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1 Introduction

The inner geometry with non-degenerate second fundamental form has been
a popular research topic for ages. We will refer the term “non-developable,” and
by a non-developable surface we mean that a surface free of points of vanishing
Gaussian curvature in a FEuclidean 3-space. It is readily seen that the second
fundamental form of a surface is non-degenerate if and only if a surface is non-
developable. On such a surface M, we can regard the second fundamental form
11 of a surface M as a new Riemannian metric or pseudo-Riemannian metric on
the Riemannian or pseudo-Riemannian manifold (M, IT1). In this case, we can
define the Gaussian curvature and the mean curvature of non-degenerate second
fundamental form, denoted by Kj; and Hjj respectively, these are nothing but
the Gaussian curvature and the mean curvature of (M, IT). By Briosch’s formula
in a Euclidean 3-space and a Minkowski 3-space we are able to computer Kij
of M by replacing the components of the first fundamental form F, F, G by the
components of the second fundamental form e, f, g, respectively. The curvature
K is called the second Gaussian curvature (cf. [2, 3, 7, 11, 13, 14, 15, etc]).
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On the other hand, the mean curvature Hj; of non-degenerate second fun-
damental form in a Minkowski 3-pace R} is defined by ([7])

1
HII:H+§AIIIH\/|K‘7 (1.1)

where K and H are the Gaussian curvature and the mean curvature respectively,
and Ajr denotes the Laplacian operator of non-degenerate second fundamental
form, that is,

0
A= K 1.2
== 3 (V) "

where e = hy1, f = hi12,9 = hog,h = det(hij), (h”) = (hij)_l and {l‘l} is
rectangular coordinate system in R$. The curvature Hy; is said to be the second
mean curvature of a surface M in a Minkowski 3-space.

Several geometers have studied the above mentioned curvatures of surfaces in
a Fuclidean space and a Minkowski space and obtained many interesting results.
In particular, the authors in [6, 7, 15, 18, 19 ] investigated the relationship
between the mean curvature and the Gaussian curvature, and in [ 7, 11, 13, 19]
investigated the relationship between the Gaussian curvature and the second
Gaussian curvature. Also, the authors in [2, 3, 7, 11, 14, 17, 19] studied the
relationship between the mean curvature and the second Gaussian curvature,
and in [ 7, 8, 17] studied the relationship between the Gaussian curvature, the
mean curvature and the second mean curvature.

Recently, Y. H. Kim and the present first author([12]) classified non-develop-
able ruled surface in a Minkowski 3-space satisfying the equations

aH? + 2bHK | + cK?; = constant,

) 0 (1.3)
aK* + 2bK K1 + cKj; = constant,

where a, b, c are constants.
In this article, we investigate a non-developable ruled surface in a Minkowski
3-space R} satisfying the equations

aH? + 2bHH |y + cHj; = constant, (1.4)

aK? 4 2bK Hy; + cH? = constant, (1.5)

along each ruling, where a, b, ¢ are constant. If a surface satisfies the equations
(1.4) and (1.5), then a surface is said to be a H Hrj-quadric and K Hjj-quadric,
respectively.
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2 Preliminaries

Let R3 be a Minkowski 3-space with the scalar product of index 1 given by
(-,) = —da? +da3+dz?, where (21, 2, z3) is a standard rectangular coordinate
system of ]R‘rf. A vector z of R? is said to be space-like if (x,z) > 0 or x = 0,
time-like if (x,z) < 0 and null if (x,z) = 0 and x # 0. A time-like or null vector
in R? is said to be causal.

Now, we define a ruled surface M in R}. Let I and J be open intervals
containing 0 in the real line R. Let o = «a(s) be a curve of J into R} and
B = B(s) a vector field along «. Then, a ruled surface M is defined by the
parametrization given as follows:

r=ux(s,t) =a(s) +t8(s), seJ, tel.

For such a ruled surface, @ and 8 are called the base curve and the director
vector field, respectively.
According to the causal character of o/ and 3, there are four possibilities:

1) o and $ are non-null and linearly independent.

