Means via groups and some properties of autodistributive Steiner triple systems

Domenico Lenzi

Dipartimento di Matematica "E. De Giorgi", Università degli Studi di Lecce, 73100, Lecce, Italy domenico.lenzi@unile.it

Received: 17/12/2001; accepted: 11/05/2007.

Abstract. The classical definition of arithmetical mean can be transferred to a group $(\mathbf{G}, +)$ with the property that for any $y \in \mathbf{G}$ there is a unique $x \in \mathbf{G}$ such that x + x = y (uni-2divisible group). Indeed we define in \mathbf{G} a commutative and idempotent operation \bigtriangledown that recalls the classical means, even if $(\mathbf{G}, +)$ is not commutative. Afterwards in section 3 we show that, by means of the commutative and idempotent operation \bigtriangledown usually associated with an autodistributive Steiner triple system $(\mathbf{G}, \mathcal{L})$, we can endow any plane of $(\mathbf{G}, \mathcal{L})$ of a structure of affine desarguesian (Galois) plane.

Keywords: finite groups, group means, geometry, combinatorics

MSC 2000 classification: primary 14L35

1 Introduction

Let us consider groups $(\mathbf{G}, +)$ in which for any $y \in \mathbf{G}$ there is a unique $x \in \mathbf{G}$ such that y = 2x (i.e. the function <u>2</u> mapping $x \in \mathbf{G}$ in 2x is bijective). We say that these groups are *uniquely 2-divisible* (briefly: *uni-2-divisible*).

Henceforth we will often represent a group $(\mathbf{G}, +)$ only with \mathbf{G} .

It is easy to see that whenever all the elements of a group \mathbf{G} are of finite odd order, then the group is uni-2-divisible.

Clearly, the additive real group \mathbb{R} is uni-2-divisible and several properties of the classical arithmetical mean depend on this fact.

Now let a, b, d belong to an arbitrary group **G**, with a + 2d = b. If d' is the only element of **G** such that d' + a = a + d, then b = a + 2d = 2d' + a; therefore a = b + 2(-d) = 2(-d') + b. Thus it is natural to say that a + d is a *midpoint* of a and b.

Let **G** be a uni-2-divisible group. Thus, for any $a, b \in \mathbf{G}$, in **G** there are a unique d and a unique d' such that a + 2d = b = 2d' + a; wiz. d = (-a + b)/2 and d' = (b - a)/2. Thus a and b have a unique midpoint that we indicate with $a \bigtriangledown b$. Obviously, if **G** is commutative, then $a \bigtriangledown b = (a + b)/2$ (cf. the classical

case of real numbers); more generally we have:

$$a \bigtriangledown b = a + (-a+b)/2 = (b-a)/2 + a$$

= $(a-b)/2 + b = b + (-b+a)/2 = b \bigtriangledown a.$ (1)

Clearly \bigtriangledown is a commutative and idempotent operation on **G** such that + is distributive with respect to \bigtriangledown (hence for any $g \in \mathbf{G}$, $\underline{g+}$ and $\underline{+g}$ are automorphisms of $(\mathbf{G}, \bigtriangledown)$). Moreover the translations $\underline{a} \bigtriangledown$ and $\underline{\bigtriangledown} \underline{a}$ (but $\underline{a} \bigtriangledown = \underline{\bigtriangledown} \underline{a}$ by commutativity of \bigtriangledown) are bijective; i.e.: $(\mathbf{G}, \bigtriangledown)$ is a quasigroup.

Let **G** be a uni-2-divisible group. Whenever the elements a and c of **G** commute, then the only midpoint of a and a + c is c/2 + a = a + c/2; hence a and c/2 commute too. Consequently, the center **C** of **G** is uni-2-divisible.

Moreover, a subgroup of **G** is uni-2-divisible if and only if it is closed under the mapping 2^{-1} . Therefore the set of uni-2-divisible subgroups of **G** is a closure system; hence if $g \in \mathbf{G}$, we will represent with $\langle \langle g \rangle \rangle$ the uni-2-divisible subgroup generated by g.

