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Abstract. We study the multi-periodical solutions of a Poisson-gradient PDEs system with
bounded non-linearity, showing that suitable properties of the potential imply properties of
solutions.

Section 1 introduces the basic spaces, the type of functionals and the Poisson-gradient
PDEs. Section 2 studies the weak differential of a function and establishes an integral inequality
satisfied by a suitable integrable function. Section 3 formulates some conditions under which a
given action functional is continuously differentiable. Section 4 analyzes the Poisson-gradient
systems and some conditions that ensure multi-periodical solutions.
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1 Poisson-gradient PDEs

We consider the point T' = (Tl, R Tp) and the parallelepiped T = [O, Tl] X
-+- x [0,7P] in RP. We denote by Wr}’2 the Sobolev space of the functions
u € L?[Ty, R"] which have weak derivatives du/0t € L? [Ty, R"]. The index
T from the notation leﬂ comes from the fact that the weak derivatives are
defined using the space Cg° of all indefinitely differentiable multiple T-periodic
functions from RP into R". We denote by H% the Hilbert space W%’2. The norm
used in H% is induced by the scalar product

; ; out | Ov
- ot J LSBT () 2 N P
(u,v) /TO (&Ju (t)v? (t) + 6;56 e (t) BTE (t)> dt> N--- ANdtP.

In other words, on the multiphase space Rt we use the Riemannian metric
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and its associated norm. Also, we recall that the Euclidean space R" is en-
dowed with the scalar product (u,v) = §;;u’v? and the norm |u| = /&;;u'u.
Let t = (tl, .. .,tp) be a generic point in RP. Then the opposite faces of the
parallelepiped Ty can be described by the equations

S{:tiZO,Sj:ti:Ti

for each i = 1,...,p. We shall study the minimum of the action

(p(u):/ L<t,u(t)’8u> dtl/\---/\dtp,
Ty ot

determined by the Lagrangian

2
+ F (t,u(t))

ou _1 ou
2|0t

L(t,u(t),at

on the space Hflp, considering that the potential function F' has the property
of bounded non-linearity. We use the method of the minimizing sequences and
the coercitivity condition fTo F(t,u(t))dt! A---AdtP — oo when |u| — oo.
The extremals of the action ¢ verifies the Euler-Lagrange equations with the
boundary conditions

ou ou ,
wlsp = sy g lse = g lspri=1oeeop

Due to the particularity of the Lagrangian L, the Euler-Lagrange equations
reduce to a PDFEs system of the Poisson-gradient type

Au(t) = VF (t,u(t)).

The aim of this paper is to discuss the existence of solutions of this PDEs
system with suitable boundary conditions. More precisely, we extend the theory
in [2] from single-time to multi-time field theory, developing the ideas in the
papers [6], [7], [9]. In this way we find positive answers for the existence of multi-
periodical solutions of Euler-Lagrange equations that are Poisson-gradient PDEs
with bounded non-linearity. The results can be applied to the PDEs involved in
multi-time geometric dynamics ([5], [8], [10]-[12]).

2 The weak differential and an integral inequality

We consider Cg° the space of the indefinitely differentiable functions multiple
periodical with the period T = (Tl, el Tp), defined on RP taking values in R".
We know that C7° C W%’Q. We establish some conditions satisfied by a function
u € L [Ty, R"] which has a weak differential.
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1 Theorem. Letu € L' [Ty, R"]. Suppose v, € L' [Ty, R™] are such that the

vector form vadt® = (védta, . ,vgdta) is integrable. Denote by OT an arbitrary
curve from Ty, having the endings at O = (0,...,0) and T = (Tl, e ,Tp).

If
| wdn == [ (oade®.5), 1)
or or
for any f € CF°, then f(fT Vo dt® = 0 and it exists ¢ € R" such that u(t) =
f5t Vads® 4+ c. Also u (0) = u (T).

PROOF. We choose f = e! = (0,...,0,1,0,...,0), with the value 1 on the
position 4. From the relation (1) we have 0 = — [~ ¢! dt® and hence [~ vodt* =
0 or or

We define w € C (Typ, R") by w (t) = f5t Vads®,t €oT. By Fubini Theorem,
the function w satisfies the relation

=[5 ttr) = [, (o)

:/OAT(va,f(T)—f(s))dsa:—/A (va,f(s))df‘:/A (u, df) .

