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Abstract. We construct two bi-Lipschitz continuous, volume preserving maps from Eu-
clidean space onto itself which map the unit ball onto a cylinder and onto a cube, respectively.
Moreover, we characterize invariant sets of these mappings.
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1 Introduction

This paper is dedicated to a special case of the general question whether two
manifolds with measure can be mapped onto each other by a measure preserving
map which possesses, additionally, some continuity properties. This problem has
a long history, for instance, in cartography, where surface preserving mappings
from the two dimensional sphere onto the plane are required.

The problem also appears in the investigation of partial differential equations
on Lipschitz domains, and our work is motivated thereby. Following Grisvard
[12], we say that a domain is Lipschitzian, if for every point of its boundary
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there is a neighbourhood U and a bi-Lipschitz continuous mapping Ψ such that
the Ψ-image of the intersection of U with the domain equals the unit half ball.
For many purposes these half balls are adequate model sets: after localization,
transformation and reflection one often ends up with an analogous differential
operator on the unit ball, which is mostly well known. However, some methods
used in interpolation theory of function spaces and parabolic regularity theory
— see [9] and [14] — require that the local charts are not only bi-Lipschitzian
but, additionally, possess a constant Jacobian. The crucial point is the following:
if one wants (after suitable localization) to transform problems which involve
spaces of distributions and function spaces via the Lipschitz diffeomorphism
Ψ onto the unit ball, then the way to define the mapping for functions u is
TΨu

def= u ◦ Ψ−1, while for distributions the corresponding mapping is T ∗
Ψ−1 .

Hence, to have a common retraction/coretraction for the function spaces and
the spaces of distributions the Jacobian of Ψ must be smooth. As the smoothness
of this Jacobian is not easy to control, here we are looking for mappings Ψ the
Jacobian of which is actually constant. More precisely, we explicitly construct
bi-Lipschitz continuous mappings from the ball onto the prototypical nonsmooth
objects cube and cylinder.

A variant of this problem has been treated by Moser [17], who demonstrated
that on a closed, smooth manifold any two smooth volume elements are diffeo-
morphic. Extensions of this result to noncompact manifolds are due to Greene
and Shiokama [6], while Banyaga [1] established it for smooth manifolds with
boundary. Gromov [15] investigated these questions for real analytic manifolds
with real analytic volume forms.

Zehnder [18] proved that certain Hölder and Lipschitz continuous volume
elements can be mapped onto each other by means of C1-mappings with Hölder
and Lipschitz continuous first derivatives, respectively. For bounded domains
with Hölder continuous volume forms and boundaries of the class C3,α Da-
corogna and Moser [3] demonstrated the existence of auto diffeomorphisms from
the class C1,α which provide the equivalence of the volume forms and coincide
with the identity map on the boundary of the manifold. Based upon this result
Fonseca and Parry [4, Ch. 5, Thm. 5.4] proved that for any two elements from a
class of star shaped domains in Euclidean space, there is a Lipschitz homeomor-
phism, with constant Jacobian, mapping these two domains onto each other.
Fonseca and Parry’s class contains in particular the ball, the cube, and the
cylinder.

Our aim is to give a comprehensive proof of Fonseca and Parry’s result for
the special case of a ball and a cylinder by explicitly constructing the Lipschitz
homeomorphism with constant Jacobian between the two domains. This special
Lipschitz homeomorphism has, additionally, a variety of invariant sets and fixed
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A bi-Lipschitz continuous, volume preserving map 179

points, which we characterize. Actually, our investigation has been spurred by
just this additional demand on the mapping. Our construction comes to bear
in applications of the concept of Gröger-regular sets in the theory of partial
differential equations, see [13] and [7] for the concept itself, and [8], [10], [11],
[14], and [16] for applications.

2 Results

We investigate bi-Lipschitz continuous mappings with constant Jacobian of
a ball onto a cylinder and of a ball onto a cube. The special geometric situation
allows to reduce the number of spatial variables by making use of rotational
symmetry. Thus, we can formulate the constancy of the Jacobian by means of
differential equations which can be explicitly solved. Finally, one obtains the
sought-after mapping as a rational expression.