Clearly, the above subgroup $\langle g \rangle \rangle$ is the set union of the chain of cyclic subgroups of type $\langle g/2^h \rangle$, with an obvious meaning of symbol $g/2^h$, where $h \in \mathbb{N}$ (the set of natural numbers). Thus $\langle g \rangle \rangle$ is a commutative group, as well as each $\langle g/2^h \rangle$.

If $(\mathbf{G}, +)$ is a group, then through an element $0' \in \mathbf{G}$ one can define a new group operation on \mathbf{G} by setting a + b' = a - 0' + b. Therefore, the left and the right translations $\underline{0'+}, \underline{+0'}$ are isomorphisms from $(\mathbf{G}, +)$ onto $(\mathbf{G}, +')$. Hence 0' = 0' + 0 is the "zero" of $(\mathbf{G}, +')$ and 0' - b + 0' is the opposite -b' of b with respect to +c'; thus a - b' = a + (-b) = a - b + 0'.

If $(\mathbf{G}, +)$ is uni-2-divisible, then also $(\mathbf{G}, +')$ is uni-2-divisible; thus, for any $g \in \mathbf{G}$ we get [(g-0')/2+0']+'[(g-0')/2+0'] = (g-0')/2+0'-0'+(g-0')/2+0' = g. Hence it is easy to verify that \bigtriangledown coincides with the analogous operation \bigtriangledown' associated with +'.

Now let $(\mathbf{G}, \bigtriangledown)$ be an arbitrary commutative and idempotent quasigroup. Then it is useful consider another operation \multimap on \mathbf{G} by setting $x \multimap z$ equal to the unique element y such that $x \bigtriangledown y = z$; hence $x \bigtriangledown (x \multimap z) = z = x \multimap (x \bigtriangledown z)$. Consequently, $x \multimap z = \underline{x \bigtriangledown}^{-1} z$; moreover, by $x \bigtriangledown (x \multimap z) = (x \multimap z) \bigtriangledown x = z$, we have also:

$$(x \multimap z) \multimap z = x. \tag{2}$$

It is obvious that $x \multimap z = z$ if and only if x = z. Moreover, since \bigtriangledown is commutative, the following property holds:

$$x \bigtriangledown y = z \quad \Leftrightarrow \quad y \multimap z = x \quad \Leftrightarrow \quad x \multimap z = y. \tag{3}$$

If \multimap is right distributive with respect to itself (briefly, *r*-autodistributive), we say that \bigtriangledown is a mean. In this case \multimap is right distributive (*r*-distributive) also with respect to \bigtriangledown . We say also that the structure ($\mathbf{G}, \bigtriangledown, \multimap$) is a mean.

Several authors studied quasigroups with a r-autodistributive operation (see [3] and [4]).

If **H** is a closed subset of a mean $(\mathbf{G}, \bigtriangledown, \neg \circ)$, we say that **H** is a sub-mean of $(\mathbf{G}, \bigtriangledown, \neg \circ)$. Then if $\mathbf{K} \subseteq \mathbf{G}$, $((\mathbf{K}))$ denote the sub-mean of $(\mathbf{G}, \bigtriangledown, \neg \circ)$ generated by **K**; in particular, if $\mathbf{K} = \{a_1, \ldots, a_n\}$, we will write $((a_1, \ldots, a_n))$ instead of $((\{a_1, \ldots, a_n\}))$. In a mean $(\mathbf{G}, \bigtriangledown, \neg \circ)$ we have the following properties. The second property is a consequence of the first one, which follows from (2).

$$x \multimap (y \multimap z) = [(x \multimap z) \multimap z] \multimap (y \multimap z) = [(x \multimap z) \multimap y] \multimap z;$$
(4)

$$x \multimap (y \multimap x) = (x \multimap y) \multimap x$$
 (flexibility property). (5)

If \bigtriangledown is associated with a uni-2-divisible group **G**, it is easy to verify that $x \multimap z = z - x + z$ (cf [7], Sec. 5); hence + is distributive also with respect to \multimap . This means that $\underline{x+}$ and $\underline{+x}$ are automorphisms of the structure ($\mathbf{G}, \bigtriangledown, \multimap$). Moreover, it is easy to verify that \multimap is *r*-autodistributive.