or or

This means that

/ﬁ (1 — w, df) = 0. 2)
oT

We consider now 7 : [a,b] = T,y (&) = (1 (£),..., 17 (£)),v(a) =0, v(b) =

T, a parameterization of the curve OT. The equality (2) becomes

/a” (u(t(ﬁ))—w(t(f))v (Zﬁgi»d{_o

for any f € Cg°. We will particularize for the function sequences

sin

and we observe that (see the Fourier series theory) u (t) —w (t) = ¢, ¢ € R"
almost everywhere in Ty (the constant is the only function orthogonal to the
previous sequences). By replacing w (t), we find that u (t) = f& Vads® + ¢ for

any t €OT. The function u satisfies u (0) =cand u(T) = f(;T Vads® +c = ¢, S0
u(0) = u(T). On the other side, the relation u (t) — u (1) = f:t Vo ds® implies
that u (t) = fAt Vods® + u (7). The 1-form v,dt® is called weak differential of
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the function u. By a Fourier series argument, the weak differential, if it exists,
is unique. The weak differential of u will be denoted by du. The existence of du
implies u (0) = u (7). QED

2 Theorem. If u = (ul, e ,u”) is a function in L' [Ty, R"] N L? [Ty, R"],
and |u (t)*> = d;u’ (t) ! (t), then

/ u(t)ydtt A A dtP
To

1

1 2

< (nT'...TP)> ( u(t)thlA.--AdtP> .
To

PROOF. Successively we have the relations

/ w(t)dtt A A dtP
To

/(ul(t),...,u"(t))dtl/\---/\dtp
To
:K/ ul(t)dtl/\---/\dtp,...,/ u”(t)dtl/\---/\dtp)‘
T() TO
1

= ((/Toul(t)dtl/\---Adtp)2+---+(/Toul(t)dtlA---AdtP>2>2

/ul(t)dtl/\---/\dtp /u”(t)dtl/\---/\dtp
To To

<

< [ @]+t @ A A
To

:/T ((‘ul(t)}a-'-,|un(t)‘),(1,...,1))dt1/\.../\dtp.

Using the Cauchy-Schwartz inequality, we obtain

/ w(t)dtt A - A dt?
To

< </TO(’ul(t)f—i--'-—l—|u"(t)|2>dt1/\---/\dtp>§ (/Tondtl/\---/\dtp>

N|=

1
= (nT"...T7)? < lu (8)[2 dt? /\~--/\dtp>
To

QED

3 A continuously differentiable action

The next theorem establishes some conditions in which the action

@:W%’2—>R,go(u):/ L(t,u(t),au(t)> dt' A A dEP
To

ot
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is continuously differentiable. In this way we extend the particular case p = 1,
studied in [3, Theorem 1.4].

3 Theorem. We consider L : Ty x R" x R™ — R, (t,x,y) — L(t,z,y),
a measurable function in t for any (x,y) € R™ x R" and with the continuous
partial derivatives in © and y for any t € Ty. If here exist a € C* (R, R") with
the derivative a’ bounded from above, b € C (Ty, RT) such that for any t € Ty
and any (xz,y) € R™ x R" to have

Ltz < a(lel+1y) b D).
VoL (t,2,y)| < a(lz])b(t), (3)
VoL (t,z,y)| < a(ly)b(t),

then, the functional @ has continuous partial derivatives in VV%’2 and his gradient
derives from the formula

(Ve (u),v ng [(V L (t u(t), at) v(t))

4
+ (VL (tu(t), 24 (), %2 @)] dtt A AdtP. @

PROOF. It is enough to prove that ¢ has the derivative ¢ (u) € (Wr}2)*
given by the relation (4) and the functlon ¢ W — (VV1 W u— @(u) is
continuous. We consider u,v € WT ,t € Ty, A € [—1,1]. We build the functions

F(A,t):L( w(t)+ 2o (t), Zz(t)qt)\g;}(t)),

\I/(A)—/T F\t)dth A AdtP.
0

Because the derivative a’ is bounded from above, there exists M > 0 such that
Alul=a©) _ a’ (¢) < M. This means that a (Ju|) < M |u| + a (0). On the other

e
side,

o3 0= (7o (0 + 2000, 5 0425 ) 0 0)
+ (VyL (t,u(t) (), ?;t‘( )+A§Z( )) % (t))

(u® + XD 0]+a (|5 0 +35 ) b0

< bo (M (Ju(8)] + v (B)]) +a (0)) |v (2)]

+ by (M < g;‘(t)‘ + g:(t)‘) —i—a(O))

5 (t)
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where

by = gréaT%(b(t) .

Then, we have ‘g—f (A t)| < d(t) € L' (T, RT). Then Leibniz formula of differ-
entiation under integral sign is applicable and

ov = 8j 1 p
B\ (0) = 1 X (0,t)dt N--- Ndt

- /TO [(vx]; (t,u(t),gj (t)> ,v(t)>

+ (VyL <t,u(t) , % (t)) ,g: (t))] dtt A A diP.

Moreover,

VoL (a0, 5 )| < b 011 0] + o 0)) € 2* (10, 77)

and

% (t)‘ +la (0)|> € L2 (Ty, RY) .