1 Theorem. For any integer d ≥ 1 there is a bi-Lipschitz continuous map-
ping Λd+1 from R

d+1 onto itself with the following properties:

1. Λd+1 maps the unit ball Bd+1 of R
d+1 onto a cylinder with height 2 and

radius 1:

Λd+1 : Bd+1 onto−−→
{

(x, y) ∈ R
d+1 | x ∈ Bd, |y| < 1

}
.

2. Λd+1 maps the halfspace{
(x1, x2, . . . , xd+1) ∈ R

d+1 | xj ≥ 0
}

onto itself for each of the integers l ∈ {1, 2, . . . , d+ 1}.

3. Λd+1 maps each hyperplane containing the rotation axis{
(x, y) ∈ R

d+1 | x = 0, y ∈ R
}

onto itself.

4. Λd+1 is the identity map on the equatorial hyperplane{
(x, y) ∈ R

d+1 | x ∈ R
d, y = 0

}
.

5. Both poles (0, . . . , 0, 1) and (0, . . . , 0,−1) ∈ R
d+1 are fixed points of Λd+1.

6. The map Λd+1 is homogeneous of order 1:

Λd+1(rx1, rx2, . . . , rxd+1) = rΛd+1(x1, x2, . . . , xd+1)

for all (x1, x2, . . . , xd+1) ∈ R
d+1, r ≥ 0.
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7. The Jacobian of Λd+1 is constant almost everywhere.

We prove the theorem in Section 3.
2 Remark. In the two-dimensional case the mapping Λ2 defined by

Λ2(x, y)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0 , 0) if x = y = 0,(√
x2 + y2 , 4

π

√
x2 + y2 arctan y

x

)
if |y| ≤ x, x > 0,(

−
√
x2 + y2 , − 4

π

√
x2 + y2 arctan y

x

)
if |y| ≤ −x, x < 0,(

4
π

√
x2 + y2 arctan x

y ,
√
x2 + y2

)
if |x| ≤ y, y > 0,(

− 4
π

√
x2 + y2 arctan x

y , −
√
x2 + y2

)
if |x| ≤ −y, y < 0,

with the inverse

Λ−1
2 (ξ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0 , 0) if η = ξ = 0,(
ξ cos π4

η
ξ , ξ sin π

4
η
ξ

)
if |η| ≤ |ξ|, ξ �= 0,(

η sin π
4
ξ
η , η cos π4

ξ
η

)
if |ξ| ≤ |η|, η �= 0,

meets the requirements of Theorem 1, see also Figure 1.

Λ2

Λ−1
2

Figure 1. The map Λ2 from R
2 onto R

2.

Theorem 1 implies another special case of Fonseca and Parry’s result.
3 Corollary. There is a map from R

d, d ≥ 1, onto itself which is bi-
Lipschitz continuous, has an almost everywhere constant Jacobian, and maps
the unit ball onto the unit cube.
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A bi-Lipschitz continuous, volume preserving map 181

Proof. In the one-dimensional case one can choose the identity map. In
the two-dimensional case the mapping Λ2 from Remark 2 is the right one. Now
one deduces the statement by induction over the space dimension d, thereby
making use of Theorem 1. QED

4 Corollary. There is a bi-Lipschitz continuous, volume preserving map
from R

d, d ≥ 1, onto itself which maps the unit ball onto a cube.
Actually, Corollary 4 and Corollary 3 are equivalent. This follows from the

fact that a homothecy has a constant Jacobian.
5 Remark. Due to Brouwer’s invariance of domain theorem [2] the bound-

aries of the ball and of the cylinder as well as the boundaries of the ball and of
the cube are mapped onto each other by the mappings from Theorem 1 and the
corollaries, respectively.

