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1 Introduction

A hyper-regulus net of degree (qn − 1)/(q − 1) and order qn is a net arising
from a partial spread H in V q

2n of (qn − 1)/(q − 1) components, which admits
a proper net replacement. The partial spread H∗ corresponding to the net re-
placement is then also a hyper-regulus as is H. In a series of recent articles, the
authors have constructed new hyper-reguli and a variety of sets of hyper-reguli
that lead to new translation planes of order qn (see Jha and Johnson [1, 2, 3]).

In this article, we consider infinite hyper-reguli and show that constructions
similar to those in the finite case may be carried out to produce a wide range
of new infinite translation planes and Sperner spaces.

2 Infinite hyper-reguli

The ideas of the constructions in both the finite and infinite cases are as
follows: Begin with a given Pappian spread Σ coordinatized by a field L and
let P denote the prime field of L. Realize the underlying vector space L ⊕ L
and consider this vector space as a P -space. Determine a P -space T of L ⊕ L
P -isomorphic to L as a P -space and such that whenever any two components
M and N of Σ non-trivially intersect T then the intersections M ∩T and N ∩T
are isomorphic P -subspaces. Let K denote the maximum subfield J of L such
that T is an J-space. Then since each component M and N of Σ are L-spaces,
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168 V. Jha, N. L. Johnson

this makes M ∩ T a K-space. Moreover, if for a subfield S of L, M ∩ T is an
S-space then T must be an S-space since M is an L-space, forcing S to be a
subfield of K. Now take the image of T under the kernel homology group of
the Pappian affine plane with spread Σ. The image set will cover M if M ∩ T
is non-trivial. In this way, a partial spread of components of Σ is covered by
images of T under the kernel homology group. A ‘switching’ of partial spreads
then constructs either a new translation plane or a new Sperner space.

We begin with a general definition of a hyper-regulus.
1 Definition. Let V be a vector space over a prime field P . A P -partial

spread of V ⊕V is a set of mutually disjoint subspaces P -isomorphic to V . Given
a P -partial spread P, with the following properties:

(i) There is another P -partial spread P∗ such that

(a) each element of P∗ intersects each element of P in isomorphic P -
subspaces and

(b)
⋃
P =

⋃
P∗.

(ii) The non-zero vectors of P∗ cover the non-zero vectors of P.

Then then P is said to be a ‘hyper-regulus’.
Note that then P∗ also becomes a hyper-regulus.
Let K denote a maximum field containing P such that elements of both

partial spreads P and P∗ are all K-spaces. Then K shall be called the ‘kernel’
of the pair of partial spreads.

Of course, reguli in PG(3, Z), for any field Z produce hyper-reguli in the
corresponding vector space.

2 Definition. We recall that a ‘spread’ of L ⊕ L considered as a vector
space over its prime field P is a set of subspaces each of which is P -isomorphic
to L and whose union covers the vector space. We note that any spread pro-
duces a translation ‘Sperner’ space by taking translates of the spread elements
(‘components’) as lines.

If a spread has the property that any two distinct subspaces generate L⊕L,
the spread is a said to be a ‘congruence partition’, and a ‘translation plane’ is
then obtained.

In the following, we will construct either Sperner spaces or translation planes
by the replacement of certain subspaces.

3 Definition. Let L be any field, let σ be any non-trivial automorphism
of L and assume that K = Fixσ. Let πΣ denote the Pappian translation plane
determined by the L-spread Σ (a L-partial spread that covers L⊕ L),

x = 0, y = xm; m ∈ L .

________________________________________________________________________________________________



Sperner spaces 169

(1) If L �= Lσ−1, we may define the ‘André’ hyper-reguli as follows: Let Ak be
defined as

Ak =
{
y = xmk;m ∈ Lσ−1\{0}

}
, k a fixed non-zero element of L .

It is clear that Ak is a L-partial spread. Let

Aσ
i

k =
{
y = xσ

i
mk;m ∈ Lσ−1\{0}

}
.

If Lσ−1 = Lσ
i−1, then y = xσ

i
nk and y = xmk has a non-zero solution if and

only if
xσ

i−1 = mn−1 ,

which is valid since m = tσ−1 and n−1 = sσ−1.
(2) The partial spread Aσ

i

k is said to be an ‘André replacement’ for Ak.

4 Remark. Both Ak and Aσ
i

k are hyper-reguli with kernel K+ = Fixσi and
all non-trivial intersections are 1-dimensional K+-subspaces.

Proof. Let K+ = Fixσi. Note that y = xσ
i
k ∩ y = xmk for m ∈ Lσ−1 is a

1-dimensional K+-subspace. Hence, all non-trivial intersections with y = xσ
i
k

with components of Σ are isomorphic K+-subspaces. Note that K ⊆ K+, but
it is possible that K �= K+. The remaining elements of the partial spread are
images of y = xσ

i
k under the kernel homology group with elements

(x, y) �−→ (dx, dy), 0 �= d ∈ L.

These images are y = xσ
i
kd1−σi

and since Lσ−1 = Lσ
i−1, the proof follows

immediately. QED

The importance of hyper-reguli is suggested by the following construction
producing translation planes or translation Sperner spaces.

