Means via groups and some properties of autodistributive Steiner triple systems

Domenico Lenzi
Dipartimento di Matematica "E. De Giorgi", Università degli Studi di Lecce, 73100, Lecce, Italy
domenico.lenzi@unile.it

Received: 17/12/2001; accepted: 11/05/2007.

Abstract

The classical definition of arithmetical mean can be transferred to a group ($\mathbf{G},+$) with the property that for any $y \in \mathbf{G}$ there is a unique $x \in \mathbf{G}$ such that $x+x=y$ (uni-2divisible group). Indeed we define in \mathbf{G} a commutative and idempotent operation ∇ that recalls the classical means, even if $(\mathbf{G},+$) is not commutative. Afterwards in section 3 we show that, by means of the commutative and idempotent operation ∇ usually associated with an autodistributive Steiner triple system $(\mathbf{G}, \mathcal{L})$, we can endow any plane of $(\mathbf{G}, \mathcal{L})$ of a structure of affine desarguesian (Galois) plane.

Keywords: finite groups, group means, geometry, combinatorics
MSC 2000 classification: primary 14L35

1 Introduction

Let us consider groups $(\mathbf{G},+)$ in which for any $y \in \mathbf{G}$ there is a unique $x \in \mathbf{G}$ such that $y=2 x$ (i.e. the function $\underline{2}$ mapping $x \in \mathbf{G}$ in $2 x$ is bijective). We say that these groups are uniquely 2 -divisible (briefly: uni-2-divisible).

Henceforth we will often represent a group $(\mathbf{G},+)$ only with \mathbf{G}.
It is easy to see that whenever all the elements of a group \mathbf{G} are of finite odd order, then the group is uni-2-divisible.

Clearly, the additive real group \mathbb{R} is uni-2-divisible and several properties of the classical arithmetical mean depend on this fact.

Now let a, b, d belong to an arbitrary group \mathbf{G}, with $a+2 d=b$. If d^{\prime} is the only element of \mathbf{G} such that $d^{\prime}+a=a+d$, then $b=a+2 d=2 d^{\prime}+a$; therefore $a=b+2(-d)=2\left(-d^{\prime}\right)+b$. Thus it is natural to say that $a+d$ is a midpoint of a and b.

Let \mathbf{G} be a uni-2-divisible group. Thus, for any $a, b \in \mathbf{G}$, in \mathbf{G} there are a unique d and a unique d^{\prime} such that $a+2 d=b=2 d^{\prime}+a$; wiz. $d=(-a+b) / 2$ and $d^{\prime}=(b-a) / 2$. Thus a and b have a unique midpoint that we indicate with $a \nabla b$. Obviously, if \mathbf{G} is commutative, then $a \nabla b=(a+b) / 2$ (cf. the classical
case of real numbers); more generally we have:

$$
\begin{align*}
& a \nabla b=a+(-a+b) / 2=(b-a) / 2+a \\
& \quad=(a-b) / 2+b=b+(-b+a) / 2=b \nabla a \tag{1}
\end{align*}
$$

Clearly ∇ is a commutative and idempotent operation on \mathbf{G} such that + is distributive with respect to ∇ (hence for any $g \in \mathbf{G}, g+$ and $+g$ are automorphisms of (\mathbf{G}, ∇)). Moreover the translations $\underline{a \nabla}$ and $\underline{\nabla} a$ (but $\underline{a \nabla}=\underline{\nabla a}$ by commutativity of ∇) are bijective; i.e.: $(\mathbf{G}, \nabla) \overline{\text { is a quasigroup. }}$

Let \mathbf{G} be a uni-2-divisible group. Whenever the elements a and c of \mathbf{G} commute, then the only midpoint of a and $a+c$ is $c / 2+a=a+c / 2$; hence a and $c / 2$ commute too. Consequently, the center \mathbf{C} of \mathbf{G} is uni-2-divisible.

