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Abstract. Let ∇̃2 be the discrete Laplace operator acting on functions (or rational matrices)
f : QL → Q, where QL is the two dimensional lattice of size L embedded in Z2. Consider a
rational L×L matrix H, whose inner entries Hij satisfy ∇̃2Hij = 0. The matrix H is thus the
classical finite difference five-points approximation of the Laplace operator in two variables.
We give a constructive proof that H is the restriction to QL of a discrete harmonic polynomial
in two variables for any L > 2. This result proves a conjecture formulated in the context of
deterministic fixed-energy sandpile models in statistical mechanics.
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Introduction and Motivation

An interesting class ML of L × L matrices H with rational entries and a
related vector space of polynomials in two variables arise in some theoretical
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physics models, the so-called deterministic fixed-energy sandpiles (DFES) with
Bak-Tang-Wiesenfeld (BTW) toppling rule [3].

Introduced for the first time in [4] by imposing a global energy conservation
constraint on its dissipative counterpart [2], DFES is a deterministic cellular au-
tomaton, in which two-dimensional configurations (represented by square ma-
trices with integer elements zij(t)) evolve in discrete time steps t according to
a precise parallel updating rule.

The main feature of DFES is that, in contrast with the dissipative model,
only a small part of an a priori huge configuration space is dynamically explored,
and the system enters a periodic orbit after a surprisingly short transient. This
is a clear indication of the existence of many hidden conservation laws (HCL)
which split the wide configuration space into dynamically intransitive, and thus
much smaller subspaces [3].

Few of those HCL were identified in a non-systematic way in [1] and can be
represented in the form:

ΦL[f ](t) =


∑

i,j

f(i, j)zij(t)


 mod L (1)

where the sum runs over the integer coordinates of the two-dimensional L ×
L lattice sites, zij(t) is the integer value taken by the entry (i, j) at time t
and f(i, j) is a L × L matrix with rational entries. The interest is then in
characterizing the generating functions (GF) of HCL, i.e. the class of inequivalent
matrices f such that ΦL[f ](t) is a HCL (ΦL[f ](t+ 1) = ΦL[f ](t) for all t).

Bagnoli et al. [1] gave the following three GF: f1 = i, f2 = j and f3 =
i2 − j2. An intriguing observation is that, when thought as functions on the
whole R2 (f(x, y) : R2 7→ R), those three GF belong to a special vector space of
polynomials in two variables, which we call discrete harmonic polynomials (see
Def. 5). It is then appealing to conjecture that this should be a general feature
of any GF of a HCL.

In fact, an exhaustive characterization of GF has been given in [3] from a
completely different perspective, i.e. without any reference to polynomials, but
working simply on the matrix representation of those GF.

It was proven in [3] that a functional of the form (1) is a HCL if and only if
its GF is a inner-harmonic matrix of size L (see Def. 4)1.

1In appendix B of [3] the necessary and sufficient condition is expressed in terms of K-
harmonicity, and strictly speaking this is not equivalent to inner-harmonicity. However, it
can be proved that for every K-harmonic function there exists an inner-harmonic function
which belongs to the same equivalence class, i.e. generates an equivalent HCL. Thus, it is not
restrictive to work with inner-harmonic matrices, as we will do from now on.
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A class of discrete harmonic rational matrices 3

The purpose of this paper is to provide a rigorous link between the exact
characterization of HCL in terms of matrices [3] and the conjectured polynomial
form for any GF. More precisely, we will prove that every inner-harmonic matrix
of size L (i.e. any GF of a HCL in the sandpile context) can be represented (non
uniquely) as the restriction to the two-dimensional discrete lattice of a discrete
harmonic polynomial in two variables.

The paper is organized as follows. In Section 1 we set up notations and ba-
sic definitions, providing in particular the notions of i) inner-harmonic matrix
of size L (Def. 4), in terms of the well-known five-points formula for the dis-
cretization of the Laplace operator on a 2d lattice, and ii) discrete harmonic
polynomial (Def. 5). In Section 2, we enunciate the main theorem and provide
the algorithmic procedure for finding the discrete harmonic polynomial which
interpolates any given inner-harmonic matrix of size L ≥ 3. In the same section,
we provide a stepwise example of application, together with pointers to subse-
quent lemmas needed for the proof. Section 3 is devoted to conclusive remarks
and hints for future works, while a basis of discrete harmonic polynomials up
to degree 9 is given in the Appendix.