3 Proof of the theorem

In the following we prove Theorem 1; we write the coordinates in R
d+1 as

(x1, . . . , xd, y), for short (x, y), x ∈ R
d, y ∈ R, and abbreviate the Euclidean

norm ‖x‖Rd by |x|d.
For d = 1 the mapping Λ2 from Remark 2 satisfies the assertions of Theo-

rem 1. Now, we regard the problem in R
d+1 with d ≥ 2 and make the following

ansatz for Λd+1:

(x, y) �−→
(
x1g(x, y), . . . , xdg(x, y), h(x, y)

)
(1)

for all x = (x1, . . . , xd) ∈ R
d and y ∈ R. Moreover, we demand(

x1g(x, y), . . . , xdg(x, y), h(x, y)
)

=
(
x1g(x,−y), . . . , xdg(x,−y),−h(x,−y)

)
. (2)

As a consequence of this ansatz, hyperplanes which contain zero and whose
normal vectors are orthogonal to the vector (0, 0, . . . , 0, 1) are mapped into
themselves. If, additionally, h(x, y) ≥ 0 for all y ≥ 0, the halfspace

R
d+1
+

def=
{

(x, y) ∈ R
d+1 | y ≥ 0

}
is mapped into itself, and the hyperplane defined by y = 0 is mapped into itself.
Thus, it suffices to define Λd+1 on the upper halfspace R

d+1
+ . In order to do so,

we partition R
d+1
+ :

C �
γ

def=
{

(x, y) ∈ R
d+1 | y ≥ γ|x|d

}
, (3)

C ��
γ

def=
{

(x, y) ∈ R
d+1 | 0 ≤ y ≤ γ|x|d

}
, (4)
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and define Λd+1, thereby observing (1), (2), by the bi-Lipschitz continuous map-
pings

Λ�
γ : C �

γ −→ C �
1 , Λ��γ : C ��

γ −→ C ��
1 , (5)

such that the restrictions of these mappings coincide on the common boundary

{
(x, y) ∈ R

d+1 | y = γ|x|d
}
, (6)

of C �
γ and C ��

γ . Here, γ > 0 is a constant, which we specify in Step 3 of the
proof.

1. First, we construct a mapping on the set C �
γ , see (3). We define h�(x, y) def=√

|x|2d + y2. Now, we are looking for a function g�(x, y) = v
(
|x|d/y

)
such that

the Jacobian satisfies∣∣∣∣∂(g�(x, y)x, h�(x, y))
∂(x, y)

∣∣∣∣ = 1 for all x ∈ R
d, y > 0. (7)

This determinant can be evaluated as follows

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v + x2
1

y |x|dv
′ x1x2

y|x|d v
′ . . . x1xd

y |x|dv
′ −x1|x|d

y2
v′

x1x2
y |x|dv

′ v + x2
2

y |x|dv
′ . . . x2xd

y |x|dv
′ −x2 |x|d

y2 v′

. . . . . . . . . . . . . . .

x1xd
y |x|dv

′ x2xd
y |x|d v

′ . . . v + x2
d

y |x|dv
′ −xd |x|d

y2 v′

x1√
|x|2d+y2

x2√
|x|2d+y2

. . . xd√
|x|2d+y2

y√
|x|2d+y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Adding suitable multiples of the first row to the others we get the determinant

1√
|x|2d + y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v + x2
1

y |x|dv
′ x1x2

y|x|dv
′ . . . x1xd

y |x|dv
′ −x1|x|d

y2
v′

−x2
x1
v v 0 . . . 0

. . . . . . . . . . . . . . .

−xd
x1
v 0 . . . v 0

x1 x2 . . . xd y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

________________________________________________________________________________________________



A bi-Lipschitz continuous, volume preserving map 183

which can be simplified by adding multiples of the last column to the others

1√
|x|2d + y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v 0 . . . 0 −x1|x|d
y2

v′

−x2
x1
v v 0 . . . 0

. . . . . . . . . . . . . . .

−xd
x1
v 0 . . . v 0

x1

(
1 + y2

|x|2d

)
x2

(
1 + y2

|x|2d

)
. . . xd

(
1 + y2

|x|2d

)
y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally, adding suitable multiples of all columns to the first one we end up with

1√
|x|2d + y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v 0 . . . 0 −x1|x|d
y2 v′

0 v 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . v 0

|x|2d
x1

(
1 + y2

|x|2d

)
x2

(
1 + y2

|x|2d

)
. . . xd

(
1 + y2

|x|2d

)
y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Developing the last determinant with respect to the first column, condition (7)
leads to the following ordinary differential equation for v:

1√
|x|2d
y2

+ 1
vd

(
|x|d
y

)
+

( |x|2d
y2

+ 1
)

1√
y2

|x|2d
+ 1

vd−1

(
|x|d
y

)
v′
(
|x|d
y

)
= 1,

which transforms under the substitution vd = w, |x|d
y = ζ, equivalently into

w′ +
d

ζ(ζ2 + 1)
w =

d

ζ
√
ζ2 + 1

.