Moreover, a subgroup of \mathbf{G} is uni-2-divisible if and only if it is closed under the mapping $\underline{2}^{-1}$. Therefore the set of uni-2-divisible subgroups of \mathbf{G} is a closure system; hence if $g \in \mathbf{G}$, we will represent with $\ll g \gg$ the uni-2-divisible subgroup generated by g.

Clearly, the above subgroup $\langle\langle g\rangle>$ is the set union of the chain of cyclic subgroups of type $<g / 2^{h}>$, with an obvious meaning of symbol $g / 2^{h}$, where $h \in \mathbb{N}$ (the set of natural numbers). Thus $\langle\langle g\rangle>$ is a commutative group, as well as each $\left\langle g / 2^{h}>\right.$.

If $(\mathbf{G},+)$ is a group, then through an element $0^{\prime} \in \mathbf{G}$ one can define a new group operation on \mathbf{G} by setting $a+^{\prime} b=a-0^{\prime}+b$. Therefore, the left and the right translations $\underline{0^{\prime}+}, \underline{+0^{\prime}}$ are isomorphisms from $\left(\mathbf{G},+\right.$) onto $\left(\mathbf{G},+^{\prime}\right)$. Hence $0^{\prime}=0^{\prime}+0$ is the "zero" of $\left(\mathbf{G},+^{\prime}\right)$ and $0^{\prime}-b+0^{\prime}$ is the opposite $-' b$ of b with respect to $+^{\prime}$; thus $a-^{\prime} b=a+^{\prime}\left(-^{\prime} b\right)=a-b+0^{\prime}$.

If $(\mathbf{G},+)$ is uni-2-divisible, then also ($\mathbf{G},+^{\prime}$) is uni-2-divisible; thus, for any $g \in \mathbf{G}$ we get $\left[\left(g-0^{\prime}\right) / 2+0^{\prime}\right]+^{\prime}\left[\left(g-0^{\prime}\right) / 2+0^{\prime}\right]=\left(g-0^{\prime}\right) / 2+0^{\prime}-0^{\prime}+\left(g-0^{\prime}\right) / 2+0^{\prime}=$ g. Hence it is easy to verify that ∇ coincides with the analogous operation ∇^{\prime} associated with $+^{\prime}$.

Now let (\mathbf{G}, ∇) be an arbitrary commutative and idempotent quasigroup. Then it is useful consider another operation \multimap on \mathbf{G} by setting $x \multimap z$ equal to the unique element y such that $x \nabla y=z$; hence $x \nabla(x \multimap z)=z=x \multimap(x \nabla z)$. Consequently, $x \multimap z=\underline{x \nabla^{-1} z}$; moreover, by $x \nabla(x \multimap z)=(x \multimap z) \nabla x=z$, we have also:

$$
\begin{equation*}
(x \multimap z) \multimap z=x . \tag{2}
\end{equation*}
$$

It is obvious that $x \multimap z=z$ if and only if $x=z$. Moreover, since ∇ is commutative, the following property holds:

$$
\begin{equation*}
x \nabla y=z \quad \Leftrightarrow \quad y \multimap z=x \quad \Leftrightarrow \quad x \multimap z=y \tag{3}
\end{equation*}
$$

If \longrightarrow is right distributive with respect to itself (briefly, r-autodistributive), we say that ∇ is a mean. In this case \multimap is right distributive (r-distributive) also with respect to ∇. We say also that the structure $(\mathbf{G}, \nabla, \rightarrow)$ is a mean.

Several authors studied quasigroups with a r-autodistributive operation (see [3] and [4]).