1 Definitions

We define QL as the two dimensional lattice embedded in Z2, i.e.:

QL = {(i, j) ∈ Z2|0 ≤ i, j ≤ L− 1} (2)

1 Definition. The inner sublattice Q†
L of QL is the set:

Q†
L = {(i, j) ∈ QL|1 ≤ i, j ≤ L− 2} (3)

The discrete Laplace operator is defined as the classical finite difference
five-points second order formula for the approximation of the Laplace operator:

2 Definition. Let f : QL → Q. The discrete Laplace operator ∇̃2 acts on
f as:

(∇̃2f †)(i, j) = 4f(i, j)− f(i− 1, j)− f(i+ 1, j)− f(i, j − 1)− f(i, j + 1) (4)

where f † := f |
Q

†
L
.

The generalization to functions f : R2 → R is straightforward (consider
f ≡ f † in this case).

3 Definition. LetML be the set of rational L×L matrices and F = {f |f :
QL → Q}. We define the invertible map Ψ : F → ML (L-correspondence)
through the following:

Ψ(h) := H (5)
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where h(−1 + j,−i+ L) := Hi,j .
Through Ψ, the lower left corner of H is mapped to the point (0, 0).

4 Definition. A L×L rational matrix H1 is called inner-harmonic matrix
of size L (L > 2) if the following property holds (h1 = Ψ−1(H1)):

(∇̃2h†1)(i, j) = 0 (6)

as in the following example, where we restrict for simplicity to integer entries:

H̃ =




2 0 0 1 0 1 2
0 2 1 2 0 2 1
1 7 0 6 −4 6 2
1 25 −14 26 −28 24 1
2 106 −107 140 −158 117 2
2 504 −660 799 −861 600 1
1 2568 −3836 4577 −4685 3143 0




(7)

5 Definition. A polynomial P (x, y) is called discrete harmonic polynomial
if (∇̃2P )(x, y) = 0 ∀(x, y) ∈ R2.

Examples of discrete harmonic polynomials are P1(x, y) = x2−y2, P2(x, y) =
x3 − 3xy2, P3(x, y) = xy.

The set of discrete harmonic polynomials of degree g will be denoted as D⋆g.

6 Definition. We say that a polynomial P (x, y) interpolates a L×L matrix
H if P (i, j) = h(i, j), where Ψ(h) = H. In this case, we write P

.
= H.

Note that:

7 Remark. Discrete harmonic polynomials are generally not harmonic in
R2, i.e. solutions of the continuum Laplace equation ∇2P = 0. Generally speak-
ing, every polynomial P(x, y) in two variables belongs to one of the following
classes:

• P(x, y) is neither harmonic nor discrete harmonic. Example: P(x, y) =
x3 + y3

• P(x, y) is harmonic but not discrete harmonic. Example: P(x, y) = x4 −
6x2y2 + y4

• P(x, y) is discrete harmonic but not harmonic. Example: P(x, y) = x4 −
2x2 − 6x2y2 + y4

• P(x, y) is both harmonic and discrete harmonic. Example: P(x, y) = xy

_____________________________________________________________________________________



A class of discrete harmonic rational matrices 5

8 Remark. Given a discrete harmonic polynomial P (x, y), it obviously in-
terpolates an inner-harmonic matrix HL on QL. For example, the polynomial
P (x, y) = x3 − 3xy2 interpolates the following matrix on Q7:

H7 =




216 198 144 54 −72 −234 −432
125 110 65 −10 −115 −250 −415
64 52 16 −44 −128 −236 −368
27 18 −9 −54 −117 −198 −297
8 2 −16 −46 −88 −142 −208
1 −2 −11 −26 −47 −74 −107
0 0 0 0 0 0 0




(8)

The converse is not trivial for any L > 2: while it is straightforward to find an
interpolating polynomial Φ(x, y) for any given inner-harmonic matrix through
any of the known Polynomial Interpolation formulas in two variables [5], the
resulting Φ is generally not discrete harmonic in R2 (and incidentally neither
harmonic). This can be seen easily by referring to the widely used Bilinear
Interpolation formula (see e.g. [8]), the extension to the two-dimensional lattice
of the well-known Lagrange interpolation formula in 1d:

Φ(x, y) =
∑

h,k

zhk

L−1∏

j=0

j 6=h

x− j
h− j

L−1∏

r=0
r 6=k

y − r
k − r (9)

where zhk = Hh,k, the sum runs over the sites of the matrix and the products
over rows and columns respectively. Note that deg(Φ) = 2(L− 1).