In this particular case we say that both \bigtriangledown and $(\mathbf{G}, \bigtriangledown, \neg \circ)$ are *group-means* (briefly, g - means). Till different notice a group \mathbf{G} shall be uni-2-divisible.

2 Some remarks on means

Henceforth \bigtriangledown and \neg shall represent the operations of a mean $(\mathbf{G}, \bigtriangledown, \neg \circ)$.

We say that a sequence (a_0, a_1, \ldots) of elements of **G** is a --sequence if $a_{i-1} - a_i = a_{i+1}$ (equivalently: $a_{i+1} - a_i = a_{i-1}$ or $a_{i-1} \bigtriangledown a_{i+1} = a_i$) for any index $i \neq 0$. Therefore (a_0, a_1, \ldots) is completely determined by a_0 and a_1 ; hence we set $(a_0, a_1)_{-\infty} := (a_0, a_1, \ldots)$.

1 Remark. By property (5) we immediately get $a_0 \multimap a_2 = a_4$. Indeed $a_0 \multimap a_2 = (a_2 \multimap a_1) \multimap a_2 = a_2 \multimap (a_1 \multimap a_2) = a_2 \multimap a_3 = a_4$.

If $(a_0, a_1, ...)$ and $(b_0, b_1, ...)$ are two sequences such that $a_0 = a_i \bigtriangledown b_i = b_0$ for any index *i*, then we say that they are *co-symmetric*.

2 Lemma. Let the \multimap -sequences $(a_0, a_1)_{\multimap}$ and $(b_0, b_1)_{\multimap}$ fulfil the property $a_0 = a_1 \bigtriangledown b_1 = b_0$. Then they are co-symmetric.

PROOF. Let $a_i \multimap a_0 = b_i$ for each i < n. Then by *r*-autodistributivity of \multimap we have $a_n \multimap a_0 = (a_{n-2} \multimap a_{n-1}) \multimap a_0 = (a_{n-2} \multimap a_0) \multimap (a_{n-1} \multimap a_0) = b_{n-2} \multimap b_{n-1} = b_n$. Whence the claim by induction.

3 Theorem. For any $a, a', a'', a''', a'''' \in \mathbf{G}$, let $a \bigtriangledown a'''' = a''$, $a \bigtriangledown a'' = a'$ and $a'' \bigtriangledown a'''' = a'''$. Then $a' \bigtriangledown a''' = a''$.

PROOF. Let us consider the sequence $(a_0, a_1, \ldots) = -\infty (a, a')$. Thus $a_0 = a$, $a_1 = a'$ and $a_2 = a''$; moreover, by Remark 1, $a_4 = a_0 -\infty a_2 = a -\infty a'' = a''''$. Furthermore, $a_3 = a_2 \bigtriangledown a_4 = a'' \bigtriangledown a'''' = a'''$. Whence the assertion by $a' \bigtriangledown a''' = a_1 \bigtriangledown a_3 = a_2 = a''$.

4 Remark. Let \downarrow be the function mapping any sequence $(a_0, a_1, ...)$ into the sequence $(d_0, d_1, ...)$ obtained from $(a_0, a_1, ...)$ by inserting $a_i \bigtriangledown a_{i+1}$ between a_i and a_{i+1} . Hence $a_i = d_{2i}$ for any index *i*. If $(a_0, a_1, ...)$ is a \neg -sequence, then \neg by Theorem 3 — also $\downarrow (a_0, a_1, ...)$ is a \neg -sequence (and vice-versa, as an easy consequence of Remark 1).

5 Theorem. Let the sequence $(a_0, a_1, ...)$ be equal to $(a_0, a_1)_{\rightarrow}$. Then for any index *i* we have $a_0 \bigtriangledown a_{i+1} = a_1 \bigtriangledown a_i$.

PROOF. We put $(d_0, d_1, \ldots) := \downarrow (a_0, a_1, \ldots)$. Hence, by Remark 4, it is sufficient to verify that $d_0 \bigtriangledown d_{2(i+1)} = d_2 \bigtriangledown d_{2i}$.