If \mathbf{H} is a closed subset of a mean $(\mathbf{G}, \nabla, \multimap)$, we say that \mathbf{H} is a sub-mean of $(\mathbf{G}, \nabla, \multimap)$. Then if $\mathbf{K} \subseteq \mathbf{G},((\mathbf{K}))$ denote the sub-mean of $(\mathbf{G}, \nabla, \multimap)$ generated by \mathbf{K}; in particular, if $\mathbf{K}=\left\{a_{1}, \ldots, a_{n}\right\}$, we will write $\left(\left(a_{1}, \ldots, a_{n}\right)\right)$ instead of $\left(\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)\right)$. In a mean $(\mathbf{G}, \nabla, \multimap)$ we have the following properties. The second property is a consequence of the first one, which follows from (2).

$$
\begin{gather*}
x \multimap(y \multimap z)=[(x \multimap z) \multimap z] \multimap(y \multimap z)=[(x \multimap z) \multimap y] \multimap z ; \tag{4}\\
x \multimap(y \multimap x)=(x \multimap y) \multimap x \quad(\text { flexibility property }) . \tag{5}
\end{gather*}
$$

If ∇ is associated with a uni-2-divisible group \mathbf{G}, it is easy to verify that $x \multimap z=z-x+z(\mathrm{cf}[7]$, Sec. 5$)$; hence + is distributive also with respect to \multimap. This means that $\underline{x+}$ and $\underline{+x}$ are automorphisms of the structure $(\mathbf{G}, \nabla, \multimap)$. Moreover, it is easy to verify that \multimap is r-autodistributive.

In this particular case we say that both ∇ and $(\mathbf{G}, \nabla, \rightarrow)$ are group-means (briefly, g-means). Till different notice a group \mathbf{G} shall be uni-2-divisible.

2 Some remarks on means

Henceforth ∇ and \multimap shall represent the operations of a mean $(\mathbf{G}, \nabla, \multimap)$.
We say that a sequence $\left(a_{0}, a_{1}, \ldots\right)$ of elements of \mathbf{G} is a \multimap-sequence if $a_{i-1} \multimap a_{i}=a_{i+1}$ (equivalently: $a_{i+1} \multimap a_{i}=a_{i-1}$ or $a_{i-1} \nabla a_{i+1}=a_{i}$) for any index $i \neq 0$. Therefore (a_{0}, a_{1}, \ldots) is completely determined by a_{0} and a_{1}; hence we set $\left(a_{0}, a_{1}\right)_{-}:=\left(a_{0}, a_{1}, \ldots\right)$.

1 Remark. By property (5) we immediately get $a_{0} \multimap a_{2}=a_{4}$. Indeed $a_{0} \multimap a_{2}=\left(a_{2} \multimap a_{1}\right) \multimap a_{2}=a_{2} \multimap\left(a_{1} \multimap a_{2}\right)=a_{2} \multimap a_{3}=a_{4}$.

If (a_{0}, a_{1}, \ldots) and (b_{0}, b_{1}, \ldots) are two sequences such that $a_{0}=a_{i} \nabla b_{i}=b_{0}$ for any index i, then we say that they are co-symmetric.

2 Lemma. Let the \multimap-sequences $\left(a_{0}, a_{1}\right)_{\multimap}$ and $\left(b_{0}, b_{1}\right)_{\multimap}$ fulfil the property $a_{0}=a_{1} \nabla b_{1}=b_{0}$. Then they are co-symmetric.

Proof. Let $a_{i} \multimap a_{0}=b_{i}$ for each $i<n$. Then by r-autodistributivity of \multimap we have $a_{n} \multimap a_{0}=\left(a_{n-2} \multimap a_{n-1}\right) \multimap a_{0}=\left(a_{n-2} \multimap a_{0}\right) \multimap\left(a_{n-1} \multimap a_{0}\right)=$ $b_{n-2} \multimap b_{n-1}=b_{n}$. Whence the claim by induction.

QED

3 Theorem. For any $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, a^{\prime \prime \prime \prime} \in \mathbf{G}$, let $a \nabla a^{\prime \prime \prime \prime}=a^{\prime \prime}, a \nabla a^{\prime \prime}=a^{\prime}$ and $a^{\prime \prime} \nabla a^{\prime \prime \prime \prime}=a^{\prime \prime \prime}$. Then $a^{\prime} \nabla a^{\prime \prime \prime}=a^{\prime \prime}$.