It is then possible to interpolate the following simple inner-harmonic matrix
of size L = 4:

H4 =




27 18 −9 −54
8 2 −16 −46
1 −2 −11 −26
−3 0 0 0


 (10)

The bilinear interpolating polynomial is the following:

ΦH4(x, y) = −3 +
11

2
x− 3x2 +

1

2
x3 +

11

2
y − 121

12
xy+

5

2
x2y − 11

12
x3y +−3y2 + 11

2
xy2 − 3x2y2 +

1

2
x3y2

+
3

2
y3 − 11

12
xy3 +

1

2
x2y3 − 1

12
x3y3 (11)

and a straightforward calculation yields ∇̃2(ΦH4)(x, y) 6= 0 in R2.
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In the following section, we shall provide the enunciation of the main result,
a stepwise example of application of the algorithm, and a constructive proof of
the main theorem.

2 Interpolation by discrete harmonic polynomials:

main result and algorithm

We enunciate our main result:

9 Theorem. Let H be an inner-harmonic matrix of size L > 2. There exists
a discrete harmonic polynomial P (x, y) of degree less or equal to 2(L− 1) such
that P interpolates H on QL.

Before getting to the technical points, it is informative to provide an example
of how our algorithmic procedure roughly works.

Let us consider the inner-harmonic matrix H := H4 in (10).

First step:

Isolate the lower left (3× 3) minor H(1) ⊂ H:

H(1) =




8 2 −16
1 −2 −11
−3 0 0


 (12)

Second step:

Apply Lemma 13 and find a discrete harmonic polynomial2 P (1)(x, y)
.
= H(1):

P (1)(x, y) = −3 + 15

4
x− 1

8
x2 − 3

4
x3 +

1

8
x4 +

15

4
y+

− 27

4
xy − 3

4
x2y − 1

8
y2 +

9

4
xy2 − 3

4
x2y2 +

1

4
y3 +

1

8
y4 (13)

Third step:

Evaluate P (1)(x, y) on the lattice QL ≡ Q4, obtaining the matrix Ĥ4:

Ĥ4 =




24 18 −9 −57
8 2 −16 −46
1 −2 −11 −26
−3 0 0 −3


 (14)

2Note that this polynomial does NOT coincide with the bilinear interpolating polynomial
we would get for the same matrix.
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A class of discrete harmonic rational matrices 7

Note that i) Ĥ4 6= H ii) the sites (1, 3) = 18 and (3, 1) = −26 are uniquely
determined by the discrete harmonicity requirement and thus coincide in the
two matrices.

Fourth step:

In order to amend the other mismatching entries along the border, compute the
four (L)-Polynomials (Lemma 14):

ξ1(x, y) = 384x− 656x2 + 375x3 − 65x4 − 3x5 + x6 − 516y + 332xy+

+ 465x2y − 440x3y + 105x4y − 6x5y + 776y2 − 1095xy2+

+ 360x2y2 + 30x3y2 − 15x4y2 − 225y3 + 460xy3 − 210x2y3+

+ 20x3y3 − 55y4 − 15xy4 + 15x2y4 + 21y5 − 6xy5 − y6 (15)

ξ2(x, y) = 240x− 386x2 + 135x3 + 25x4 − 15x5 + x6 − 168y − 152xy+

+ 555x2y − 280x3y + 15x4y + 6x5y + 326y2 − 255xy2+

− 180x2y2 + 150x3y2 − 15x4y2 − 195y3 + 260xy3 − 30x2y3+

− 20x3y3 + 35y4 − 75xy4 + 15x2y4 + 3y5 + 6xy5 − y6 (16)