‘vyL <t,u(t) : % (t)>‘ < by (M
That is why
/TO [(VIL <t,u t), (?;: (t)> v (t))

+ <VyL <t,u(t) : % (t)) ,% (t))} dtt Ao A dtP

g/TO V.L <t,u(t),?;:(t)>
+/TO V,L <t,u<t),?;t‘(t)>’

smAﬁMW@HM@mumwAmAM

+ bo/ (M
To

lv ()| dtt A - A dtP

g:(t)‘dtlA---Adtp

ou

o 0]+l |5

at(t)‘dtl/\--wdtp.
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By using the Cauchy-Schwartz inequality, we find

1
2

g\f(o)‘ < bo (/TO (M |u ()] + |a (0)])* dt! A...Adtp>

%
: < v ()| dt* /\---/\dtp>
To

o (/TO (3
(/TO v

E(t)
. : 9
<y lo()|"dt" A ANdtP )+ Co
To TO

v
5(’5)
1
2 2
§max{01,02}2% (/ (|v(t)|2+ )dtl/\---/\dtp>
To

=C|vll.
By consequence, the action ¢ has the derivative ¢’ € (Wr}2> given by (4). The

I 2 . 2
a(t)+|a(0)y dt* N---NdtP |-

2 2
dtl/\-~-/\dtp)

2
dtl/\‘--/\dtp>

ov
5 (t)

Krasnoselski theorem and the hypothesis (3) imply the fact that the application
U — (VmL (-, u, %?) , VyL (~, U, %)) , from W%’Q to L' x L2, is continuous, so ¢’

*
is continuous from W%’Q to (W%2) and the proof is complete. QED

4 Poisson-gradient systems and their periodical so-
lutions

4.1 Multi-time Euler-Lagrange PDEs

We consider the multi-time variable ¢ = (tl, e ,tp) € RP, the functions
2': RP — R, (tl, . ,tp) — (tl, . ,tp) ,i=1,...n, and the partial velocities
rl = gf; ,a=1,... p. The Lagrangian

L : RPTF _, R (ta,xi,xg) — L (to‘,xi, ac’a)
determines the Euler-Lagrange equations

iaL *a—L 1=1 n, «=1
8t0‘8xf1_8xi’ Tt @=L D

D=
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(second order PDEs system in the n-dimensional space). We remark that in
the left hand member we have a summation after the index « (trace).

4.2 An action that produces Poisson-gradient systems
Let a=1,...,p,e=1,...,n,
Ty = Rit= () sl (H ),

n n % auz du 7
u:Ty— R u(t) = (u' (t),...,u (t)),ua:%,a = (up,) -
We consider the Lagrangian

L:Tyx R" x R™ — R, (t*,u',ul) — L (t*,u',ul)),

2

L(ta,ui,ug) _1 Ou + F(t,u(t)).

2| ot

A function u (field) that realizes the minimum of the action

go(u):/TOL<t,u(t),(?9;L(t)> A AP,

verifies a PDE's system of Poisson-gradient type (Euler-Lagrange equations on
Hr)

Au(t) = VF (tu (b)),
together with the boundary conditions

ou ou )
wlse=ulsr gy lsr= Gy lsp i = Loeeop:

4.3 Periodical solutions of Poisson-gradient dynamical systems
with bounded non-linearity

Let us formulate some conditions on the potential function that ensure the
existence of extremals.

4 Theorem. Suppose the potential function F : Ty x R" — R, (t,u) —
F (t,u) satisfies four properties:

(1) F (t,u) is measurable in t for any u € R"™ and it is continuously differen-
tiable in u for any t € Ty

(2) There exist the function a € C* (R, RT), with the derivative a’ bounded
from above, and the function b € C (Ty, R™) such that for any t € Ty and
any u € R™ to have |F (t,u)| < a(|u])b(t) and |V F (t,u)] < a(Ju|)b(t)
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(3) There exists g € C' (T, R) such that for any t € Ty and any u € R™, to

have
VW (8 u)| < g ().
(4) The action @1 ( fT ) dtt A - A dtP is weakly lower semi-
continuous. If fTo (t,u) dt‘1 - A dtP — oo when |u| — oo then the

Dirichlet problem
Au(t) =VF (t,u(t)),

ou .
u |si—: U |Sz'+’ ot |sz_—: ot |si+,z =1,...,p,

has at least a solution which minimizes the action

w(U):/TO[;

ou|?

ot

+F(t,u(t))] dt' Ao A dtP

. 1
in Hr.