Proof. Let us consider the sequence $\left(a_{0}, a_{1}, \ldots\right)=\multimap\left(a, a^{\prime}\right)$. Thus $a_{0}=a$, $a_{1}=a^{\prime}$ and $a_{2}=a^{\prime \prime}$; moreover, by Remark $1, a_{4}=a_{0} \multimap a_{2}=a \multimap a^{\prime \prime}=a^{\prime \prime \prime \prime}$. Furthermore, $a_{3}=a_{2} \nabla a_{4}=a^{\prime \prime} \nabla a^{\prime \prime \prime \prime}=a^{\prime \prime \prime}$. Whence the assertion by $a^{\prime} \nabla a^{\prime \prime \prime}=$ $a_{1} \nabla a_{3}=a_{2}=a^{\prime \prime}$.

4 Remark. Let \downarrow be the function mapping any sequence (a_{0}, a_{1}, \ldots) into the sequence $\left(d_{0}, d_{1}, \ldots\right)$ obtained from $\left(a_{0}, a_{1}, \ldots\right)$ by inserting $a_{i} \nabla a_{i+1}$ between a_{i} and a_{i+1}. Hence $a_{i}=d_{2 i}$ for any index i. If (a_{0}, a_{1}, \ldots) is a - -sequence, then - by Theorem $3-$ also $\downarrow\left(a_{0}, a_{1}, \ldots\right)$ is a - -sequence (and vice-versa, as an easy consequence of Remark 1).

5 Theorem. Let the sequence $\left(a_{0}, a_{1}, \ldots\right)$ be equal to $\left(a_{0}, a_{1}\right)_{-}$. Then for any index i we have $a_{0} \nabla a_{i+1}=a_{1} \nabla a_{i}$.

Proof. We put $\left(d_{0}, d_{1}, \ldots\right):=\downarrow\left(a_{0}, a_{1}, \ldots\right)$. Hence, by Remark 4 , it is sufficient to verify that $d_{0} \nabla d_{2(i+1)}=d_{2} \nabla d_{2 i}$.

In fact the sequences $\left(b_{0}^{\prime}, b_{1}^{\prime}, \ldots\right)=\left(d_{i+1}, d_{i}\right)_{\multimap}$ and $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)=s\left(d_{i+1}, d_{i+2}\right)$ are symmetric by Lemma 2. Therefore $d_{2} \nabla d_{2 i}=b_{i-1}^{\prime} \nabla a_{i-1}^{\prime}=d_{i+1}=b_{i+1}^{\prime} \nabla$ $a_{i+1}^{\prime}=d_{0} \nabla d_{2(i+1)}$.

Let us put $a_{-i}=a_{i} \multimap a_{0}$. Thus if we consider the \multimap-sequence $\left(c_{0}, c_{1}, \ldots\right)=$ $\left(a_{j}, a_{j+1}\right)_{\multimap}$, where $j \in \mathbb{Z}$, we have $c_{i}=a_{i+j}$ for any $i \in \mathbb{N}$.

For any $i, j \in \mathbb{Z}$, from Theorem 5 we immediately get the following equalities:

$$
\begin{gather*}
a_{i} \nabla a_{j}=a_{0} \nabla a_{i+j} \tag{6}\\
a_{j}=a_{j} \nabla a_{j}=a_{i} \nabla a_{2 j-i}, \text { hence } a_{i} \multimap a_{j}=a_{2 j-i} . \tag{7}
\end{gather*}
$$

Now, given the - -sequence $\left(a_{0}, a_{1}\right)_{-}$, let \mathbf{H}_{0} be the set of all the terms a_{i}, with $i \in \mathbb{Z}$. Analogously, let us consider the set \mathbf{H}_{1} obtained from the sequence $\downarrow\left(\left(a_{0}, a_{1}\right)_{\multimap}\right)$, the set \mathbf{H}_{2} obtained from the sequence $\downarrow^{2}\left(\left(a_{0}, a_{1}\right)_{\mapsto}\right)$, and so on. It is clear that the set \mathbf{H} which is union of all \mathbf{H}_{i} coincides with the sub-mean $\left(\left(a_{0}, a_{1}\right)\right)$.

