Note di Matematica

Note Mat. 28 (2008), n. 2, 149-152

ISSN 1123-2536, e-ISSN 1590-0932

DOI 10.1285/i15900932v28n2p149
http://siba-ese.unisalento.it, © 2008 Universita del Salento

Transitive Subgeometry Partitions

Norman L. Johnson

Mathematics Dept., University of lowa,
Towa City, Towa 52242, USA;

njohnson@math.uiowa.edu

Minerva Cordero

Mathematics Dept., University of Texas at Arlington,
Arlington, Texas 76019, USA;
cordero@uta.edu

Received: 08/11/2007; accepted: 08/11/2007.

Abstract. The subgeometry partitions of PG(n —1,¢™) that admit point-transitive groups
are completely determined as those partitions by subgeometries isomorphic to PG(n/(n,m) —
1, q<”’m)) arising from AG(m,q").
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1 Introduction

Recently, new types of subgeometry partitions of PG(n — 1,¢"™) by sub-
geometries isomorphic to PG(n — 1,q) are constructed in Johnson [1]. These
partitions are called ‘m!"-root subgeometry partitions’, where (m,n) = 1 and
certain other restrictions apply. Furthermore, these subgeometries admit a group
acting transitively on the set of subgeometries. Actually, other than these ex-
amples, very little is known about general subgeometry partitions. Are there
other examples?

In this note, we show that every affine space AG(m, ¢") produces subgeome-
try partitions of PG(n —1,¢™) by subgeometries isomorphic to PG(n/(m,n) —
1, q(m’")). Indeed, these subgeometry partitions admit a collineation group that
is transitive on the points of PG(n — 1,¢™). Probably the main point is that it
is easy to construct subgeometry partitions but we also show, using a straight-
forward application of results of Kantor, that the converse theorem is valid and
prove the following general theorem.

1 Theorem. A subgeometry partition of a projective space admits a point
transitive group if and only if it is the subgeometry arising from an affine space
AG(m,q"™), producing a partition of PG(n—1,¢™) by subgeometries isomorphic
to PG(n/(n,m) — 1,q"™).
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2 Field Subgeometry Partitions

Consider GF(¢™")*. Define "points” as elements of GF(¢™")* and ”com-
ponents” as the images of GF(¢") under the group GF(¢"™")*. Then there are
(g™ —1)/(¢" — 1) components, so we have a transitive spread of n-dimensional
GF(q)-subspaces of the associated m-dimensional vector space over GF'(q").
That is, suppose GF(¢") and GF(q")a for a € GF(¢"™")* share a non-zero el-
ement b, so that b = ca, for b,c € GF(q")*, then ¢ € GF(q"). Consider the
group GF(qg"™)*. This group acts on the spread and the subgroup that fixes the
component GF(q") is GF(g"™™). Since the original group is cyclic and transi-
tive, we see that GF (q(m’")) fixes each component, and is then considered the
‘kernel’ of the group. Take an orbit I' of length (¢" — 1)/(¢™™ — 1) under
GF(q"™)*. Form the projective space PG(n — 1,¢™). We claim that I becomes
a subgeometry isomorphic to PG(n/(m,n) —1,¢™™). Most of the proof of the
previous is accomplished in Johnson [2], where it is shown that the point-line
geometry is at least a ‘quasi-subgeometry’. It remains to show that we actually
obtain a subgeometry.

To see this we may take without loss of generality the orbit that contains
GF(q")* = L. We need to show that a 2-dimensional GF(¢™)-space generated
from two linearly independent vectors in L intersects I' in exactly (¢™™ — 1)
GF(q¢™)-1-spaces.

So, let w and v be on L, that is, let u,v € GF(¢")* such that {u,v} is
linearly independent over GF'(¢"). Suppose that w is in I' and in (u, v)GF(qm) —
{{w)gr(gm)» (V)Gp(gm)}- Then since we have an orbit under GF'(¢™), we may
assume that w € L = GF(¢")*. Therefore,

au + fv = w,

where a, 3 € GF(¢™) and af # 0. Since u,v,w € GF(q"), then (au + Bv)?" =
w = (a9 u + B9 v), which implies that

(a—a®Yu+ (8- B ) =0.

However, ¢ € GF(¢™), implies 09" € GF(¢™), so since v and v are linearly
independent over GF'(¢™), it follows that

(@—a)=(B-p")=0.