In fact the sequences $(b'_0, b'_1, \ldots) = (d_{i+1}, d_i)_{\multimap}$ and $(a'_0, a'_1, \ldots) = s(d_{i+1}, d_{i+2})$ are symmetric by Lemma 2. Therefore $d_2 \bigtriangledown d_{2i} = b'_{i-1} \bigtriangledown a'_{i-1} = d_{i+1} = b'_{i+1} \bigtriangledown a'_{i+1} = d_0 \bigtriangledown d_{2(i+1)}$.

Let us put $a_{-i} = a_i \multimap a_0$. Thus if we consider the \multimap -sequence $(c_0, c_1, \ldots) = (a_j, a_{j+1})_{\multimap}$, where $j \in \mathbb{Z}$, we have $c_i = a_{i+j}$ for any $i \in \mathbb{N}$.

For any $i, j \in \mathbb{Z}$, from Theorem 5 we immediately get the following equalities:

$$a_i \bigtriangledown a_j = a_0 \bigtriangledown a_{i+j}; \tag{6}$$

$$a_j = a_j \bigtriangledown a_j = a_i \bigtriangledown a_{2j-i}, \text{ hence } a_i \multimap a_j = a_{2j-i}.$$
 (7)

Now, given the $-\infty$ -sequence $(a_0, a_1)_{-\infty}$, let \mathbf{H}_0 be the set of all the terms a_i , with $i \in \mathbb{Z}$. Analogously, let us consider the set \mathbf{H}_1 obtained from the sequence $\downarrow ((a_0, a_1)_{-\infty})$, the set \mathbf{H}_2 obtained from the sequence $\downarrow^2 ((a_0, a_1)_{\mapsto})$, and so on. It is clear that the set \mathbf{H} which is union of all \mathbf{H}_i coincides with the sub-mean $((a_0, a_1))$.

6 Theorem. Let the \multimap -sequence $(a_0, a_1)_{\multimap}$ possess at least two equal terms, with $a_0 \neq a_1$; moreover, let h be the minimum index such that $a_h = a_k$ for some k < h. The following properties hold:

- (i1) k = 0; moreover, h is an odd number. Furthermore, $a_{h+1} = a_1$; hence $(a_0, a_1)_{-\infty} = (a_0, a_1, \dots, a_{h-1}, a_0, a_1, \dots).$
- (*i*₂) for any $i, j \in \mathbb{N}$, $a_i = a_j$ if and only if $i \equiv j \pmod{h}$.
- (i₃) If $(\{0, ..., h 1\}, +')$ is the group of integers under the addition modulo h, let f be the bijection mapping any $i \in \{0, ..., h - 1\}$ into $a_i \in$

 $\{a_0, a_1, \ldots, a_{h-1}\}$ and consider the binary operation + on $\{a_0, a_1, \ldots, a_{h-1}\}$ such that f is an isomorphism. Thus, for any $a_p, a_q \in \{a_0, a_1, \ldots, a_{h-1}\}$, $a_p \bigtriangledown a_q = a_{(p+'q)/2} (= (a_p + a_q)/2)$.

 (i_4) $((a_0, a_1)) = \{a_0, a_1, \dots, a_{h-1}\};$ moreover $((a_0, a_1))$ is a g-mean.

Proof.

(i1) If k > 0, then $a_{k+1} \bigtriangledown a_{h-1} = a_k \bigtriangledown a_h = a_k = a_{k+1} \bigtriangledown a_{k-1}$, hence $a_{h-1} = a_{k-1}$; this contradicts the hypothesis.

Furthermore, if h = 2m > 0, then $a_0 = a_h \bigtriangledown a_0 = a_{h-m} \bigtriangledown a_m = a_m \bigtriangledown a_m = a_m$. This is absurd, because $0 \neq m < h$.

Moreover, $a_{h+1} = a_1$. In fact $a_{h+1} \bigtriangledown a_1 = a_h \bigtriangledown a_2 = a_0 \bigtriangledown a_2 = a_1 \bigtriangledown a_1 = a_1$.

