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Abstract. The classical definition of arithmetical mean can be transferred to a group (G, +)
with the property that for any y ∈ G there is a unique x ∈ G such that x + x = y (uni-2-
divisible group). Indeed we define in G a commutative and idempotent operation � that
recalls the classical means, even if (G, +) is not commutative. Afterwards in section 3 we show
that, by means of the commutative and idempotent operation � usually associated with an
autodistributive Steiner triple system (G,L), we can endow any plane of (G,L) of a structure
of affine desarguesian (Galois) plane.
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1 Introduction

Let us consider groups (G,+) in which for any y ∈ G there is a unique
x ∈ G such that y = 2x (i.e. the function 2 mapping x ∈ G in 2x is bijective).
We say that these groups are uniquely 2-divisible (briefly: uni-2-divisible).

Henceforth we will often represent a group (G,+) only with G.
It is easy to see that whenever all the elements of a group G are of finite

odd order, then the group is uni-2-divisible.
Clearly, the additive real group R is uni-2-divisible and several properties of

the classical arithmetical mean depend on this fact.
Now let a, b, d belong to an arbitrary group G, with a+ 2d = b. If d′ is the

only element of G such that d′ + a = a+ d, then b = a+ 2d = 2d′ + a; therefore
a = b+ 2(−d) = 2(−d′) + b. Thus it is natural to say that a + d is a midpoint
of a and b.

Let G be a uni-2-divisible group. Thus, for any a, b ∈ G, in G there are a
unique d and a unique d′ such that a + 2d = b = 2d′ + a; wiz. d = (−a + b)/2
and d′ = (b− a)/2. Thus a and b have a unique midpoint that we indicate with
a# b. Obviously, if G is commutative, then a# b = (a+ b)/2 (cf. the classical
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case of real numbers); more generally we have:

a# b = a+ (−a+ b)/2 = (b− a)/2 + a

= (a− b)/2 + b = b+ (−b+ a)/2 = b# a. (1)

Clearly # is a commutative and idempotent operation on G such that + is
distributive with respect to # (hence for any g ∈ G, g+ and +g are automor-
phisms of (G,#)). Moreover the translations a# and #a (but a# = #a by
commutativity of #) are bijective; i.e.: (G,#) is a quasigroup.

Let G be a uni-2-divisible group. Whenever the elements a and c of G
commute, then the only midpoint of a and a+ c is c/2 + a = a+ c/2; hence a
and c/2 commute too. Consequently, the center C of G is uni-2-divisible.

Moreover, a subgroup of G is uni-2-divisible if and only if it is closed under
the mapping 2−1. Therefore the set of uni-2-divisible subgroups of G is a closure
system; hence if g ∈ G, we will represent with << g >> the uni-2-divisible
subgroup generated by g.

Clearly, the above subgroup << g >> is the set union of the chain of cyclic
subgroups of type < g/2h >, with an obvious meaning of symbol g/2h, where
h ∈ N (the set of natural numbers). Thus << g >> is a commutative group, as
well as each < g/2h >.

If (G,+) is a group, then through an element 0′ ∈ G one can define a new
group operation on G by setting a+′ b = a− 0′ + b. Therefore, the left and the
right translations 0′+, +0′ are isomorphisms from (G,+) onto (G,+′). Hence
0′ = 0′ + 0 is the “zero” of (G,+′) and 0′ − b+ 0′ is the opposite −′b of b with
respect to +′; thus a−′ b = a+′ (−′b) = a− b+ 0′.

If (G,+) is uni-2-divisible, then also (G,+′) is uni-2-divisible; thus, for any
g ∈ G we get [(g−0′)/2+0′]+′[(g−0′)/2+0′] = (g−0′)/2+0′−0′+(g−0′)/2+0′ =
g. Hence it is easy to verify that # coincides with the analogous operation #′

associated with +′.
Now let (G,#) be an arbitrary commutative and idempotent quasigroup.