(1)

(2) o is null and $ is non-null with (¢/, 8) # 0.
(3) @ is non-null and S is null with (o, 8) # 0.
(4)

4) o and B are null with (¢, 8) # 0.

It is easily to see that, with an appropriate change of the curve «, cases (2) and
(3) reduce to (1) and (4), respectively (For the details, see [1]).

First of all, we consider the ruled surface of the case (1). In this case, the
ruled surface M is said to be cylindrical if the director vector field £ is constant
and non-cylindrical otherwise.

Let the base curve « and the director vector field 8 be non-null. Then, the
base curve « can be chosen to be orthogonal to the director vector field 5 and
B can be normalized satisfying (5(s), 5(s)) = e(= =£1) for all s € J. In this
case, according to the character of vector fields o/ and 3, we have ruled surfaces
of five different kinds as follows: If the base curve « is space-like or time-like,
then the ruled surface M is said to be of type M, or type M_, respectively.
Also, the ruled surface of type M, can be divided into three types. If the vector
field B is space-like, it is said to be of type M}r or Mi if 8’ is non-null or null,
respectively. When the vector field 3 is time-like, 8’ is space-like because of the
causal character. In this case, M is said to be of type M i On the other hand,
for the ruled surface of type M_, the director vector field is always space-like.
According as its derivative 3’ is non-null or null, it is also said to be of type
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MY or M2, respectively (cf. [10]). The ruled surface M of the case (4) is called
a null scroll. One of typical examples of null scrolls is B-scroll which is defined
as follows:

Let a(s) be a null curve in R with Cartan frame {4, B, C}, i.e., A, B, C are
vector fields along a in R} satisfying the following conditions:

<AA>=<B,B>=0, <A, B>= -1,
<A C>=<B,C>=0, <C,C>=1,

and
o = A,

C' = —aA - k(s)B,

where a is a constant and k(s) a function vanishing nowhere.
Then the map
z: M — RS
(s,t) = a+tB(s)

defines a Lorentz surface M in R} that L. K. Graves ([9]) called a B-scroll.

Throughout the paper, we assume the ruled surface M under consideration
is connected unless stated otherwise.

On the other hand, many geometers have been interested in studying sub-
manifolds of Euclidean and pseudo-Euclidean space in terms of the so-called
finite type immersion ([4]). Also, such a notion can be extended to smooth
maps on submanifolds, namely the Gauss map ([5]). In this regard, Y. H. Kim
and the first author defined pointwise finite type Gauss map ([10]). In partic-
ular, the Gauss map G on a submanifold M of a pseudo-Euclidean space E7*
of index s is said to be of pointwise I-type if AG = fG for some smooth func-
tion f on M where A denotes the Laplace operator defined on M. In [10] the
authors showed that minimal non-cylindrical ruled surfaces in a Minkowski 3-
space have pointwise 1-type Gauss map. Based on this fact, the authors proved
the following theorem which will be useful to prove our theorems in this paper.

1 Theorem ([10]). Let M be a non-cylindrical ruled surface with space-
like or time-like base curve in a Minkowski 3-space. Then, the Gauss map is
of pointwise 1-type if and only if M is an open part of one of the following
spaces: the space-like or time-like helicoid of the 1st, the 2nd and the 3rd kind,
the space-like or time-like conjugate of Enneper’s surface of the 2nd kind.

3 Main Results

In this section we study ruled H H;-quadric surface and K Hjj-quadric sur-
face M in a Minkowski 3-space R:{’. Thus the ruled surface M under consideration
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must have the non-degenerate second fundamental form which automatically
implies that M is non-developable.

2 Theorem. Let a,b,c be constants with a® +b>+c®> # 0,a—6b+9c # 0. If
M is a non-developable H Hr-quadric ruled surface with non-null base curve in
a Minkowski 3-space. Then M is an open part of one of the following surfaces :

(1) the helicoid of the 1st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(8) the helicoid of the 3rd kind as space-like or time-like surface,

(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-
like surface.