- (i_2) The assertion is an obvious consequence of above property (i_1) .
- (i₃) Let t = (p + q)/2; hence $t + t = p + q \cong p + q \pmod{h}$; hence, $a_{t+t} = a_{t+t} = a_{p+q}$ (see (i₂) above). Therefore $a_t = a_0 \bigtriangledown a_{p+q} = a_p \bigtriangledown a_q$. Whence the claim.
- (*i*₄) In fact $\{a_0, a_1, \ldots, a_{h-1}\} \subseteq ((a_0, a_1))$. Moreover $\{a_0, a_1, \ldots, a_{h-1}\}$ is closed under \bigtriangledown and \multimap . Whence the assertion by (*i*₃).

QED

Now let 0 and a be different elements of **G**. We have the following

7 Theorem. The sub-mean ((0, a)) is a g-mean by means of a commutative binary operation + on ((0, a)), having 0 as the zero element.

PROOF. If $(0, a)_{-\infty}$ possesses at least two equal terms, the assertion is true by (i_4) of Theorem 6, with $a_0 = 0$ and $a_1 = a$. Therefore we assume that the terms of $(0, a)_{-\infty}$ are pairwise distinct. Afterwards we define a commutative group operation $+_0$ on the set \mathbf{H}_0 above by putting $a_p +_0 a_q := a_{p+q}$, for any $p, q \in \mathbb{Z}$. Then we consider the analogous group $(\mathbf{H}_1, +_1)$; and so on with respect to any set \mathbf{H}_i .

Obviously, $(\mathbf{H}_i, +_i)$ is a subgroup of $(\mathbf{H}_{i+1}, +_{i+1})$. Therefore, considered the set union **H** of all \mathbf{H}_i , there is a unique (commutative) group operation + on **H** such that each $(\mathbf{H}_i, +_i)$ is a subgroup of $(\mathbf{H}, +)$.

Thus, since $\mathbf{H} = ((0, a))$, it is easy to verify that on ((0, a)) the mean \bigtriangledown is determined by $(\mathbf{H}, +)$. In fact, if $b, c \in \mathbf{H}$, then there exists a set \mathbf{H}_i such that $b, c \in \mathbf{H}_i$. Therefore $b = t_{2p}$ and $c = t_{2q}$, where t_{2p} and t_{2q} are suitable terms of \mathbf{H}_{i+1} . Hence $b \bigtriangledown c = t_{2p} \bigtriangledown t_{2q} = t_{p+q} = (t_{2p} + t_{2q})/2$. QED Thus, for any $x \in \mathbf{G}$, we put $-x = x \multimap 0$; hence -(-x) = x. Moreover, we put $2x = 0 \multimap x$ and $x/2 = x \bigtriangledown 0$.

Then we have the following

8 Theorem. For any $x, y \in \mathbf{G}$, $-(x \multimap y) = (-x) \multimap (-y)$ and $-(x \bigtriangledown y) = (-x) \bigtriangledown (-y)$.

PROOF. In fact $-(x \multimap y) = (x \multimap y) \multimap 0 = (x \multimap 0) \multimap (y \multimap 0) = (-x) \multimap (-y)$. The second equality is an obvious consequence of the first one.

3 The case of autodistributive Steiner triple systems

We recall that if **G** and \mathcal{L} are sets such that the elements of \mathcal{L} are subsets of **G**, then $(\mathbf{G}, \mathcal{L})$ is said a *line space* — hence the elements of **G** and of \mathcal{L} are said respectively *points* and *lines* — whenever distinct lines intersect at most in one point and for any distinct points *a* and *b* there exists a (unique) line containing them.

A line space is said a *Steiner triple system* if the lines possess exactly three points. In this latter particular case one define a commutative and idempotent quasigroup operation ∇ by setting, for any distinct $x, y \in \mathbf{G}$, $x \nabla x = x$ and $x \nabla y$ equal to the unique point z such that $\{x, y, z\} \in \mathcal{L}$. Obviously, for any $x, y \in \mathbf{G}$, one has $x \nabla (x \nabla y) = y$.