Then it is useful consider another operation � on G by setting x � z equal to
the unique element y such that x#y = z; hence x#(x � z) = z = x � (x#z).
Consequently, x � z = x#−1z; moreover, by x# (x � z) = (x � z)# x = z,
we have also:

(x � z) � z = x. (2)

It is obvious that x � z = z if and only if x = z. Moreover, since # is
commutative, the following property holds:

x# y = z ⇔ y � z = x ⇔ x � z = y. (3)
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If � is right distributive with respect to itself (briefly, r-autodistributive),
we say that # is a mean. In this case � is right distributive (r-distributive)
also with respect to #. We say also that the structure (G,#,�) is a mean.

Several authors studied quasigroups with a r-autodistributive operation (see
[3] and [4]).

If H is a closed subset of a mean (G,#,�), we say that H is a sub-mean of
(G,#,�). Then if K ⊆ G, ((K)) denote the sub-mean of (G,#,�) generated
by K; in particular, if K = {a1, . . . , an}, we will write ((a1, . . . , an)) instead of
(({a1, . . . , an})). In a mean (G,#,�) we have the following properties. The
second property is a consequence of the first one, which follows from (2).

x � (y � z) = [(x � z) � z] � (y � z) = [(x � z) � y] � z; (4)

x � (y � x) = (x � y) � x (flexibility property). (5)

If # is associated with a uni-2-divisible group G, it is easy to verify that
x � z = z − x + z (cf [7], Sec. 5); hence + is distributive also with respect to
�. This means that x+ and +x are automorphisms of the structure (G,#,�).
Moreover, it is easy to verify that � is r-autodistributive.

In this particular case we say that both # and (G,#,�) are group−means
(briefly, g −means). Till different notice a group G shall be uni-2-divisible.

2 Some remarks on means

Henceforth # and � shall represent the operations of a mean (G,#,�).
We say that a sequence (a0, a1, . . .) of elements of G is a �-sequence if

ai−1 � ai = ai+1 (equivalently: ai+1 � ai = ai−1 or ai−1 # ai+1 = ai) for any
index i �= 0. Therefore (a0, a1, . . .) is completely determined by a0 and a1; hence
we set (a0, a1)� := (a0, a1, . . .).

1 Remark. By property (5) we immediately get a0 � a2 = a4. Indeed
a0 � a2 = (a2 � a1) � a2 = a2 � (a1 � a2) = a2 � a3 = a4.

If (a0, a1, . . .) and (b0, b1, . . .) are two sequences such that a0 = ai # bi = b0
for any index i, then we say that they are co-symmetric.

2 Lemma. Let the �-sequences (a0, a1)� and (b0, b1)� fulfil the property
a0 = a1 # b1 = b0. Then they are co-symmetric.

Proof. Let ai � a0 = bi for each i < n. Then by r-autodistributivity of
� we have an � a0 = (an−2 � an−1) � a0 = (an−2 � a0) � (an−1 � a0) =
bn−2 � bn−1 = bn. Whence the claim by induction. QED
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3 Theorem. For any a, a′, a′′, a′′′, a′′′′ ∈ G, let a# a′′′′ = a′′, a# a′′ = a′

and a′′ # a′′′′ = a′′′. Then a′ # a′′′ = a′′.
Proof. Let us consider the sequence (a0, a1, . . .) = � (a, a′). Thus a0 = a,

a1 = a′ and a2 = a′′; moreover, by Remark 1, a4 = a0 � a2 = a � a′′ = a′′′′.
Furthermore, a3 = a2#a4 = a′′#a′′′′ = a′′′. Whence the assertion by a′#a′′′ =
a1 # a3 = a2 = a′′. QED

4 Remark. Let ↓ be the function mapping any sequence (a0, a1, . . .) into the
sequence (d0, d1, . . .) obtained from (a0, a1, . . .) by inserting ai # ai+1 between
ai and ai+1. Hence ai = d2i for any index i. If (a0, a1, . . .) is a �-sequence, then
— by Theorem 3 — also ↓ (a0, a1, . . .) is a �-sequence (and vice-versa, as an
easy consequence of Remark 1).