ξ3(x, y) = 516x− 776x2 + 225x3 + 55x4 − 21x5 + x6 − 348y − 332xy+

+ 1095x2y − 460x3y + 15x4y + 6x5y + 656y2 − 465xy2+

− 360x2y2 + 210x3y2 − 15x4y2 − 375y3 + 440xy3 − 30x2y3+

− 20x3y3 + 65y4 − 105xy4 + 15x2y4 + 3y5 + 6xy5 − y6 (17)

ξ4(x, y) = 1644x− 2852x2 + 1305x3 − 35x4 − 69x5 + 7x6+

− 1644y + 3225x2y − 2130x3y + 345x4y + 2852y2+

− 3225xy2 + 690x3y2 − 105x4y2 − 1305y3 + 2130xy3+

− 690x2y3 + 35y4 − 345xy4 + 105x2y4 + 69y5 − 7y6 (18)

Those ξk have the remarkable properties to be i) discrete harmonic in R2 ii)
almost everywhere 0 on QL, except one single entry (two for ξ4). In particular,
ξk

.
= ξ̂k, where:

ξ̂1 =




γ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (19)

ξ̂2 =




0 0 0 γ2
0 0 0 0
0 0 0 0
0 0 0 0


 (20)

_____________________________________________________________________________________
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ξ̂3 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ3


 (21)

ξ̂4 =




0 0 γ4 0
0 0 0 −γ4
0 0 0 0
0 0 0 0


 (22)

where, for the particular choice of the basis polynomials used to build up the
ξ(x, y) (see Lemma 14 for details), we have

(γ1, γ2, γ3, γ4) = (−720,−720, 720,−720).

Fifth step:

Define the sought interpolating polynomial P (x, y) for H as:

P (x, y) = P (1)(x, y) +
4∑

k=1

zkξk(x, y) (23)

where zk are parameters to be determined, and compute P (x, y) on QL:

P̂ =




24− 720z1 18 −9− 720z4 −57− 720z2
8 2 −16 −46 + 720z4
1 −2 −11 −26
−3 0 0 −3 + 720z3


 (24)

Sixth step:

Compute (z1, z2, z3, z4) by requiring P̂ ≡ H:




24− 720z1 = 27

−57− 720z2 = −54
−3 + 720z3 = 0

−9− 720z4 = −9

which gives:




z1 = −1/240
z2 = −1/240
z3 = 1/240

z4 = 0

(25)

_____________________________________________________________________________________



A class of discrete harmonic rational matrices 9

Substituting (25) back into (23), the final result is obtained:

P (x, y) = −3 + 69

20
x+

59

60
x2 − 31

16
x3 +

25

48
x4 − 1

80
x5 − 1

240
x6 +

103

20
y+

− 533

60
xy − 7

16
x2y +

13

12
x3y − 7

16
x4y +

1

40
x5y − 119

60
y2+

+
95

16
xy2 − 3x2y2 +

1

8
x3y2 +

1

16
x4y2 +

7

16
y3 − 7

6
xy3 +

7

8
x2y3+

+
1

12
x3y3 +

23

48
y4 − 1

16
xy4 − 1

16
x2y4 − 7

80
y5 +

1

40
xy5 +

1

240
y6 (26)

Note the difference between (26) and (11) although they interpolate the very
same matrix (10). The degree of P is 6 ≡ 2(L− 1) as stated in Theorem 9.

This procedure can be iterated without difficulties up to interpolating inner-
harmonic matrices of any size through a repeated application of Lemma 15.

Hereafter we shall provide several preliminary lemmas which are essential
for the proof of the main result and have been hinted previously.

10 Lemma. Let k > 0. Then D⋆k is a vector space of dimension 2.

Proof. First, we easily prove the following statement: let PN be the set of
two variables polynomials up to degreeN and let P1(x, y) ∈ PN . Then P2(x, y) =
∇̃2P1(x, y) ∈ PN−2.