Conversely, whenever \bigtriangledown is a commutative and idempotent quasigroup operation on **G** such that $x \bigtriangledown (x \bigtriangledown y) = y$ for any $x, y \in \mathbf{G}$ — hence we will say that \bigtriangledown is an *Steiner triple operation* — it is obvious that the set of triples of elements of **G** of the type $\{x, y, x \bigtriangledown y\}$, with $x \neq y$, endows **G** of a structure of Steiner triple system. Moreover, it is clear that the associated operation coincides with \bigtriangledown .

Whenever a Steiner triple operation \bigtriangledown is autodistributive, we say that the corresponding Steiner triple system is autodistributive.

Henceforth we will limit ourselves to the case of autodistributive Steiner triple operations. Obviously, in this case property (3) of section 1 becomes:

 $x \bigtriangledown y = z \quad \Leftrightarrow \quad y \bigtriangledown z = x \quad \Leftrightarrow \quad z \bigtriangledown x = y.$

Now we fix an element $0 \in \mathbf{G}$. Hence for any $x \in \mathbf{G}$ (cf. section 2) $x/2 = 0 \bigtriangledown x = 0 \multimap x = 2x = x \multimap 0 = -x$.

Then we define on **G** a commutative binary operation \oplus by putting $x \oplus y := 0 \bigtriangledown (x \bigtriangledown y) [= 2(x \bigtriangledown y) = (0 \bigtriangledown x) \bigtriangledown (0 \bigtriangledown y)].$

It is easy to verify that on the set $\{0, x, 2x\} \oplus$ coincides with the group

operation + defined in section 2. The following equalities hold:

$$x \bigtriangledown y = 0 \bigtriangledown (x \oplus y) = 0 \bigtriangledown [(0 \bigtriangledown x) \bigtriangledown (0 \bigtriangledown y)] = 0 \bigtriangledown (2x \bigtriangledown 2y) = 2x \bigtriangledown 2y; (8)$$

consequently, we get:

$$(x \oplus y) \oplus (x \oplus y) = 0 \bigtriangledown (x \oplus y) = 0 \bigtriangledown [0 \bigtriangledown (x \bigtriangledown y)] = x \bigtriangledown y = 2x \oplus 2y.$$
(9)

In the sequel often we will write x - y instead of $x \oplus (-y)$.

If \oplus is associative, it is clear that (\mathbf{G}, \oplus) is a commutative and b-2-divisible group. Moreover, it is easy to verify that \bigtriangledown is the *g*-mean associated with \oplus .

9 Remark. If $(\mathbf{G}, +)$ is a group of exponent 3 (wiz. 3x = 0, for any $x \in \mathbf{G}$), $\nabla = -\infty$. Indeed $a \bigtriangledown b = a + (-a+b)/2 = a + 2(-a+b) = b - a + b = a -\infty b$. Conversely, if $(\mathbf{G}, \bigtriangledown, -\infty)$ is the *g*-mean associated with a group $(\mathbf{G}, +)$ and $\nabla = -\infty$, then it is easy to verify that $(\mathbf{G}, +)$ has exponent 3. Therefore $x \oplus y = y - x + y + y - x + y$. Thus, whenever the group is commutative, $\oplus = +$.

10 Theorem. For any $x, y \in \mathbf{G}$, the following equalities hold:

$$(j_0) \ (x \bigtriangledown y) \oplus z = (x \oplus z) \bigtriangledown (y \oplus z);$$

$$(j_1) (x-y) \oplus y = x;$$

 $(j_2) (x \oplus y) \oplus y = x \oplus (-y) = x \oplus (y \oplus y);$

$$(j_3)$$
 $[(-x) \oplus y] \oplus [(x \oplus y)] = -y.$

Proof.