6 Theorem. Let the - -sequence $\left(a_{0}, a_{1}\right)_{\multimap}$ possess at least two equal terms, with $a_{0} \neq a_{1}$; moreover, let h be the minimum index such that $a_{h}=a_{k}$ for some $k<h$. The following properties hold:
$\left(i_{1}\right) k=0$; moreover, h is an odd number. Furthermore, $a_{h+1}=a_{1}$; hence $\left(a_{0}, a_{1}\right)_{\multimap}=\left(a_{0}, a_{1}, \ldots, a_{h-1}, a_{0}, a_{1}, \ldots\right)$.
(i_{2}) for any $i, j \in \mathbb{N}, a_{i}=a_{j}$ if and only if $i \equiv j(\bmod h)$.
$\left(i_{3}\right)$ If $\left(\{0, \ldots, h-1\},+^{\prime}\right)$ is the group of integers under the addition modulo h, let f be the bijection mapping any $i \in\{0, \ldots, h-1\}$ into $a_{i} \in$
$\left\{a_{0}, a_{1}, \ldots, a_{h-1}\right\}$ and consider the binary operation + on $\left\{a_{0}, a_{1}, \ldots\right.$, $\left.a_{h-1}\right\}$ such that f is an isomorphism. Thus, for any $a_{p}, a_{q} \in\left\{a_{0}, a_{1}, \ldots\right.$, $\left.a_{h-1}\right\}, a_{p} \nabla a_{q}=a_{\left(p++^{\prime} q\right) / 2}\left(=\left(a_{p}+a_{q}\right) / 2\right)$.
$\left(i_{4}\right)\left(\left(a_{0}, a_{1}\right)\right)=\left\{a_{0}, a_{1}, \ldots, a_{h-1}\right\}$; moreover $\left(\left(a_{0}, a_{1}\right)\right)$ is a g-mean.
Proof.
(i_{1}) If $k>0$, then $a_{k+1} \nabla a_{h-1}=a_{k} \nabla a_{h}=a_{k}=a_{k+1} \nabla a_{k-1}$, hence $a_{h-1}=$ a_{k-1}; this contradicts the hypothesis.

Furthermore, if $h=2 m>0$, then $a_{0}=a_{h} \nabla a_{0}=a_{h-m} \nabla a_{m}=a_{m} \nabla a_{m}=$ a_{m}. This is absurd, because $0 \neq m<h$.
Moreover, $a_{h+1}=a_{1}$. In fact $a_{h+1} \nabla a_{1}=a_{h} \nabla a_{2}=a_{0} \nabla a_{2}=a_{1} \nabla a_{1}=a_{1}$.
(i_{2}) The assertion is an obvious consequence of above property $\left(i_{1}\right)$.
(i_{3}) Let $t=\left(p+^{\prime} q\right) / 2$; hence $t+^{\prime} t=p+^{\prime} q \cong p+q(\bmod h)$; hence, $a_{t+t}=$ $a_{t+^{\prime} t}=a_{p+q}$ (see (i_{2}) above). Therefore $a_{t}=a_{0} \nabla a_{p+q}=a_{p} \nabla a_{q}$. Whence the claim.
(i_{4}) In fact $\left\{a_{0}, a_{1}, \ldots, a_{h-1}\right\} \subseteq\left(\left(a_{0}, a_{1}\right)\right)$. Moreover $\left\{a_{0}, a_{1}, \ldots, a_{h-1}\right\}$ is closed under ∇ and \multimap. Whence the assertion by $\left(i_{3}\right)$.