The general solution of this equation is

ζ �−→ d
(ζ2 + 1)d/2

ζd

(∫ ζ

0

αd−1

(α2 + 1)(d+1)/2
dα+ c

)

= d
(ζ2 + 1)d/2

ζd

(∫ arctan ζ

0
sind−1 αdα+ c

)
,
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where c is an arbitrary real constant. As one has to avoid a singularity in ζ = 0,
one chooses c = 0. Thus, one obtains for g�:

g�(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
√

y2

|x|2d
+ 1

(
d

∫ arctan(|x|d/y)

0
sind−1 α dα

)1/d

if x �= 0,

1 if x = 0.

(8)

Please note that

lim
x→0

√
y2

|x|2d
+ 1

(
d

∫ arctan(|x|d/y)

0
sind−1 α dα

)1/d

= 1 .

It should be noted that both h� and g� are rational transformations.
2. Next, we construct corresponding functions on C ��

γ , see (4). Because

spheres have to pass into cylinder surfaces we define g��(x, y) def=
√

1 + y2/|x|2d.
Now we are looking for a function h��(x, y) = u

(
|x|d, y

)
such that the Jacobian

satisfies ∣∣∣∣∂(g��(x, y)x, h��(x, y))
∂(x, y)

∣∣∣∣ = 1 for all x ∈ R
d, x �= 0, y ≥ 0. (9)

It turns out that this condition on the Jacobian together with the requirement
that u should vanish on the set

{
(x, y) ∈ R

d+1 | y = 0
}

determines u uniquely.
Using the substitution |x|d = θ the Jacobian can be evaluated as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g�� − x2
1y

2

g�� |x|4d
−x1x2y2

g�� |x|4d
. . . −x1xdy

2

g�� |x|4d
x1y

g�� |x|2d

−x1x2y2

g�� |x|4d
g�� − x2

2y
2

g�� |x|4d
. . . −x2xdy

2

g�� |x|4d
x2y

g�� |x|2d
. . . . . . . . . . . . . . .

−x1xdy
2

g�� |x|4d
−x2xdy

2

g�� |x|4d
. . . g�� − x2

dy
2

g�� |x|4d
xdy

g�� |x|2d
x1
|x|d

∂u
∂θ

x2
|x|d

∂u
∂θ . . . xd

|x|d
∂u
∂θ

∂u
∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Adding suitable multiples of the first row to the others we get the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g�� − x2
1y

2

g�� |x|4d
−x1x2y2

g�� |x|4d
. . . −x1xdy

2

g�� |x|4d
x1y

g�� |x|2d
−x2
x1
g�� g�� 0 . . . 0

. . . . . . . . . . . . . . .

−xd
x1
g�� 0 . . . g�� 0

x1
|x|d

∂u
∂θ

x2
|x|d

∂u
∂θ . . . xd

|x|d
∂u
∂θ

∂u
∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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which can be simplified by adding multiples of the last column to the others:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g�� 0 . . . 0 x1y
g�� |x|2d

−x2
x1
g�� g�� 0 . . . 0

. . . . . . . . . . . . . . .

−xd
x1
g�� 0 . . . g�� 0

x1
|x|d

(
∂u
∂θ + y

|x|d
∂u
∂y

)
x2
|x|d

(
∂u
∂θ + y

|x|d
∂u
∂y

)
. . . xd

|x|d

(
∂u
∂θ + y

|x|d
∂u
∂y

)
∂u
∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally, adding suitable multiples of all columns to the first one we end up with∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g�� 0 . . . 0 x1y
g�� |x|2d

0 g�� 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . g�� 0

|x|d
x1

(
∂u
∂θ + y

|x|d
∂u
∂y

)
x2
|x|d

(
∂u
∂θ + y

|x|d
∂u
∂y

)
. . . xd

|x|d

(
∂u
∂θ + y

|x|d
∂u
∂y

)
∂u
∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Developing the last determinant with respect to the first column, one easily
obtains from (9) the condition(

1 +
y2

|x|2d

)(d−2)/2(∂u
∂y

− y

|x|d
∂u

∂θ

)
= 1.