5 Theorem. Let the sequence (a0, a1, . . .) be equal to (a0, a1)�. Then for
any index i we have a0 # ai+1 = a1 # ai.

Proof. We put (d0, d1, . . .) := ↓ (a0, a1, . . .). Hence, by Remark 4, it is
sufficient to verify that d0 # d2(i+1) = d2 # d2i.

In fact the sequences (b′0, b′1, . . .)=(di+1, di)� and (a′0, a′1, . . .) = s(di+1, di+2)
are symmetric by Lemma 2. Therefore d2 # d2i = b′i−1 # a′i−1 = di+1 = b′i+1 #
a′i+1 = d0 # d2(i+1). QED

Let us put a−i = ai � a0. Thus if we consider the �-sequence (c0, c1, . . .) =
(aj , aj+1)�, where j ∈ Z, we have ci = ai+j for any i ∈ N.

For any i, j ∈ Z, from Theorem 5 we immediately get the following equalities:

ai # aj = a0 # ai+j ; (6)
aj = aj # aj = ai# a2j−i, hence ai � aj = a2j−i. (7)

Now, given the �-sequence (a0, a1)�, let H0 be the set of all the terms ai,
with i ∈ Z. Analogously, let us consider the set H1 obtained from the sequence
↓ ((a0, a1)�), the set H2 obtained from the sequence ↓2 ((a0, a1)�→), and so on.
It is clear that the set H which is union of all Hi coincides with the sub-mean
((a0, a1)).

6 Theorem. Let the �-sequence (a0, a1)� possess at least two equal terms,
with a0 �= a1; moreover, let h be the minimum index such that ah = ak for some
k < h. The following properties hold:

(i1) k = 0; moreover, h is an odd number. Furthermore, ah+1 = a1; hence
(a0, a1)� = (a0, a1, . . . , ah−1, a0, a1, . . .).

(i2) for any i, j ∈ N, ai = aj if and only if i ≡ j ( mod h).

(i3) If ({0, . . . , h − 1},+′) is the group of integers under the addition mo-
dulo h, let f be the bijection mapping any i ∈ {0, . . . , h − 1} into ai ∈
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{a0, a1, . . . , ah−1} and consider the binary operation + on {a0, a1, . . . ,
ah−1} such that f is an isomorphism. Thus, for any ap, aq ∈ {a0, a1, . . . ,
ah−1}, ap # aq = a(p+′q)/2 (= (ap + aq)/2).

(i4) ((a0, a1)) = {a0, a1, . . . , ah−1}; moreover ((a0, a1)) is a g-mean.

Proof.

(i1) If k > 0, then ak+1 # ah−1 = ak # ah = ak = ak+1 # ak−1, hence ah−1 =
ak−1; this contradicts the hypothesis.

Furthermore, if h = 2m > 0, then a0 = ah#a0 = ah−m#am = am#am =
am. This is absurd, because 0 �= m < h.

Moreover, ah+1 = a1. In fact ah+1#a1 = ah#a2 = a0#a2 = a1#a1 = a1.

(i2) The assertion is an obvious consequence of above property (i1).

(i3) Let t = (p +′ q)/2; hence t +′ t = p +′ q ∼= p + q( mod h); hence, at+t =
at+′t = ap+q (see (i2) above). Therefore at = a0#ap+q = ap#aq. Whence
the claim.

(i4) In fact {a0, a1, . . . , ah−1} ⊆ ((a0, a1)). Moreover {a0, a1, . . . , ah−1} is closed
under # and �. Whence the assertion by (i3).

QED

Now let 0 and a be different elements of G. We have the following

7 Theorem. The sub-mean ((0, a)) is a g-mean by means of a commutative
binary operation + on ((0, a)), having 0 as the zero element.

Proof. If (0, a)� possesses at least two equal terms, the assertion is true
by (i4) of Theorem 6, with a0 = 0 and a1 = a. Therefore we assume that
the terms of (0, a)� are pairwise distinct. Afterwards we define a commutative
group operation +0 on the set H0 above by putting ap +0 aq := ap+q, for any
p, q ∈ Z. Then we consider the analogous group (H1,+1); and so on with respect
to any set Hi.