PrOOF. We consider two cases separately.
Case 1. Let M be a non-developable ruled surface of the three types M}w M _?;
or M!. Then the parametrization for M is given by

x =xz(s,t) = a(s) + t8(s)

such that (8,8) = e1(= £1),(8,8') = e2(= 1) and (¢/, ') = 0. In this
case « is the striction curve of z, and the parameter is the arc-length on the
(pseudo-)spherical curve 3.

The first fundamental form of the surface M is given by E = (o/,d/) +
eot2, F = (o/, B) and G = ¢1. For later use, we define the smooth functions @, .J
and D as follows:

Q=(d,BxB)#£0, J=(B"8xp), D=+|EG-F.

In terms of the orthonormal basis {3, 8", 3 x 8’} we obtain

o =e1FB —e162QB x /3, (3.1)
B" =e1e2(=B+ JB x '), (3.2)
o x B =eQ8, (3.3)

which imply EG — F 2 = —g9Q?+£169t%. And, the unit normal vector N is given
by N = %(e2QB" —tB x B'). Then, the components e, f and g of the second
fundamental form are expressed as

e= EQUF QI - Q1+ Ir), [=2 20 g=0
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Therefore, the Gaussian curvature K and the mean curvature H are given by

QQ
K =25, (3.4)
H= (18 — 2,0t — QF — Q). (3.5)

2D3

On the other hand, by (1.2) the Laplacian operator of non-degenerate second
fundamental form 17 is

2D 0? 1 ;o O
A= st T PP It .
D 0? '
+ @(elQF — Q% - Q't+ JtQ)atQ.

Thus, by using (1.1), (3.4), (3.5) and (3.6) the second mean curvature Hyy is
given by

Hi; (=2Jt* + (261QF +561Q*N)t* +361Q%Q't + Q3 F — 3Q*J). (3.7)

~202D3

First of all, we suppose that Q% —1t? > 0. We now differentiate H and Hj;
with respect to t, the results are

Hy = ﬁ (J£? = 2Q't — e1Q(3F + QJ)t — 21Q°Q') , (38)

and

(Hip) = %2;1)5(2sljt5 +(2QF — 3Q20)+
+6Q*Q' + (151Q°F + e1Q* )t +£1Q*Q").  (3.9)

Now, suppose that a non-developable ruled surface is H Hjj-quadric surface.
Then we have by (1.4)

aHH; + b(HtH[[ + H(H][)t) + CHU(HH)t =0,
which implies we have

aQ*Aq 4+ bQ?B; + ¢Cy =0, (3.10)
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where we put

Ay = e1J%° = 351 JQ't* + (4QJF — 2Q%J% + 261Q°) P+
+(2Q%Q' T +5QQ' F)f* + (Q*Q* + 461QJF + £1Q*J? + 361Q*F?)t+
+aQ’Q (F+QJ),

By = 2Q'Jt% + (861QJF + 261Q*J*)t° + (—651QQ'F + 461Q%*Q' J)t* +
— (1261Q%Q"% + 8Q?F2? + 8Q3JF + 4Q*J*)t? — (26Q°Q'F + 2Q°Q' J)t*+
— (6Q*Q"* +10e1Q*F? — 26:Q°J?)t — 4e1Q°Q'F,

C1 = — 46, J*t° + 16Q%*J*" — 6Q*Q' Jt® + £1Q*(4F?8QJF — 23Q*J*)t°+
+e1Q3Q'(18F + 15QJ)t* + Q*(18,Q’ + 16F? + 28QJF + 14Q*J)t*+
+23Q5Q'F2 + Q%(9Q" + Te1 F2 — 2061QJF — 32,Q%J)t+

+361Q"Q'F — 951Q%Q" J.
(3.11)

The direct computation of the left-hand side of (3.10) gives a polynomial in ¢
with functions of s as the coefficients and thus they must be zero. We can obtain
that the coefficient of the highest order #'¢ of the equation (3.10) is

degrJ? = 0.
Therefore, one finds J = 0 since ¢ # 0, which implies that the coefficient of 3 is
4es1Q*F? =0,
from this F' = 0. Thus, from J = F = 0 we have
(a—6b+90)Q"” = 0.