This yields the partial differential equation

−y ∂u(θ, y)
∂θ

+ θ
∂u(θ, y)
∂y

=
θd−1(

θ2 + y2
)(d−2)/2

with the boundary condition

u(θ, 0) = 0 for 0 ≤ θ < +∞.

By the method of characteristics, see for instance [5], one finds the solution

(θ, y) �−→
√
θ2 + y2

∫ arctan(y/θ)

0
cosd−1 αdα,

and ends up with

h��(x, y) =
√
|x|2d + y2

∫ arctan(y/|x|d)

0
cosd−1 α dα. (10)

________________________________________________________________________________________________
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Again it should be noted that both h�� and g�� are rational transformations.
3. Up to now we have constructed two volume preserving mappings

(x1g
�, . . . , xd g�, h�) : R

d+1
+

onto−−→ R
d+1
+ ,

(x1g
��, . . . , xd g

��, h��) : R
d+1
+

onto−−→ R
d+1
+ ,

which are homogeneous of order 1. These mappings do not depend on γ, see (5).
We are now going to modify both mappings such that they coincide on the
common boundary of the sets C �

γ and C ��
γ for some γ > 0, see (6). To that end

we introduce the functions

τ : λ �−→
(
d

∫ arctan(1/λ)

0
sind−1 α dα

)1/d

(11)

on (0,+∞) and

� : λ �−→
∫ arctan λ

0
cosd−1 αdα , (12)

on [0,+∞) and define mappings (5) by

Λ�
γ (x, y) def=

(
x1
g�(x, y)
τ(γ)

, . . . , xd
g�(x, y)
τ(γ)

, h�(x, y)
)

for (x, y) ∈ C �
γ , (13)

Λ��γ (x, y) def=
(
x1 g

��(x, y), . . . , xd g��(x, y),
h��(x, y)
�(γ)

)
for (x, y) ∈ C ��

γ , (14)

for all γ > 0. The Jacobians of these mappings are∣∣∣∣ ∂Λ�

∂(x, y)

∣∣∣∣ =
(

1
τ(γ)

)d
and

∣∣∣∣ ∂Λ��

∂(x, y)

∣∣∣∣ =
1

�(γ)
, (15)

for all (x, y) ∈ R
d+1 with x �= 0, y > 0. If

d

∫ arctan(1/γ)

0
sind−1 α dα =

∫ arctan γ

0
cosd−1 α dα, (16)

then the values of the Jacobians (15) are equal. There is exactly one γ > 0
which satisfies (16), and in the sequel γ shall be this solution of (16). From the
monotonicity properties of τ and � one deduces that, in accordance with (5),
Λ�
γ maps the set C �

γ onto C �
1 and that Λ��γ maps C ��

γ onto C ��
1 . Please note

that

τ ′(λ) = −
(
d

∫ arctan(1/λ)

0
sind−1 α dα

)(1−d)/d
sind−1

(
arctan

1
λ

)
1

1 + λ2

= − 1
τ(λ)d−1(1 + λ2)(d+1)/2

(17)
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and
�′(λ) = cosd−1(arctan λ)

1
1 + λ2

=
1

(1 + λ2)(d+1)/2
. (18)

The inverse mappings to Λ�
γ and Λ��γ are given by

(Λ�
γ )−1(ξ, η) =

(
ξ1

η
|ξ|d , . . . , ξd

η
|ξ|d , η τ

−1
(
τ(γ)|ξ|d

η

))
√

1 +
(
τ−1

(
τ(γ)|ξ|d

η

))2
(19)

in the interior of C �
1 , and

(Λ��γ )−1(ξ, η) =

(
ξ1, . . . , ξd, |ξ|d �−1

(
�(γ)η
|ξ|d

))
√

1 +
(
�−1

(
�(γ)η
|ξ|d

))2
(20)

in the interior of C ��
1 plus continuous extension to C �

1 and C ��
1 , respectively.