Therefore, 4" = «, implies that a@"~14"-D = 1 = ala™m=1), So, a and
B € GF(q'"™™). Hence, we obtain a subgeometry isomorphic to PG(n/(m,n) —
1,¢™™). The ‘points’ are the GF(¢™)-subspaces, which are permuted transi-
tively by the cyclic group GF(¢"™")*.
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2 Theorem. From any field GF(q™"), there exists a subgeometry partition
of PG(n —1,¢™) by subgeometries isomorphic to PG(n/(m,n) — 1,q™™).

This particular subgeometry admits a collineation group that acts transitive
on subgeometries and transitive on the points.

PROOF. If a subgeometry admits a collineation group that acts transitively
on the points then we have a group transitive on the GF(¢"™)*-orbits, of an
associated vector space. But, this implies that we have a group transitive on
the non-zero vectors. Therefore, by adjoining the translation group, we have a
doubly transitive group on points acting on the associated design.

However, Kantor [3] has determined the doubly transitive designs, which are
either

(a) PG(a,h),
(b

)
)
(c) the points and secant lines of a unital, where ¢ + 1 = h? + 1,
(d) the affine Hall plane of order 9 ,
)
)

e) the affine Hering plane of order 27 , or

(
(f) one of two designs of Hering of type 2 — (3%,32,1).

So, in this situation, since we have an affine design, first assume that m >
2. Then, only the AG(d, h)-case applies. Hence, we have that the lines are
translates of n-dimensional GF'(g)-subspaces and these become 1-dimensional
GF(q")-spaces in AG(d,h). Hence, d = m and we obtain the affine space
AG(m, q").

Now assume that m = 2. This means we have an affine translation plane of
order ¢" and we have a group GF(¢?)* acting as a collineation group of the affine
plane with orbits of length (¢™ —1)/(¢"™™ —1). For affine translation planes of
order 9 then GF(¢?)* has component orbits of length 1, since m=2=n and q=3
which implies that the plane is Desarguesian. For the Hering plane of order 33,
then GF(¢?)* has component orbits of length ¢ + 1 = 4. However, the Hering
plane admits SL(2,13) as a collineation group and if GF(3%)* is normalized, an
element of order 13 must fix each of the seven orbits under GF(3%)* and then
fix each of the orbits pointwise, a contradiction. QED

3 The Main Theorem

PRrROOF. We now complete the proof of Theorem 1.
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It is assumed that the point transitive group permutes the set of sub-
geometries. Hence, they must all be isomorphic to a given projective space
PG(z — 1,p°), for p a prime. Therefore, the projective space itself is isomor-
phic to PG(n — 1,¢™), for ¢ = p". By the main results of Johnson [2], there
is an associated spread of dimension nm over GF(q) admitting GF(¢")* as
a collineation group. The subgeometries isomorphic to PG(z — 1,p°), unwrap
into fans I, which are orbits of n-dimensional G F'(¢)-subspaces under the group
GF(¢™)*. Assume that the stabilizer of a given component L has order j divid-
ing ¢™ — 1. Then there are (¢"* —1)/j components in I', which means that there
are exactly (¢" —1)/j points when the fan is folded, thus producing a subgeom-
etry PG(z — 1, p°). Since PG(z — 1, p®) contains (p** —1)/(p® — 1) points, then
q" = p%*, so that j = p® — 1.

So, we have a spread of n-dimensional GF'(q)-subspaces of a nm-dimensional
GF(q)-vector space. The associated design is an affine space AG(m,q"™) by
the previous argument. Therefore, the n-dimensional GF'(q)-subspaces L are
1-dimensional GF'(q")-subspaces and GF(p®)* is a subgroup of GF(¢™)* that
acts on L and is therefore a cyclic subgroup of I'L(1, ¢"), and corresponds to
a subfield GF(p°) of GF(q"™). We also know that there must be a subgroup of
GF(¢™)* of order at least ¢ — 1 which is a scalar group, so that ¢ < p° < q(m),
Now we know that there is a subgeometry partition of PG(n — 1,¢™) by sub-
geometries isomorphic to PG(n/(n,m) — 1,¢™™). Also, there are two groups
K; and K3 both isomorphic to GF(¢™)* and two groups G;, i = 1,2, acting
transitively on the components of the spread, where K; C G;, i = 1,2. The
stabilizer of L in G; is in I'L(1, ¢") and contains K;,. It follows immediately
that Ky, = Ks,. One of these groups may be taken as GF(g™™)*. Hence,
p¢ = ¢™™)_ This completes the proof of the theorem. QED
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