Since a—6b+9c¢ # 0, one obtain Q" = 0. In this case the surface is minimal. Since
EG —F? = g1e9t? —£5Q? and Q? —e1t? > 0. Therefore, the surface is space-like
or time-like when €9 = —1 or g9 = 1, respectively. But, (¢1,2) = (—1,—-1)
is impossible because of the causal character. Let (e1,e2) = (—1,1). Then M
is of the type M i Thus the surface is a helicoid of the 3rd kind according to
Theorem 1. If (g1,e2) = (1,£1), then M is of the type M} or M. Hence the
surface is a helicoid of the 1st kind or 2nd kind according to Theorem 1.

Next, we suppose that Q? — e;t> < 0. By the similar discussion as above
we can also obtain J = F = 0 and Q' = 0 when a — 6b + 9c # 0. Therefore,
the surface is minimal. Since EG — F? = —e9(Q? — £1t?) and Q% — £1t? < 0.
Consequently, M is space-like or time-like according to es = 1 or g9 = —1,
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respectively. In this case, €1 = 1. Therefore, M is of type M}r or M! depending
on €9 = +1. Thus, the surface is a helicoid of the 1st kind and the 2nd kind
according to Theorem 1.

Case 2. Let M be a non-developable ruled surface of type ME or M2. Then,
the surface M is parametrized by

x(s,t) = a(s) + tB(s).

In this case, the base curve « is space-like or time-like and the director vector
field 3 is space-like but 4 is null. So, we may take a and g satisfying (/, ) = 0,
(B,8) =1, (#,6") = 0 and (/,a/) = e1(= +1). We have put the non-zero
functions ¢ and R as follows:

q=||zs||* = elws, xs) = e(e1 + 2Rt), R=(,5)

where ¢ denotes the sign of xs. Therefore, the components of the first funda-
mental form are E = ¢q, F = 0 and G = 1. Since 8 x 3 is a null vector field
orthogonal to 8, we can assume 3 x 8’ = 3’. Since ' is a null direction in the
hyperboloid {x | (x,x) = 1}, 8 can be chosen as a straight line. Changing the
parameter s (if necessary), we have 3" = 0.

Let {¢/, 8,a’ x 8} be a moving frame along M. Then, 8’ can be written as

B =e1R(d —a x B). (3.12)

It follows that the function R never vanishes everywhere on M. Since 5” = 0,
(3.12) implies

R/
o = —RB+ Eo/ x B. (3.13)

On the other hand, the unit normal vector field of M is given by

N = el x g1,

from which the components of the second fundamental form e, f, and g are
obtained as

: _ =

ViR Vi

Thus, the Gaussian curvature K, the mean curvature H and the second mean
curvature Hjj are given respectively by

(RR't+ 1R, f R, g=0.

e =

(3.14)
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_ & / /
H = 2Rq3/2(RRt—|—E1R), (3.15)
and .
Hir = ﬁ(—RRIt-i—ElR/). (316)
2Rq>2

Suppose that the surface is H Hyj-quadric surface. Similarly to Case 1, we have
then )

(a+2b+c)RR” =0,

(3a — 2b— 5¢)RR"* = 0,

(a—3b+2c)RR” =0

which imply R’ = 0 because a,b,c are non-zero constants. Thus, from (3.15)
M is minimal, that is, it is a conjugate of Enneper’s surface of the 2nd kind
as space-like or time-like surface according to Theorem 1. This completes the
proof. QED

3 Remark. In Case 1 of Theorem 2, if a — 6b+ 9¢ = 0, then, J = F =0
with arbitrary @’. By (3.5) and (3.7) we get the equation Hy; = —3H. In this
case, from (2) and (3.2) we have

of = —e182Q8 x 3,
B" = —e1e9p.
To solve the equation (3.17) we consider four cases separately.