From the monotonicity properties of τ and � follows that (Λ�
γ )−1 maps C �

1 onto
C �
γ and (Λ��γ )−1 maps C ��

1 onto C ��
γ .

With respect to the solution γ of (16) we now define the sought-after map-
ping

Λd+1(x, y)
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λ�
γ (x, y) if (x, y) ∈ C �

γ ,

SΛ�
γS(x, y) if S(x, y) ∈ C �

γ ,

Λ��γ (x, y) if (x, y) ∈ C ��
γ ,

SΛ��γ S(x, y) if S(x, y) ∈ C ��
γ ,

where S : R
d+1 �−→ R

d+1 is the reflection at the equatorial plane, given by
S(x, y) def= (x,−y) for (x, y) ∈ R

d+1.
4. Finally, we prove the Lipschitz properties of Λd+1. First we make sure,

that
Λ�
γ ∈ C0,1(C �

γ ) and Λ��γ ∈ C0,1(C ��
γ ),

see Step 5. Then we can estimate

|Λd+1(x, y)− Λd+1(x̃, ỹ)|d+1

≤ max
{
‖Λ�

γ ‖C0,1(C �
γ ), ‖Λ��γ ‖C0,1(C ��

γ )

}
‖(x, y)− (x̃, ỹ)‖d+1

for all (x, y), (x̃, ỹ) ∈ R
d+1. Please note that the segment connecting (x, y) and

(x̃, ỹ) can be split up into finitely many parts in such a way, that each part
belongs to one of the sets C �

γ , S[C �
γ ], C ��

γ , S[C ��
γ ].

Analogously one can prove the Lipschitz continuity of the inverse mapping
Λ−1
d+1, see also Step 6.
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5. In the sequel we show that the transforming functions Λ�
γ and Λ��γ are

Lipschitz continuous.
First, we regard Λ�

γ on C �
γ , see (13): The function h� is Lipschitz continuous

due to the triangle inequality. Next we prove that the partial derivatives of

(x, y) �−→ xk g
�(x, y) = xk

√
y2

|x|2d
+ 1

(
d

∫ arctan(|x|d/y)

0
sind−1 αdα

)1/d

(21)

are bounded. We substitute λ = y
|x|d . The cornerstone of the argument is the

boundedness of the function

λ �−→ τ(λ)
√

1 + λ2 (22)

on (0,+∞) from below and from above by strictly positive constants. Indeed,
using the relation α/2 ≤ sinα ≤ α, we get

√
1 + λ2

2
arctan

1
λ
≤

√
1 + λ2

(
d

∫ arctan(1/λ)

0
sind−1 αdα

)1/d

≤
√

1 + λ2 arctan
1
λ

for all λ ∈ (0,+∞). Hence, it remains to show that the following terms in the
partial derivatives of (21) are bounded:

|x|d
d
dλ

(
τ(λ)

√
1 + λ2

) ∂λ

∂xj
= −xjy|x|2d

(
λ τ(λ)√
1 + λ2

+ τ ′(λ)
√

1 + λ2

)

= − xj
|x|d

(
λ2 τ(λ)

√
1 + λ2

1 + λ2
− λ(

τ(λ)
√

1 + λ2
)d−1√1 + λ2

)

and

|x|d
d
dλ

(
τ(λ)

√
1 + λ2

) ∂λ
∂y

=
λ τ(λ)√
1 + λ2

+ τ ′(λ)
√

1 + λ2

=
λ τ(λ)√
1 + λ2

− 1(
τ(λ)

√
1 + λ2

)d−1√1 + λ2
.

In the calculations we have used (17). Owing to the boundedness of τ and the
function (22), the expressions on the right-hand side are uniformly bounded for
all λ ∈ (0,+∞).

Next, we regard Λ��γ on C ��
γ , see (14): The function h��, see (10), has bounded

partial derivatives. Indeed, the second factor in (10) is bounded as well as the
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partial derivatives of the first factor. Hence, it remains to show that the following
terms in the partial derivatives of h�� are bounded:√

|x|2d + y2 �′(λ)
∂λ

∂y
= �′(λ)

√
1 + λ2 =

1
(1 + λ2)d/2

and √
|x|2d + y2 �′(λ)

∂λ

∂xj
= −xjy|x|2d

�′(λ)
√

1 + λ2 = −xjy|x|2d
1

(1 + λ2)d/2
.