In fact, we notice that the following properties hold:

∇̃2(axn + bym) = a∇̃2(xn) + b∇̃2(ym) Linearity (27)

∇̃2(xnym) = xn∇̃2(ym) + ym∇̃2(xn) Leibniz rule (28)

Furthermore, for every one-variable monomial in x (or y), it is straightfor-
ward to prove the following:

∇̃2xn =

{
−2∑(n−2)/2

k=0

(
n
2k

)
x2k if n is even

−2∑(n−3)/2
k=0

(
n

2k+1

)
x2k+1 if n is odd

(29)

Therefore, applying the Laplace operator to a one-variable monomial of de-
gree n, we obtain a linear combination of one-variables monomials up to degree
n − 2. Thanks to (27) and (28), we can conclude that the same holds also for
two-variables polynomials. QED

It is well-known that PN is a linear vector space, with dim(PN ) =
∑N

n=0(n+

1) = (N+1)(N+2)
2 . According to the previous results, we call ΠN : PN → PN−2

the following linear map:

ΠN (P (x, y)) = (∇̃2P )(x, y) (30)

_____________________________________________________________________________________
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Then, we call DN = ker(ΠN ), i.e. the following vector subspace of PN :

DN = {P (x, y) ∈ PN : (∇̃2P )(x, y) = 0 ∀(x, y) ∈ R2} (31)

The elements of DN are discrete harmonic polynomials. The dimension of DN
can be found simply applying the Rank-nullity theorem to the map ΠN :

dim(DN ) = dim(PN )− dim(PN−2)

=
(N + 1)(N + 2)

2
− N(N − 1)

2
= 2N + 1

(32)

Let D⋆k be the following vector subspace of DN :

D⋆k = {P (x, y) ∈ DN | P’s degree is exactly k ≤ N} (33)

Obviously, dim(D⋆k) = dim(Dk)− dim(Dk−1) = 2.

Therefore, for k > 0 we can always find two (and not more) linearly indepen-
dent discrete harmonic polynomials, i.e. elements of DN , with the same degree
k.

Following the standard algebraic procedure, it is quite easy to build up a
complete basis B⋆ = {e⋆1, . . . , e⋆2N+1} for DN , starting from the canonical basis
in PN :

BN = {1, x, y, x2, xy, y2, . . . , yN}

Throughout this paper, we will refer to the basis {Uk(x, y)} listed in the
Appendix.

11 Lemma. For every square matrix with an arbitrary fixed rational con-
tour, there exists one and only one inner-harmonic completion.

Proof. Let FΩ(i, j) : QL → Q and let its (4L − 4) border sites be forced
to assume rational values zk belonging to the set Ω.

In matrix form, we have:

FΩ =




z1 z2 z3 · · · · · · zL
z4L−4 x1 x2 · · · xL−2 zL+1

z4L−5 xL−1 xL · · · x2(L−2) zL+2
...

...
...

...
. . .

...
z3L−2 z3L−3 · · · · · · z2L z2L−1




(34)

The nested (L− 2)× (L− 2) submatrix F †
Ω has unknown entries xj ∈ Q.

We prove that, for each set Ω, there exists one and only one submatrix F †
Ω

with rational entries such that FΩ(i, j) is inner-harmonic.

_____________________________________________________________________________________



A class of discrete harmonic rational matrices 11

If we impose the inner-harmonicity condition on FΩ, we get the linear system
Â~x = ~η({zk}), where Â is the following (L− 2)2 × (L− 2)2 matrix:

Â = 4Î− Ĥ = 4Î−




H I 0 · · · 0 0
I H I · · · · · · 0
0 I H I · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . . I

0 · · · · · · · · · I H




(35)

Î is the identity matrix (L−2)2×(L−2)2, I is the identity matrix (L−2)×(L−2),
0 is the null matrix (L−2)×(L−2) and H is a well-known matrix describing the
Hamiltonian of nearest-neighbor hopping on a one-dimensional lattice (see [7]
and references therein):

H =




0 1 0 0 · · · 0
1 0 1 0 · · · 0
0 1 0 1 · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . . 1

0 0 0 · · · 1 0




(36)

The vector ~η depends on the fixed contour values. Its entries are of the
following forms:

ηj =





zα + zβ if xj is a corner site of F †
Ω

zγ if xj is a border site of F †
Ω, but not a corner site

0 otherwise

Since the matrix (35) is diagonal predominant [6], the system admits one
and only one solution in Q. QED

12 Corollary. If Ω = {0, . . . , 0}, then FΩ is the null matrix L× L.
13 Lemma. Given a 3×3 inner-harmonic matrix A, it is always possible to

find a discrete harmonic polynomial P (x, y) with rational coefficients and degree
4 such that P

.
= A on Q3.