1. (e1,e2) = (1,1). Without loss of generality, we may assume 3(0) =
(0,0,1). Then we have

(3.17)

B(s) = (dy sin s, dg sin s, cos s + ds sin )

for some constants di, da, d3 satisfying —d3 + d3 + d3 = 1. Since (3, 8) = 1, we
have —d? 4+ d3 = 1 and d3 = 0. From this we can obtain

B(s) = (dy sins, +4/1+ d3sin s, cos s),

for some constant d;. Therefore, we have

a(s) = (Fy/1+d3,—di,0)f(s) + E,

where f(s) = [ Q(s)ds and E = (eq, €3, e3) is constant vector. Thus, the surface
M has the parametrization of the form

z(s,t) =(Fy/1+ d2f(s) + tdy sins + ey,

(3.18)
—dif(s) £t\/1+ d2sins + eq, tcos s + e3),
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where d; is constant, f(s) = [Q(s)ds and (er,e2,e3) is constant vector. If
d; = 0, then the surface M is a conoid of the 3rd kind (See [11]).

2. (e1,e2) = (1,—1). Without loss of generality, we may assume §(0) =
(0,0,1). Then we have

B(s) = (dy sinh s, +4/d? — 1sinh s, cosh s),

where dq < —1 or dy > 1. Therefore, we have

a(s) = (F\/d? — 1,d1,0) f(s) + E,

where f(s) = [Q(s)ds and E = (er,e2,e3) is constant vector. Thus, the
parametrization for the surface M is given by

z(s,t) =(Fy/d3 — 1f(s) + tdy sinh s + ey,

dif(s) £ t\/d? — 1sinhs + e, tcosh s + e3),

where d; < —1or dy > 1, f(s) = [ Q(s)ds and (eq, ez, e3) is constant vector.
If dy = £1, then the surface M is a conoid of the 1st kind (See [11]).
3. (e1,e2) = (—1,1). We may assume 5(0) = (1,0,0). Then we have

B(s) = (cosh s, dysinh s, +4/1 — d3 sinh s),

where —1 < do < 1. Therefore, we have

a(s) = (0,+4/1 —d3,—d2) f(s) + E,

where f(s) = [ Q(s)ds and E = (eq, ez, e3) is constant vector. Thus, the surface
M is parametrized by

(3.19)

z(s,t) =(tcoshs +e1,+4/1 — d3f(s) + tdysinh s + eq,

—daf(s) £t1/1 — d3sinhs + e3),

where —1 < dy <1, f(s) = [ Q(s)ds and (e1, ez, e3) is constant vector.
If do = 0 or do = %1, then the surface M is a conoid of the 2nd kind (See
[11]).

4. (e1,e2) = (—1,—1) is impossible because of the causal character.

(3.20)

4 Theorem. Let a,b,c be constants with ¢ # 0. If M is a non-developable
K Hiyr-quadric ruled surface with non-null base curve in a Minkowski 3-space.
Then M is an open part of one of the following surfaces:
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(1) the helicoid of the 1st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(3) the helicoid of the 3rd kind as space-like or time-like surface,

(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-
like surface.

PROOF. In order to prove the theorem, we split it into two cases.
Case 1. As is described in Theorem 2 we assume that the non-developable
ruled surface M of the three types M}r, M _?; or M! is parametrized by

r=ux(s,t) = as) +t3(s)

such that (8, 8) = e1(= £1), (8, ) = ea(= £1) and (<, 5') = 0.
On the other hand, the Gaussian curvature K and the second mean curvature
Hjy are given by (3.4) and (3.7), respectively.
Suppose that the surface M is K Hrj-quadric. Then the equation (1.5) im-
plies
aKKt—{-b(KtH]]—f-K(H[[)t)—}—CH[[(H]])t =0. (3.21)
First of all, we assume that Q2 — e1t? > 0. By differentiating (3.4) with respect
tot Q2
461 t
K; = 6

Then, by substituting (3.4), (3.7), (3.8) and (3.22) into (3.21) it follows that

(3.22)