- (j_0) It is obvious, by definition of \oplus and by autodistributivity of ∇ .
- $(j_1) \text{ In fact } (x-y) \oplus y = 0 \bigtriangledown [0 \bigtriangledown (x \bigtriangledown (0 \bigtriangledown y)) \bigtriangledown y] = (x \bigtriangledown (0 \bigtriangledown y)) \bigtriangledown (0 \bigtriangledown y) = x.$
- (*j*₂) Indeed, by commutativity of \oplus and by some properties of \bigtriangledown , we get $(x \oplus y) \oplus y = 0 \bigtriangledown [(0 \bigtriangledown (x \bigtriangledown y)) \bigtriangledown y] = 0 \bigtriangledown [(0 \bigtriangledown y) \bigtriangledown x] = 0 \bigtriangledown [(y \oplus y) \bigtriangledown x] = x \oplus (y \oplus y).$
- (*j*₃) In fact (see (*j*₀)) $[(-x) \oplus y] \oplus [x \oplus y] = 0 \bigtriangledown [((-x) \oplus y) \bigtriangledown (x \oplus y)] = 0 \bigtriangledown [((-x) \bigtriangledown x) \oplus y] = 0 \bigtriangledown [0 \oplus y] = 0 \bigtriangledown y = -y.$

QED

11 Theorem. Let $a, b \in \mathbf{G}$, with $a \neq 0$ and $b \notin ((0, a))$. Then the structure $(((0, a, b)), \oplus)$ is isomorphic to $(((0, a)), +) \times (((0, b)), +)$.

PROOF. In order to prove the theorem it is sufficient to verify that if h, k, h', k' belong to $\{-1, 0, 1\}$, then $(ha \oplus kb) \oplus (h'a \oplus k'b) = (h+h)'a \oplus (k+k')b$.

Since \oplus is abelian, if at least one of the coefficients h, k, h', k' is 0, then this latter claim is true by property (j_2) and (j_1) in Theorem 10. Moreover the claim is trivial also whenever $h'a \oplus k'b = ha \oplus kb$ or $h'a \oplus k'b = (-h)a \oplus (-k)b [= -(ha \oplus kb)]$.

Hence it remains to considering a part of the case in which either h' = -h or k' = -k. Then the claim is an easy consequence of (j_3) in Theorem 10. QED

12 Remark. We point out that as an immediate corollary of theorem above we get that \oplus endows ((0, a, b)) of the structure of affine desarguesian (Galois) plane of order 3.

We conclude by emphasizing that if **H** is a uni-2-divisible subgroup of a uni-2-divisible group $(\mathbf{G}, +)$, then **H** is a submean of $(\mathbf{G}, \bigtriangledown, -\infty)$. But there can be some submeans **H** of $(\mathbf{G}, \bigtriangledown, -\infty)$, with $0 \in \mathbf{H}$, which are not subgroups of $(\mathbf{G}, +)$. For instance, one can consider the non-commutative group $(\mathbf{G}, +)$ of order 27 and exponent 3 (see [8], p. 146, exercise 6). Thus whenever $a, b \in \mathbf{G}$, with $a + b \neq b + a$, the set ((0, a, b)) is a submean of $(\mathbf{G}, \bigtriangledown, -\infty)$, but it is not a subgroup. Indeed ((0, a, b)) has 9 elements; meantime the subgroup generated by a and b coincides with **G** (hence it has 27 elements).

References

- A. BARLOTTI, K. STRAMBACH: The geometry of binary systems, Adv. in Math., 49 (1983), 1–105.
- [2] R. H. BRUCK: What is a loop?, MAA Stud. Math., 2 (1963), 59-62.
- [3] M. R. ENEA: Right distributive quasigroups on algebraic varieties, Geom. Dedicata, 51 (1994), 257–286.
- [4] B. FISCHER: Distributive Quasigruppen endlicher Ordnung, Math. Z., 83 (1964), 267–303.
- [5] O. LOOS: Symmetric spaces, vol. 1, Benjamin, New York 1969.
- [6] P. T. NAGY, K. STRAMBACH: Loops, their cores and symmetric spaces, Israel J. of Math., 105 (1998), 285–322.
- [7] P. T. NAGY, K. STRAMBACH: Loops viewed from group and Lie Theory, de Gruyter Verlag, Berlin 2001.
- [8] D. J. S. ROBINSON: A Course in the Theory of Groups, Springer-Verlag, New York 1996.