Proof. For L = 3, there are 8 sites along the contour. Choose the following
set of discrete harmonic polynomials3 (see Appendix):

{U0(x, y), . . . , U6(x, y)} ∪ {U8(x, y)} (37)

3Obviously, infinitely many other choices are equally possible.

_____________________________________________________________________________________
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The sought polynomial P (x, y) satisfying the Lemma may be written as a linear
combination of the polynomials in (37), with unknown coefficients αj (j =
1, . . . , 8).

The condition that P
.
= A translates into a linear system with 8 equations

in the unknowns αj , whose matrix of coefficient for the choice (37) is:

M =




1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 −1
1 0 2 0 4 0 8 8
1 1 0 0 −1 1 0 1
1 1 2 2 3 −11 2 −15
1 2 0 0 −4 8 0 16
1 2 1 2 −3 2 −11 −9
1 2 2 4 0 −16 −16 −72




(38)

The determinant ofM is nonzero. Thus the polynomial interpolating the contour
(and for Lemma 11 also the central site) always exists and has degree 4. QED

14 Lemma. For every L ≥ 3, there exist four discrete harmonic (L)-
polynomials ξ1, ξ2, ξ3 and ξ4, whose degree is less or equal to 2L, such that
ξk

.
= Z(k), k = 1, 2, 3, 4. The entries of the matrices Z(k), k = 1, 2, 3, 4 are all

0 except:

(1) the entry (0, L) for Z(1);

(2) the entry (L,L) for Z(2);

(3) the entry (L, 0) for Z(3);

(4) the entries (L− 1, L) and (L,L− 1) for Z(4);

As it was evident from the example of application, the (L)-polynomials have
the following effect. Given a (L + 1) × (L + 1) inner-harmonic matrix G and a
discrete harmonic polynomial P (x, y) interpolating the lower-left minor (L×L)
of G, those polynomials neutralize the mismatch between 4 sites along the border
of G and the values assumed by P (x, y) on QL+1.

We prove now the existence of ξ1(x, y). For the others, the procedure is
completely analogue.

Consider a set of 4L linearly independent discrete harmonic polynomials
Pk,s(x, y), where k = 1, . . . , 2L is the degree, and s = 1, 2 which do not contain
the constant term.

We write the sought ξ1(x, y) in the form

ξ1(x, y) = α1P1,1(x, y) + α2P1,2(x, y) + · · ·+ α4LP2L,2(x, y) (39)

_____________________________________________________________________________________
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To determine the 4L unknowns αj , we require that ξ1(x, y) should be zero
on i) the border sites of the lower-left minorM of Z(1) ii) four other points in
Z2, precisely: (L− 1, L), (L,L), (L, 0), (L+ 1, L).

This translates into a linear homogeneous system S in 4L equations for the
4L unknowns α1, . . . , α4L. Note that the site (L,L − 1) is automatically zero
due to the harmonicity condition.

The first row of the matrix of coefficients for S is given by:

P1,1(0, 0), P1,2(0, 0), . . . , P2L,2(0, 0) (40)

and these values are all zero because the polynomials do not contain the constant
term.

Thus, the determinant is zero and the homogeneous system has an infinite
non-zero solutions set {α1, . . . , α4L}. Since the polynomials Pk,s(x, y) are linearly
independent, the obtained polynomial cannot be identically zero by definition.

Now, let ξ1 be defined by a non-zero solution {α1, . . . , α4L}. Being zero along
the contour ofM, it is zero inside M because of the Corollary 12.

Proof. It is also zero by the discrete harmonicity relation on sites (k, L),
k = 1, . . . , L + 1, and sites (L, k), k = 0, . . . , L + 1. Instead, it is required to
be nonzero on the site (0, L). Indeed, we can prove that this is the case by
contradiction. Assume that ξ1(0, L) = 0. We have:

ξ1(j, k) = 0, k = L, j = 0, 1, . . . , L+ 1 . (41)

Let:

n = L/2 + 1 m = L/2 for even L (42)

n = (L+ 1)/2 + 1 m = (L+ 1)/2− 1 for odd L (43)

Due to the harmonicity relation, there is an integer J , 0 < J < L+ 1, such
that:

ξ1(J, L− 1 + i) = 0 for every i = 1, . . . , n

ξ1(J,−k) = 0 for every k = 1, . . . ,m

This means that the one variable polynomial η(y) = ξ1(J, y) has 2L + 1
zeros: but this is absurd, since its degree in y is at most 2L. Therefore ξ1(0, L) 6=
0. QED

15 Lemma. Let A be a inner-harmonic matrix of order L, and A′ the
(L − 1) × (L − 1) lower-left inner-harmonic minor of A. Let χ(x, y) be a dis-
crete harmonic polynomial of degree h interpolating A′. Then, it is possible to
define a discrete harmonic polynomial σ(x, y), of degree k = max[2(L− 1), h],
interpolating A.

_____________________________________________________________________________________
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Proof. Define:





s1 := Site (0, L− 1)

s2 := Site (L− 2, L− 1)

s3 := Site (L− 1, L− 1)

s4 := Site (L− 1, L− 2)

s5 := Site (L− 1, 0)

and denote χ(sk) := χk and A(sk) := ak for simplicity.

We write the sought σ(x, y) in the form:

σ(x, y) = χ(x, y) +

4∑

k=1

zkξk(x, y) , (44)

where the ξk(x, y) are (L-1)-polynomials as defined in Lemma 14, and zk are
coefficients to be determined. The degree of each of the ξk is at most 2(L− 1),
confirming the statement of the Lemma about the degree of σ.

We note that σ(x, y) ≡ χ(x, y) on the sites of A′, since all the (L-1)-
polynomials assume value 0 there.

The values assumed by the polynomial χ on the North and East borders of
QL are uniquely constrained by the harmonicity condition, except the five sites
sk. In general, ak 6= χk.

For example, for L = 5 we have the following schematic situation (compare
with (14)):

A =




� � � ♦ �

· · · · ♦

· · · · �

· · · · �

· · · · �




(45)

where:




· ⇒ Sites in A′, where χ
.
= A

� ⇒ Sites where χ
.
= A by harmonicity

� ⇒ Sites (s1, s3, s5) where χ��
.
=A

♦ ⇒ Sites (s2, s4) where χ��
.
=A, but mutually constrained by harmonicity

Indeed, the discrete harmonicity condition, applied to A and χ, requires that:

χ2 + χ4 = a2 + a4 (46)

_____________________________________________________________________________________
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Given that ξk(s1) = 0 for k 6= 1 and ξ1(s1) = γ 6= 0 (Lemma 14), we get
from equation (44):

σ(s1) = χ1 + z1γ = a1 (47)

This determines z1 as z1 = (a1 − χ1)/γ.

The same procedure applies to the sites s3 and s5, determining z2 and z3:
note the shift of indices, reflecting the fact that we have five sites and only four
(L-1)-polynomials.

In fact, the polynomial ξ4 has to be nonzero simultaneously on both sites
s2 and s4, and by harmonicity ξ4(s2) = −ξ4(s4). This constraint, however, is
compatible with the correct definition of z4 and therefore of σ(x, y).

Indeed, define ω = ξ4(s2) = −ξ4(s4). Equation (44) requires evidently that
σ(s2) = χ2+z4ω = a2 and σ(s4) = χ4−z4ω = a4. Both equations are obviously
satisfied by z4 = (a2 − χ2)/ω thanks to (46).

Thus, the coefficients z1, . . . , z4 in (44) are uniquely determined and the
polynomial σ(x, y) interpolating A exists. QED

We are now able to provide a proof of Theorem 9.

Proof of Theorem 9. We only need an iterative (or “telescopic”) appli-
cation of previous results: starting from H, we drop the upper row and last
column on the right, defining the minor H(1).

If we can find a discrete harmonic polynomial χ(x, y)
.
= H(1), such that

deg(χ) ≤ 2(L− 1), the Theorem follows via Lemma 15; otherwise, we drop the
upper row and last column on the right of H(1) again, and restart the procedure.

This process is consistent, because the minors iteratively defined continue
to be inner-harmonic.

Suppose that we have finally found the minor H(n) (whose size is L− n) of
H(n−1), admitting an interpolating polynomial χ(n)(x, y) such that deg(χ(n)) ≤
2(L − 1). By Lemma 15, the minor H(n−1) can be interpolated, and so on, up
to interpolating H.