Here we have used (18). For y ≤ γ|x|d these terms are bounded. Finally, we
prove that the partial derivatives of the function

(x, y) �−→ xk g
��(x, y) =

xk
|x|d

√
|x|2d + y2 , (23)

are bounded. Because the first factor in (23) is bounded as well as the partial
derivatives of the second factor, it suffices to note that

√
|x|2d + y2

∂

∂xj

xk
|x|d

=

⎧⎪⎪⎨
⎪⎪⎩
(

1
|x|d −

x2
j

|x|3d

)√
|x|2d + y2 if k = l,

−xkxj

|x|3
√
|x|2d + y2 if k �= l.

These terms are uniformly bounded on the set
{

(x, y) ∈ R
d+1 | y ≤ γ|x|d

}
.

6. In the sequel we show that the transforming functions (Λ�
γ )−1and (Λ��γ )−1

are Lipschitz continuous.
First, we regard (Λ�

γ )−1 on C �
1 , see (19), and define s = τ(γ)|ξ|d

η . In order to
make sure that the partial derivatives of the function

(ξ, η) �−→
η τ−1

(
τ(γ)|ξ|d

η

)
√

1 +
(
τ−1

(
τ(γ)|ξ|d

η

))2

are bounded, it suffices to consider the terms

η
d
ds

τ−1(s)√
1 + (τ−1(s))2

∂s

∂ξj
=
τ(γ)ξj
|ξ|d

(τ−1)′(s)(
1 + (τ−1(s))2

)3/2

and

η
d
ds

τ−1(s)√
1 + (τ−1(s))2

∂s

∂η
= −τ(γ)|ξ|d

η

(τ−1)′(s)(
1 + (τ−1(s))2

)3/2
.
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These terms are bounded for η ≥ |ξ|d, since the function

s �−→ (τ−1)′(s)
1 + (τ−1(s))2

=
1

1 + (τ−1(s))2
1

τ ′(τ−1(s))
(24)

is bounded on (0, τ(γ)]. Indeed, using (17), the right-hand side equals to

1
1 + (τ−1(s))2

1
τ ′(τ−1(s))

= −
(
s
√

1 + (τ−1(s))2
)d−1

which is bounded due to the boundedness of the function (22). Now, we inves-
tigate the partial derivatives of the function

(ξ, η) �−→
η

|ξ|d ξ√
1 +

(
τ−1

(
τ(γ)|ξ|d

η

))2
=

τ(γ)
s
√

1 + (τ−1(s))2
ξ .

Please note that the fraction in front of ξ is bounded by the positive bounds of
the function (22). Hence, it remains to treat the terms

|ξ|d
d
ds

τ(γ)
s
√

1 + (τ−1(s))2
∂s

∂η
=

1√
1 + τ−1(s)2

+
s τ−1(s)(τ−1)′(s)(
1 + (τ−1(s))2

)3/2

and

|ξ|d
d
ds

τ(γ)
s
√

1 + (τ−1(s))2
∂s

∂ξj

= −τ(γ)ξj|ξ|d

(
1

s
√

1 + (τ−1(s))2
+

τ−1(s)(τ−1)′(s)(
1 + (τ−1(s)2)

)3/2

)
.

Both expressions are bounded for η ≥ |ξ|d, thanks to the boundedness of the
functions (22) and (24).

Finally, we regard (Λ��γ )−1 on C ��
1 , see (20), and define t = �(γ)η

|ξ|d . First, we
investigate the partial derivatives of the function

(ξ, η) �−→ ξ√
1 +

(
�−1

(
�(γ)η
|ξ|d

))2
.

The critical terms are

|ξ|d
d
dt

1√
1 + (�−1(t))2

∂t

∂η
= −�(γ) �−1(t)(�−1)′(t)(

1 + (�−1(t))2
)3/2
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and

|ξ|d
d
dt

1√
1 + (�−1(t))2

∂t

∂ξj
= �(γ)

ξjη

|ξ|2d
�−1(t)(�−1)′(t)(
1 + (�−1(t))2

)3/2
.