40*°QPD? A3 = (16as1Q%t + cD?By)?, (3.23)
where we put
Ay = — 106, J° + (23Q%J + 6QF)t3 + 6Q*Q't*+
— (3a1Q%F + 45:Q* )t — 361Q*Q,
By = 4e1J%t? —16Q%J%" + 6QQ' Jt® + (2851Q3JF — 4e1Q*F? + 23Q* J?)15
— (1851Q*Q'F + 156, Q*Q' )t +
— (16Q*F? + 18Q°JF + 14Q%J? + 182, Q*Q"*)#?
—33Q°Q'F* + (321Q%J% + 2061 Q7 JF — 72,Q0F2 — 9Q°Q"*)t

—361Q"Q'F +9¢1Q%Q' J.
(3.24)
From (3.24) we obtain that the coefficient of the highest order of the equation
(3.23) is
16¢°J* = 0.
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It follows J = 0 since ¢ # 0, which implies that the coefficient of ¢ is
16cQ*F* = 0,

from this F' = 0. Thus, from J = F = 0 we can obtain ' = 0. Consequently,
the mean curvature H is identically zero.

Next, we suppose that Q% —e1t? < 0. In this case, by using (3.21) we can also
show that the surface M is minimal. Consequently, by the proof of Theorem 2
the surface M is an open part of one of the helicoid of the 1st kind, 2nd kind
and 3rd kind as space-like or time-like surface.

Case 2. Let M be a non-developable ruled surface of type M? or M?2. In this
case, the curve « is space-like or time-like and 3 space-like but 3’ is null. We
will also use the notations given in Theorem 2. Then, the Gaussian curvature K
and the second mean curvature Hj; are given by (3.14) and (3.16), respectively.

Suppose that the surface M is K Hyr-quadric. Then, by the equation (3.14),
(3.16) and (3.21), and by the similar discussion of Case 1 in Theorem 2, we can
also obtain R’ = 0 because ¢ # 0, it follows the mean curvature H is identically
zero. Consequently, by the proof of Theorem 2 the surface M is a conjugate
of Enneper’s surface of the 2nd kind as space-like or time-like surface. This
completes the proof. QED

Finally, we investigate the relations between the second mean curvature, the
Gaussian curvature and the mean curvature of null scrolls in RZ{’.

Let a = a(s) be null curve in R and B = B(s) be null vector field along a.
Then, the null scroll M is parametrized by

x=2x(s,t) = a(s) + tB(s)

such that (o/,a’) = 0, (B,B) = 0 and (o, B) = —1. Furthermore, without
loss of generality, we may choose o as a null geodesic of M. We then have
(a/(s),B'(s)) = 0 for all s. By putting, C = o' x B, then {o/,B,C} is an
orthonormal basis along « in R. In terms of the basis, we have

o =vC,
B' = —uC, (3.25)
C' = —ud +vB

where we put u = (B,C’) and v = (¢, C). The induced Lorentz metric on M
is given by E = u?t?, F = —1, G = 0 and the unit normal vector N is obtained
by

N=C+tB x B.
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Thus, the component functions of the second fundamental form are given by
e=(a"+tB",N)=u*t* vt +v, f=(B,C)=—u, ¢g=0,

which imply H = u and K = u?.
On the other hand, by (1.2) the Laplacian operator of non-degenerate second
fundamental form 17 is

1 92 1 o 1 9?
Arp=—n—+—2ut —u) = + W -t +v)— 3.26
i u838t+u2(u u)8t+u2(u “ +U)8t2’ (3.26)
it follows that the second mean curvature Hyy is given by
Hir = u. (3.27)

Thus, we have the following;:

5 Theorem. Let M be null scrolls in a Minkowski 3-space. Then, M sat-
isfies the equations K = u?, H = u, Hy; = u.

6 Theorem. Let a,b,c,d be constants with a + 2b+ ¢ # 0. B-scrolls over
null curves are the only null scrolls with non-degenerate second fundamental
form in a Minkowski 3-space satisfying aH? + 2bH Hy + CHIQI = d along each
ruling.

PROOF. Let M be a null scroll with non-degenerate second fundamental
form in a Minkowski 3-space. Then by Theorem 4 u?(a + 2b+ ¢) = d, it follows
that the function u is a constant when a 4 2b 4 ¢ # 0. Thus, a null scroll M is
a B-scroll. QED
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