Since at least for L = 3 the interpolating polynomial always exists (Lemma
13), in the worst possible case the telescopic algorithm will start from the 3× 3
lower left minor ofH , and will eventually produce the desired result by repeated
applications of Lemma 15. QED

3 Final remarks

In this note, we have developed a “telescopic” technique to interpolate an
inner-harmonic matrix of size L by a discrete harmonic polynomial of degree
less or equal to 2(L− 1).

_____________________________________________________________________________________
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The solution we have presented proves a conjecture about hidden conser-
vation laws in the context of some statistical mechanics models, namely the so
called fixed-energy sandpiles with deterministic BTW toppling rule.

We remark that the algorithmic procedure we devised should be regarded as
a mere tool for the proof, and by no means is meant to provide a computationally
efficient and robust interpolator for inner-harmonic matrices.

As a final point, we wish to give here a short survey on other related questions
and problems which have not been addressed in this paper and could be worthy
of further investigations.

(1) Discrete harmonic polynomials of minimal degree: the constructive proce-
dure outlined in section 2 does not lead to an uniquely defined interpolat-
ing polynomial. A natural question to ask is what the minimal attainable
degree of such a polynomial is, and how to build it up.

(2) A related combinatorial problem: Another class of matrices (M⋆
L) with

integer entries and closely related toML emerges in [3] and proves to be
connected to deep symmetries of the evolving rule of that model.
The main features ofM⋆

L are:

• Condition (6) holds modulus the size L of the matrix.

• Cyclical border conditions are imposed and condition (6) holds for
border sites as well.

• Entries are bounded by an integer M .

An interesting problem in analytical combinatorics, with many possible
consequences on the underlying physical issue, is to count the number of
those matrices for fixed L and M .

Acknowledgements. We thank Dr. Igor Krasovsky, Dr. Ilia Krasikov and
Dr. Steven Noble (Brunel University) for helpful comments. We also thank Elisa
Garimberti (Brunel University) for a careful revision of the manuscript.

Appendix: list of Discrete Harmonic Polynomials

We report here a basis of discrete harmonic polynomials up to degree 9 that
we used repeatedly throughout the paper:

U0(x, y) = 1 (48)

U1(x, y) = y (49)

_____________________________________________________________________________________
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U2(x, y) = x (50)

U3(x, y) = xy (51)

U4(x, y) = x2 − y2 (52)

U5(x, y) = −3x2y + y3 (53)

U6(x, y) = x3 − 3xy2 (54)

U7(x, y) = x3y − xy3 (55)

U8(x, y) = x4 − 2x2 − 6x2y2 + y4 (56)

U9(x, y) = 5x4y − 10x2y3 − 10x2y + y5 (57)

U10(x, y) = x5 − 10x3y2 + 5xy4 − 10xy2 (58)

U11(x, y) = x5y − 10

3
x3y3 − 10

3
xy3 + xy5 (59)

U12(x, y) = −15x4y2 − 10x4 + 10x2 + 15x2y4 + 30x2y2 − y6 + x6 (60)

U13(x, y) = 35x4y3 + 70x4y − 21x2y5 − 70x2y3 − 70x2y + y7 − 7x6y (61)

U14(x, y) = −21x5y2 − 70x3y2 + 35x3y4 − 7xy6 + 70xy4 − 70xy2 + x7 (62)

U15(x, y) = −7x5y3 + 7x3y5 − 70

3
x3y3 − 70

3
xy3 + xy7 + 14xy5 + x7y (63)

U16(x, y) = −140x4y2 + 70x4y4 − 140x4 + 166x2 − 28x2y6 + 280x2y4+

+ 560x2y2 + y8 − 28y6 + x8 − 28x6y2 (64)

U17(x, y) = 126x5y4 − 252x5y2 − 84x3y6 − 840x3y2 + 840x3y4 + 9xy8+

− 252xy6 + 1260xy4 − 1026xy2 + x9 − 36x7y2 (65)

U18(x, y) = 840x4y3 + 126x4y5 + 1260x4y − 252x2y5 − 36x2y7 − 840x2y3+

− 1026x2y + y9 + 9x8y − 84x6y3 − 252x6y (66)
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