For η ≤ |ξ|d the boundedness of the right-hand side expressions is a consequence
of the boundedness of the function

t �−→ (�−1)′(t)
1 + (�−1(t))2

=
1

1 + (�−1(t))2
1

�′(�−1(t))
(25)

on the interval [0, �(γ)]. Using (18), this follows from

1
1 + (�−1(t))2

1
�′(�−1(t))

=
(
1 + (�−1(t))2

)(d−1)/2

and the fact that �−1(t) ∈ [0, γ]. Next, we investigate the partial derivatives of
the function

(ξ, η) �−→
|ξ|d �−1

(
�(γ)η
|ξ|d

)
√

1 +
(
�−1

(
�(γ)η
|ξ|d

))2
.

The critical terms are

|ξ|d
d
dt

�−1(t)√
1 + (�−1(t))2

∂t

∂ξj
= −�(γ)ξjη|ξ|2d

(�−1)′(t)(
1 + (�−1(t))2

)3/2

and

|ξ|d
d
dt

�−1(t)√
1 + (�−1(t))2

∂t

∂η
=

�(γ) (�−1)′(t)(
1 + (�−1(t))2

)3/2
.

For η ≤ |ξ|d the boundedness of the right-hand side expressions follows from
the boundedness of the function (25).

6 Remark. In the three-dimensional case the solution of (16) and the cor-
responding values of τ and �, see (11), (12), are

γ =
2√
5
, τ(γ) =

√
2√
3
, �(γ) =

2
3
.

The mappings g� and h�� are determined by

g�(x, y) =

√
2 |(x, y)|3

|(x, y)|3 + |y| and h��(x, y) = y .
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Thus, we get

Λ3(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0) if x = 0, y = 0,(
x1

|(x,y)|3
|x|2 , x2

|(x,y)|3
|x|2 , 3

2y

)
if

√
5

2 |y| ≤ |x|2,(
x1

√
3 |(x,y)|3

|(x,y)|3+|y| , x2

√
3 |(x,y)|3

|(x,y)|3+|y| , |(x, y)|3
)

if
√

5
2 y ≥ |x|2,(

x1

√
3 |(x,y)|3

|(x,y)|3+|y| , x2

√
3 |(x,y)|3

|(x,y)|3+|y| , −|(x, y)|3
)

if −
√

5
2 y ≥ |x|2.

The inverse of Λ3 is given by

Λ−1
3 (ξ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0) if ξ = 0, η = 0,(
ξ1
√

1− 4
9
η2

|ξ|22
, ξ2

√
1− 4

9
η2

|ξ|22
, 2

3η

)
if |η| ≤ |ξ|2,(

ξ1

√
2
3 −

|ξ|22
9η2

, ξ2

√
2
3 −

|ξ|22
9η2

, η − |ξ|22
3η

)
if |η| ≥ |ξ|2,

see also Figure 2.

Λ3

Λ−1
3

Figure 2. The map Λ3 from R
3 onto R

3.

7 Remark. In a way our investigation also is a contribution to the general
knowledge about the unit cube, see Zong [19].

8 Remark. Are there other geometrical objects than the cylinder and the
ball, such that a mapping of this object onto the unit cube exists and has the
properties specified in our Theorem? Is there a complete geometrical character-
ization of these objects?
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[14] K. Gröger: W 1,p–estimates of solutions to evolution equations corresponding to nons-
mooth second order elliptic differential operators, Nonlinear Anal. Theory Methods Appl.,
18 (1992), 569–577.

[15] G. Gromov: Smoothing and inversion of differential operators, Math. USSR-Sb., 17
(1972), 381–435.

[16] H.-Chr. Kaiser, H. Neidhardt, J. Rehberg: Classical solutions of quasilinear
parabolic systems on two-dimensional domains, NoDEA Nonlinear Differential Equations
Appl., to appear.

[17] J. Moser: On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965),
286–294.

[18] E. Zehnder: Note on smoothing symplectic and volume preserving diffeomorphisms, Lec-
ture Notes in Mathematics, 597 (1976), 828–854.

[19] Chuanming Zong: What is known about unit cubes?, Bull. Amer. Math. Soc., 42 (2005),
181–211.

________________________________________________________________________________________________