Now let 0 and a be different elements of \mathbf{G}. We have the following
7 Theorem. The sub-mean $((0, a))$ is a g-mean by means of a commutative binary operation + on $((0, a))$, having 0 as the zero element.

Proof. If $(0, a)_{\multimap}$ possesses at least two equal terms, the assertion is true by (i_{4}) of Theorem 6 , with $a_{0}=0$ and $a_{1}=a$. Therefore we assume that the terms of $(0, a)_{-}$are pairwise distinct. Afterwards we define a commutative group operation $+_{0}$ on the set \mathbf{H}_{0} above by putting $a_{p}+_{0} a_{q}:=a_{p+q}$, for any $p, q \in \mathbb{Z}$. Then we consider the analogous group $\left(\mathbf{H}_{1},+_{1}\right)$; and so on with respect to any set \mathbf{H}_{i}.

Obviously, $\left(\mathbf{H}_{i},+_{i}\right)$ is a subgroup of $\left(\mathbf{H}_{i+1},+_{i+1}\right)$. Therefore, considered the set union \mathbf{H} of all \mathbf{H}_{i}, there is a unique (commutative) group operation + on \mathbf{H} such that each $\left(\mathbf{H}_{i},+_{i}\right)$ is a subgroup of $(\mathbf{H},+)$.

Thus, since $\mathbf{H}=((0, a))$, it is easy to verify that on $((0, a))$ the mean ∇ is determined by $(\mathbf{H},+)$. In fact, if $b, c \in \mathbf{H}$, then there exists a set \mathbf{H}_{i} such that $b, c \in \mathbf{H}_{i}$. Therefore $b=t_{2 p}$ and $c=t_{2 q}$, where $t_{2 p}$ and $t_{2 q}$ are suitable terms of \mathbf{H}_{i+1}. Hence $b \nabla c=t_{2 p} \nabla t_{2 q}=t_{p+q}=\left(t_{2 p}+t_{2 q}\right) / 2$.

Thus, for any $x \in \mathbf{G}$, we put $-x=x \multimap 0$; hence $-(-x)=x$. Moreover, we put $2 x=0 \multimap x$ and $x / 2=x \nabla 0$.

Then we have the following
8 Theorem. For any $x, y \in \mathbf{G},-(x \multimap y)=(-x) \multimap(-y)$ and $-(x \nabla y)=$ $(-x) \nabla(-y)$.

Proof. In fact $-(x \multimap y)=(x \multimap y) \multimap 0=(x \multimap 0) \multimap(y \multimap 0)=$ $(-x) \multimap(-y)$. The second equality is an obvious consequence of the first one.

3 The case of autodistributive Steiner triple systems

We recall that if \mathbf{G} and \mathcal{L} are sets such that the elements of \mathcal{L} are subsets of \mathbf{G}, then $(\mathbf{G}, \mathcal{L})$ is said a line space - hence the elements of \mathbf{G} and of \mathcal{L} are said respectively points and lines - whenever distinct lines intersect at most in one point and for any distinct points a and b there exists a (unique) line containing them.

A line space is said a Steiner triple system if the lines possess exactly three points. In this latter particular case one define a commutative and idempotent quasigroup operation ∇ by setting, for any distinct $x, y \in \mathbf{G}, x \nabla x=x$ and $x \nabla y$ equal to the unique point z such that $\{x, y, z\} \in \mathcal{L}$. Obviously, for any $x, y \in \mathbf{G}$, one has $x \nabla(x \nabla y)=y$.