Obviously, (Hi,+i) is a subgroup of (Hi+1,+i+1). Therefore, considered the
set union H of all Hi, there is a unique (commutative) group operation + on
H such that each (Hi,+i) is a subgroup of (H,+).

Thus, since H = ((0, a)), it is easy to verify that on ((0, a)) the mean # is
determined by (H,+). In fact, if b, c ∈ H, then there exists a set Hi such that
b, c ∈ Hi. Therefore b = t2p and c = t2q, where t2p and t2q are suitable terms of
Hi+1. Hence b# c = t2p # t2q = tp+q = (t2p + t2q)/2. QED
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Thus, for any x ∈ G, we put −x = x � 0; hence −(−x) = x. Moreover, we
put 2x = 0 � x and x/2 = x# 0.

Then we have the following

8 Theorem. For any x, y ∈ G, −(x � y) = (−x) � (−y) and −(x#y) =
(−x)# (−y).

Proof. In fact −(x � y) = (x � y) � 0 = (x � 0) � (y � 0) =
(−x) � (−y). The second equality is an obvious consequence of the first one.

QED

3 The case of autodistributive Steiner triple systems

We recall that if G and L are sets such that the elements of L are subsets of
G, then (G,L) is said a line space — hence the elements of G and of L are said
respectively points and lines — whenever distinct lines intersect at most in one
point and for any distinct points a and b there exists a (unique) line containing
them.

A line space is said a Steiner triple system if the lines possess exactly three
points. In this latter particular case one define a commutative and idempotent
quasigroup operation # by setting, for any distinct x, y ∈ G, x# x = x and
x# y equal to the unique point z such that {x, y, z} ∈ L. Obviously, for any
x, y ∈ G, one has x# (x# y) = y.

Conversely, whenever # is a commutative and idempotent quasigroup op-
eration on G such that x# (x# y) = y for any x, y ∈ G — hence we will say
that # is an Steiner triple operation — it is obvious that the set of triples of
elements of G of the type {x, y, x# y}, with x �= y, endows G of a structure
of Steiner triple system. Moreover, it is clear that the associated operation �
coincides with #.

Whenever a Steiner triple operation # is autodistributive, we say that the
corresponding Steiner triple system is autodistributive.

Henceforth we will limit ourselves to the case of autodistributive Steiner
triple operations. Obviously, in this case property (3) of section 1 becomes:

x# y = z ⇔ y# z = x ⇔ z # x = y.

Now we fix an element 0 ∈ G. Hence for any x ∈ G (cf. section 2) x/2 =
0# x = 0 � x = 2x = x � 0 = −x.

Then we define on G a commutative binary operation ⊕ by putting x⊕y :=
0# (x# y) [= 2(x# y) = (0# x)# (0# y)].

It is easy to verify that on the set {0, x, 2x} ⊕ coincides with the group
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operation + defined in section 2. The following equalities hold:

x# y = 0# (x⊕ y) = 0# [(0# x)# (0# y)] = 0# (2x# 2y) = 2x# 2y; (8)

consequently, we get:

(x⊕ y)⊕ (x⊕ y) = 0# (x⊕ y) = 0# [0# (x# y)] = x# y = 2x⊕ 2y. (9)

In the sequel often we will write x− y instead of x⊕ (−y).
If ⊕ is associative, it is clear that (G,⊕) is a commutative and b-2-divisible

group. Moreover, it is easy to verify that # is the g-mean associated with ⊕.

9 Remark. If (G,+) is a group of exponent 3 (wiz. 3x = 0, for any x ∈ G),
# = �. Indeed a# b = a+ (−a+ b)/2 = a+ 2(−a+ b) = b− a+ b = a � b.

Conversely, if (G,#,�) is the g-mean associated with a group (G,+) and
# = �, then it is easy to verify that (G,+) has exponent 3. Therefore x⊕y =
y − x+ y + y − x+ y. Thus, whenever the group is commutative, ⊕ = +.