PrOOF. We consider v = u + u, where u =

ToTE Tp fTO t)ydtt A - A dtP.
Then

2
go(u):/ ;g:: —i—F(t,u(t))] dt' Ao A dtP
To

2
:/ 110u +F<t,u>—F(t,u>+F<t,u<t>>] det Ao At
T |20t

2
= [ 135 +reno

// (VoF (t,a+ st (t)),u(t))ds Adtt A--- A dtP.
To

dt' A A dEP

According to property 3) from the hypothesis, we have the inequality
(Vo (8, u+ su(t),u(t) < Vol (80 + su (t))] u(t)] < g @)]|u (D),
whence we obtain the relation

—lg@Ofu®)] < (VuF (t,u+su(t)),u(t))
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for any t € Ty. By using this inequality we obtain
2
dt' A ANdP 4 | F(t,a)dtt A A dtP

so(u)z/TO; A

- [ w@iEorat A na
To

/ 1|0u
Z —
T 2

ot
—go [ la@)|dtt A--- Adt?P,
To

ou

ot

2
dtl/\-~-/\dtp+/ F(t,a)dt' A--- A dtP
To

where go = maxser, |g (t)|. According to the multi-time Wirtinger inequality [9],
there exists C7 > 0 such that

2

2
[u )| dt* A--- AdtP < Cy / aj(t) dt' Ao A dt?
To To 8t
This means
1|0ul? 1 N
o (u) > —|=| dt"AN---NdtP + | F(t,u)dt" A--- AdtP
T, 2 | Ot Ty
ou 2 2
—goC1</ — () dtl/\~-/\dtp> .
| ot

Of course, if ||u|| — oo, then, from the relation ||u|| < ||@|| + ||z|| it follows that
||| — oo or ||u|| — co. Because u is constant in R™, we have the equalities

1
ou |\ 2 2
— — 2 1
[l = llallyz2 = (/To <IUI +15 ) dt A-~/\dt1’>

2 1
—( \u|2dt1/\---Adtl’> = [u| (T"...T7)>.
To

This means that if ||u|| — oo, then |a| — co. Consequently using the hypothesis,
we obtain

/ F(t,a)dt' A NdtP — oco. (5)
To

il = ( [ (mor+ |5 o

Also

-

2 2
> dtl/\‘--/\dtp>
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ou
5 (t)

:(Aomm%- YﬁM~wﬁﬁa

With the Wirtinger inequality we obtain
o ’2 du

2
ul| < — - LA A deP
WLtLG8N)+mM>ﬁAAﬁ

(S

1
2

2
=(C+1) </ @(t) dt1A~--/\dt1’>
T, | Ot
The condition ||u| — oo implies
ou , |? 1
— ()| dt" AN+ ANdtP — 0. (6)
T, | Ot

From the hypothesis and (5) or (6), it follows that if ||u| — oo, then ¢ (u) — oo.
So ¢ is a coercitive application. This means that ¢ has a minimizing bounded
sequence (ug). The Hilbert space H;lp is reflexive. By consequence, the sequence
(u) (or one of his subsequence) is weakly convergent in H1. with the limit u.
Because . .

ou' . o’

= [ 6;j0%F — (t) = (t)dt' A--- N dt?
P2 (u) T v ot ( ) 8t'8 ( )

is a convex functional, it follows that @y is weakly lower semi-continuous, so
that the action

¢ (1) = @1 (u) + g2 (u)
is weakly lower semi-continuous and ¢ (u) < lim ¢ (ug). This means that u is
minimum point of .
We build the function
o:[-1,1] = R,

O (N) =p(u+ )

_/18
To

2|0t
where v € C7°. The point A = 0 is a critical point of ® if and only if the point
u is a critical point of ¢. Consequently

2
(u(t) + v (1))

+ F(t,u(t) + v (t))] dt' AN dEP,

t 9y . .
0= (¢ (u),v) = / [5&651.]-2;‘;; + 6, VIF (o (1)) o) (t)} At A - A deP,
To
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for allv € H%F and hence for all v € C7°. According to the definition of the weak
divergence, i.e.,

/ soBs, OW 0V Ly --/\dtp:—/ 5985,
T() TO

Tt A - - P
5 50 5B vl dt A dt?,

4 dte atﬁ

the Jacobi matrix function % has weak divergence (the function u has a weak
Laplacian) and
Au(t) =VF (t,u(t))

a.e. on Tp. Also, the existence of weak der1vat1ves 7 and Au implies that

=24
ot ot 'St

u ‘S__ U |S+a

QED

5 Remark. If the function u is at least of class C2, then the definition of

0
the weak divergence of the Jacobian matrix au (or of the weak Laplacian Au)

coincides with the classical definition. This fact is obvious if we have in mind
the formula of integration by parts

ou' ov’ o [ou’
0P j e e dt N NP = [ 5P dt' A - A dtP
/TO i 5t otP A N T <ata ) "

ut .
_ 5985, JdtE A - A dEP.
/TO U gtapes
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