Conversely, whenever ∇ is a commutative and idempotent quasigroup operation on \mathbf{G} such that $x \nabla(x \nabla y)=y$ for any $x, y \in \mathbf{G}$ - hence we will say that ∇ is an Steiner triple operation - it is obvious that the set of triples of elements of \mathbf{G} of the type $\{x, y, x \nabla y\}$, with $x \neq y$, endows \mathbf{G} of a structure of Steiner triple system. Moreover, it is clear that the associated operation coincides with ∇.

Whenever a Steiner triple operation ∇ is autodistributive, we say that the corresponding Steiner triple system is autodistributive.

Henceforth we will limit ourselves to the case of autodistributive Steiner triple operations. Obviously, in this case property (3) of section 1 becomes:

$$
x \nabla y=z \quad \Leftrightarrow \quad y \nabla z=x \quad \Leftrightarrow \quad z \nabla x=y
$$

Now we fix an element $0 \in \mathbf{G}$. Hence for any $x \in \mathbf{G}$ (cf. section 2) $x / 2=$ $0 \nabla x=0 \multimap x=2 x=x \multimap 0=-x$.

Then we define on \mathbf{G} a commutative binary operation \oplus by putting $x \oplus y:=$ $0 \nabla(x \nabla y)[=2(x \nabla y)=(0 \nabla x) \nabla(0 \nabla y)]$.

It is easy to verify that on the set $\{0, x, 2 x\} \oplus$ coincides with the group
operation + defined in section 2. The following equalities hold:

$$
\begin{equation*}
x \nabla y=0 \nabla(x \oplus y)=0 \nabla[(0 \nabla x) \nabla(0 \nabla y)]=0 \nabla(2 x \nabla 2 y)=2 x \nabla 2 y \tag{8}
\end{equation*}
$$

consequently, we get:

$$
\begin{equation*}
(x \oplus y) \oplus(x \oplus y)=0 \nabla(x \oplus y)=0 \nabla[0 \nabla(x \nabla y)]=x \nabla y=2 x \oplus 2 y . \tag{9}
\end{equation*}
$$

In the sequel often we will write $x-y$ instead of $x \oplus(-y)$.
If \oplus is associative, it is clear that (\mathbf{G}, \oplus) is a commutative and b-2-divisible group. Moreover, it is easy to verify that ∇ is the g-mean associated with \oplus.

9 Remark. If $(\mathbf{G},+$) is a group of exponent 3 (wiz. $3 x=0$, for any $x \in \mathbf{G}$), $\nabla=\multimap$. Indeed $a \nabla b=a+(-a+b) / 2=a+2(-a+b)=b-a+b=a \multimap b$.

Conversely, if $(\mathbf{G}, \nabla, \rightarrow)$ is the g-mean associated with a group $(\mathbf{G},+)$ and $\nabla=\multimap$, then it is easy to verify that $(\mathbf{G},+)$ has exponent 3 . Therefore $x \oplus y=$ $y-x+y+y-x+y$. Thus, whenever the group is commutative, $\oplus=+$.

10 Theorem. For any $x, y \in \mathbf{G}$, the following equalities hold:
$\left(j_{0}\right)(x \nabla y) \oplus z=(x \oplus z) \nabla(y \oplus z) ;$
$\left(j_{1}\right)(x-y) \oplus y=x ;$
$\left(j_{2}\right)(x \oplus y) \oplus y=x \oplus(-y)=x \oplus(y \oplus y) ;$
$\left(j_{3}\right)[(-x) \oplus y] \oplus[(x \oplus y)]=-y$.
Proof.
(j_{0}) It is obvious, by definition of \oplus and by autodistributivity of ∇.
$\left(j_{1}\right)$ In fact $(x-y) \oplus y=0 \nabla[0 \nabla(x \nabla(0 \nabla y)) \nabla y]=(x \nabla(0 \nabla y)) \nabla(0 \nabla y)=x$.
(j_{2}) Indeed, by commutativity of \oplus and by some properties of ∇, we get $(x \oplus$ $y) \oplus y=0 \nabla[(0 \nabla(x \nabla y)) \nabla y]=0 \nabla[(0 \nabla y) \nabla x]=0 \nabla[(y \oplus y) \nabla x]=$ $x \oplus(y \oplus y)$.
$\left(j_{3}\right)$ In fact $\left(\right.$ see $\left.\left(j_{0}\right)\right)[(-x) \oplus y] \oplus[x \oplus y]=0 \nabla[((-x) \oplus y) \nabla(x \oplus y)]=$ $0 \nabla[((-x) \nabla x) \oplus y]=0 \nabla[0 \oplus y]=0 \nabla y=-y$.