10 Theorem. For any x, y ∈ G, the following equalities hold:

(j0) (x# y)⊕ z = (x⊕ z)# (y ⊕ z);

(j1) (x− y)⊕ y = x;

(j2) (x⊕ y)⊕ y = x⊕ (−y) = x⊕ (y ⊕ y);

(j3) [(−x)⊕ y]⊕ [(x⊕ y)] = −y.

Proof.

(j0) It is obvious, by definition of ⊕ and by autodistributivity of #.

(j1) In fact (x−y)⊕y = 0# [0#(x#(0#y))#y] = (x#(0#y))#(0#y) = x.

(j2) Indeed, by commutativity of ⊕ and by some properties of #, we get (x⊕
y)⊕ y = 0# [(0# (x# y))# y] = 0# [(0# y)# x] = 0# [(y ⊕ y)# x] =
x⊕ (y ⊕ y).

(j3) In fact (see (j0)) [(−x) ⊕ y] ⊕ [x ⊕ y] = 0 # [((−x) ⊕ y) # (x ⊕ y)] =
0# [((−x)# x)⊕ y] = 0# [0⊕ y] = 0# y = −y.

QED

11 Theorem. Let a, b ∈ G, with a �= 0 and b �∈ ((0, a)). Then the structure
( ((0, a, b)),⊕) is isomorphic to ( ((0, a)),+) × ( ((0, b)),+).
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Proof. In order to prove the theorem it is sufficient to verify that if h, k,
h′, k′ belong to {−1, 0, 1}, then (ha⊕ kb)⊕ (h′a⊕ k′b) = (h+ h)′a⊕ (k + k′)b.

Since ⊕ is abelian, if at least one of the coefficients h, k, h′, k′ is 0, then this
latter claim is true by property (j2) and (j1) in Theorem 10. Moreover the claim
is trivial also whenever h′a ⊕ k′b = ha ⊕ kb or h′a ⊕ k′b = (−h)a ⊕ (−k)b [=
−(ha⊕ kb)].

Hence it remains to considering a part of the case in which either h′ = −h or
k′ = −k. Then the claim is an easy consequence of (j3) in Theorem 10. QED

12 Remark. We point out that as an immediate corollary of theorem above
we get that ⊕ endows ((0, a, b)) of the structure of affine desarguesian (Galois)
plane of order 3.

We conclude by emphasizing that if H is a uni-2-divisible subgroup of a
uni-2-divisible group (G,+), then H is a submean of (G,#,�). But there can
be some submeans H of (G,#,�), with 0 ∈ H, which are not subgroups of
(G,+). For instance, one can consider the non-commutative group (G,+) of
order 27 and exponent 3 (see [8], p. 146, exercise 6). Thus whenever a, b ∈ G,
with a + b �= b + a, the set ((0, a, b)) is a submean of (G,#,�), but it is not
a subgroup. Indeed ((0, a, b)) has 9 elements; meantime the subgroup generated
by a and b coincides with G (hence it has 27 elements).

References

[1] A. Barlotti, K. Strambach: The geometry of binary systems, Adv. in Math., 49 (1983),
1–105.

[2] R. H. Bruck: What is a loop?, MAA Stud. Math., 2 (1963), 59–62.

[3] M. R. Enea: Right distributive quasigroups on algebraic varieties, Geom. Dedicata, 51
(1994), 257–286.

[4] B. Fischer: Distributive Quasigruppen endlicher Ordnung, Math. Z., 83 (1964), 267–303.

[5] O. Loos: Symmetric spaces, vol. 1, Benjamin, New York 1969.

[6] P. T. Nagy, K. Strambach: Loops, their cores and symmetric spaces, Israel J. of Math.,
105 (1998), 285–322.

[7] P. T. Nagy, K. Strambach: Loops viewed from group and Lie Theory, de Gruyter
Verlag, Berlin 2001.

[8] D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag, New York 1996.

________________________________________________________________________________________________


