n)). Since the original group is cyclic and transi-
tive, we see that GF (q(m,n)) fixes each component, and is then considered the
‘kernel’ of the group. Take an orbit Γ of length (qm − 1)/(q(m,n) − 1) under
GF (qm)∗. Form the projective space PG(n− 1, qm). We claim that Γ becomes
a subgeometry isomorphic to PG(n/(m,n)− 1, q(m,n)). Most of the proof of the
previous is accomplished in Johnson [2], where it is shown that the point-line
geometry is at least a ‘quasi-subgeometry’. It remains to show that we actually
obtain a subgeometry.

To see this we may take without loss of generality the orbit that contains
GF (qn)∗ = L. We need to show that a 2-dimensional GF (qm)-space generated
from two linearly independent vectors in L intersects Γ in exactly (q(m,n) − 1)
GF (qm)-1-spaces.

So, let u and v be on L, that is, let u, v ∈ GF (qn)∗ such that {u, v} is
linearly independent over GF (qm). Suppose that w is in Γ and in 〈u, v〉GF (qm)−
{〈u〉GF (qm) , 〈v〉GF (qm)}. Then since we have an orbit under GF (qm), we may
assume that w ∈ L = GF (qn)∗. Therefore,

αu+ βv = w,

where α, β ∈ GF (qm) and αβ 6= 0. Since u, v, w ∈ GF (qn), then (αu+ βv)q
n
=

w = (αq
n
u+ βq

n
v), which implies that

(α− αqn)u+ (β − βqn)v = 0.

However, σ ∈ GF (qm), implies σq
n ∈ GF (qm), so since u and v are linearly

independent over GF (qm), it follows that

(α− αqn) = (β − βqn) = 0.

Therefore, αq
n

= α, implies that α(qn−1,qm−1) = 1 = α(q(m,n)−1). So, α and
β ∈ GF (q(m,n)). Hence, we obtain a subgeometry isomorphic to PG(n/(m,n)−
1, q(m,n)). The ‘points’ are the GF (qm)-subspaces, which are permuted transi-
tively by the cyclic group GF (qmn)∗.
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2 Theorem. From any field GF (qmn), there exists a subgeometry partition
of PG(n− 1, qm) by subgeometries isomorphic to PG(n/(m,n)− 1, q(m,n)).

This particular subgeometry admits a collineation group that acts transitive
on subgeometries and transitive on the points.

Proof. If a subgeometry admits a collineation group that acts transitively
on the points then we have a group transitive on the GF (qm)∗-orbits, of an
associated vector space. But, this implies that we have a group transitive on
the non-zero vectors. Therefore, by adjoining the translation group, we have a
doubly transitive group on points acting on the associated design.

However, Kantor [3] has determined the doubly transitive designs, which are
either

(a) PG(a, h),

(b) AG(d, h),

(c) the points and secant lines of a unital, where q + 1 = h2 + 1,

(d) the affine Hall plane of order 9 ,

(e) the affine Hering plane of order 27 , or

(f) one of two designs of Hering of type 2− (36, 32, 1).

So, in this situation, since we have an affine design, first assume that m >
2. Then, only the AG(d, h)-case applies. Hence, we have that the lines are
translates of n-dimensional GF (q)-subspaces and these become 1-dimensional
GF (qn)-spaces in AG(d, h). Hence, d = m and we obtain the affine space
AG(m, qn).

Now assume that m = 2. This means we have an affine translation plane of
order qn and we have a group GF (q2)∗ acting as a collineation group of the affine
plane with orbits of length (qm−1)/(q(m,n)−1). For affine translation planes of
order 9 then GF (q2)∗ has component orbits of length 1, since m=2=n and q=3
which implies that the plane is Desarguesian. For the Hering plane of order 33,
then GF (q2)∗ has component orbits of length q + 1 = 4. However, the Hering
plane admits SL(2, 13) as a collineation group and if GF (32)∗ is normalized, an
element of order 13 must fix each of the seven orbits under GF (32)∗ and then
fix each of the orbits pointwise, a contradiction. QED

3 The Main Theorem

Proof. We now complete the proof of Theorem 1.
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It is assumed that the point transitive group permutes the set of sub-
geometries. Hence, they must all be isomorphic to a given projective space
PG(z − 1, pe), for p a prime. Therefore, the projective space itself is isomor-
phic to PG(n − 1, qm), for q = pr. By the main results of Johnson [2], there
is an associated spread of dimension nm over GF (q) admitting GF (qm)∗ as
a collineation group. The subgeometries isomorphic to PG(z − 1, pe), unwrap
into fans Γ, which are orbits of n-dimensional GF (q)-subspaces under the group
GF (qm)∗. Assume that the stabilizer of a given component L has order j divid-
ing qm−1. Then there are (qm−1)/j components in Γ, which means that there
are exactly (qn− 1)/j points when the fan is folded, thus producing a subgeom-
etry PG(z − 1, pe). Since PG(z − 1, pe) contains (pez − 1)/(pe − 1) points, then
qn = pez, so that j = pe − 1.

So, we have a spread of n-dimensional GF (q)-subspaces of a nm-dimensional
GF (q)-vector space. The associated design is an affine space AG(m, qn) by
the previous argument. Therefore, the n-dimensional GF (q)-subspaces L are
1-dimensional GF (qn)-subspaces and GF (pe)∗ is a subgroup of GF (qm)∗ that
acts on L and is therefore a cyclic subgroup of ΓL(1, qn), and corresponds to
a subfield GF (pe) of GF (qm). We also know that there must be a subgroup of
GF (qm)∗ of order at least q−1 which is a scalar group, so that q ≤ pe ≤ q(n,m).
Now we know that there is a subgeometry partition of PG(n − 1, qm) by sub-
geometries isomorphic to PG(n/(n,m) − 1, q(n,m)). Also, there are two groups
K1 and K2 both isomorphic to GF (qm)∗ and two groups Gi, i = 1, 2, acting
transitively on the components of the spread, where Ki ⊆ Gi, i = 1, 2. The
stabilizer of L in Gi is in ΓL(1, qn) and contains KiL . It follows immediately
that K1L = K2L . One of these groups may be taken as GF (q(n,m))∗. Hence,
pe = q(n,m). This completes the proof of the theorem. QED
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