11 Theorem. Let $a, b \in \mathbf{G}$, with $a \neq 0$ and $b \notin((0, a))$. Then the structure $(((0, a, b)), \oplus)$ is isomorphic to $(((0, a)),+) \times(((0, b)),+)$.

Proof. In order to prove the theorem it is sufficient to verify that if h, k, h^{\prime}, k^{\prime} belong to $\{-1,0,1\}$, then $(h a \oplus k b) \oplus\left(h^{\prime} a \oplus k^{\prime} b\right)=(h+h)^{\prime} a \oplus\left(k+k^{\prime}\right) b$.

Since \oplus is abelian, if at least one of the coefficients $h, k, h^{\prime}, k^{\prime}$ is 0 , then this latter claim is true by property $\left(j_{2}\right)$ and $\left(j_{1}\right)$ in Theorem 10. Moreover the claim is trivial also whenever $h^{\prime} a \oplus k^{\prime} b=h a \oplus k b$ or $h^{\prime} a \oplus k^{\prime} b=(-h) a \oplus(-k) b[=$ $-(h a \oplus k b)]$.

Hence it remains to considering a part of the case in which either $h^{\prime}=-h$ or $k^{\prime}=-k$. Then the claim is an easy consequence of $\left(j_{3}\right)$ in Theorem 10.

12 Remark. We point out that as an immediate corollary of theorem above we get that \oplus endows $((0, a, b))$ of the structure of affine desarguesian (Galois) plane of order 3 .

We conclude by emphasizing that if \mathbf{H} is a uni-2-divisible subgroup of a uni-2-divisible group $(\mathbf{G},+)$, then \mathbf{H} is a submean of $(\mathbf{G}, \nabla,-\infty)$. But there can be some submeans \mathbf{H} of $(\mathbf{G}, \nabla, \multimap)$, with $0 \in \mathbf{H}$, which are not subgroups of $(\mathbf{G},+)$. For instance, one can consider the non-commutative group $(\mathbf{G},+)$ of order 27 and exponent 3 (see [8], p. 146, exercise 6). Thus whenever $a, b \in \mathbf{G}$, with $a+b \neq b+a$, the set $((0, a, b))$ is a submean of $(\mathbf{G}, \nabla,-\infty)$, but it is not a subgroup. Indeed $((0, a, b))$ has 9 elements; meantime the subgroup generated by a and b coincides with \mathbf{G} (hence it has 27 elements).

References

[1] A. Barlotti, K. Strambach: The geometry of binary systems, Adv. in Math., 49 (1983), 1-105.
[2] R. H. Bruck: What is a loop?, MAA Stud. Math., 2 (1963), 59-62.
[3] M. R. Enea: Right distributive quasigroups on algebraic varieties, Geom. Dedicata, 51 (1994), 257-286.
[4] B. Fischer: Distributive Quasigruppen endlicher Ordnung, Math. Z., 83 (1964), 267-303.
[5] O. Loos: Symmetric spaces, vol. 1, Benjamin, New York 1969.
[6] P. T. Nagy, K. Strambach: Loops, their cores and symmetric spaces, Israel J. of Math., 105 (1998), 285-322.
[7] P. T. Nagy, K. Strambach: Loops viewed from group and Lie Theory, de Gruyter Verlag, Berlin 2001.
[8] D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag, New York 1996.