5 Theorem. Let Σ be the Pappian spread coordinatized by a field L, let
σ be an automorphism of L and let S be a set of André hyper-reguli Ak for
k ∈ λ, corresponding to σ. Let S∗ be any set of corresponding sets Aσ

ik

k , where
σik depends only on k, for k ∈ λ, and where for each σik , Lσ−1 = Lσ

ik−1 �= L.
(1) Then

x = 0, y = xσ
ikmk, y = xn;m ∈ Lσ−1, k ∈ λ, n ∈ L− Lσ−1

is a spread of L⊕ L with kernel ∩Fixσik .
(2) This spread defines a translation plane (i.e., is a ‘congruence partition’)

if and only if the following define bijective functions on L:

x �−→ xσ
ikmk − xn, for each m ∈ Lσ−1\{0}, n ∈ L− Lσ−1, k ∈ λ,

x �−→ xσ
ikmk − xσ

it
nt, for each m ∈ Lσ−1\{0}, t �= k; t, k ∈ λ .
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170 V. Jha, N. L. Johnson

If any one of these functions is not surjective the spread defines a translation
Sperner space which is not a translation plane.

Proof. In order to obtain a translation plane, we need only show that we
obtain a net; that distinct lines from distinct parallel classes intersect. This is
equivalent to having the direct sum of any two of the subspaces under considera-
tion sum to L⊕L. The conditions given are equivalent to this sum requirement.
For example consider two components of the spread y = xσ

ikmk and y = xn
and consider any translate y = xn + b of y = xn. Then y = xσ

ikmk intersects
y = xn+b in a unique point, if and only if x �−→ xσ

ikmk−xn defines a bijective
function on L. This is equivalent to(

y = xσ
ikmk

)
⊕ (y = xn) = L⊕ L .

QED

It has been an open question if there are any hyper-reguli that are not
André hyper-reguli. One might think that any derivable net which is not a
regulus net would not necessarily be an André net. Indeed, it is possible to find
infinite derivable nets which are not coordinatized by fields so these would be
hyper-reguli which are not André. In general, it is not difficult to show that any
regulus can be given the form of an André regulus and by the work of the second
author (see Johnson [5]), any derivable net may be coordinatized by a skew field
and hence any finite derivable net then becomes an André hyper-regulus. It is
actually possible to find unusual replacements for finite André nets such that
the replacements are not in themselves André (see Johnson [4]). But the major
problem then is whether there are non-André hyper-reguli that lie within a
Pappian spread.

Furthermore, the authors have constructed various new classes of translation
planes of order qn and kernel GF (q) by constructing sets of mutually disjoint
hyper-regulus nets in Desarguesian affine planes. When n > 3, none of these
hyper-reguli can be André hyper-reguli, and they lead to translation planes
that admit very few central collineations. The question then is whether there
are any similar constructions in the infinite case.

In this note, we show that a very general construction is valid for arbitrary
fields. We obtain a variety of new hyper-reguli from any automorphism σ of a
field L. If Lσ−1 �= L and σ does not have order 2 or 3, then any such hyper-
regulus is never an André hyper-regulus using any automorphism of L. Hence,
we obtain a tremendous number of new translation planes or translation Sperner
spaces.

6 Theorem. Let L be a field and let σ denote a non-trivial automorphism,
such that Lσ−1 �= L, and let K = Fixσ. Let Σ denote the Pappian spread
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Sperner spaces 171

{x = 0, y = xm;m ∈ L} .
Let b ∈ L− Lσ−1 and let

H∗ =
{
y = xσd1−σ + xσ

−1
d1−σ−1

b; d ∈ L\{0}
}
.

Then H∗ is a hyper-regulus and the set of non-trivial intersections of H∗ with
Σ is a hyper-regulus H of the Pappian spread Σ.

Proof. Consider the subspace y = xσ + xσ
−1
b over K. We note that the

dimension over K of y = xσ + xσ
−1
b is the dimension of y = x over K, the

dimension of L over K. Let B be a basis for L over K. Then it follows directly
that

{
e, eσ + eσ

−1
b; e ∈ B

}
is a basis for y = xσ+xσ

−1
b. That is, if xσ+xσ

−1
b =

0 and x is not zero, then b = xσ−σ−1
= xσ

−1(σ2−1) = (xσ
−1(σ+1))σ−1, contrary

to our assumptions. Now consider the kernel homology group with elements
(x, y) �−→ (xd, yd), for d ∈ L\{0}. Then y = xσ + xσ

−1
b maps to

y = xσd1−σ + xσ
−1
d1−σ−1

b.

Now suppose we could show that these subspaces were mutually disjoint. In
this case, we would obtain a partial spread. Consider a non-trivial intersection
of y = xσ + xσ

−1
b and y = xm. Clearly, the maximum subfield of L that fixes

y = xσ + xσ
−1
b is K. If

xσi + xσ
−1

i b = xim, for i = 1, 2

then
xσ−1

1 + xσ
−1−1

1 b = xσ−1
2 + xσ

−1−1
2 b,

which implies that (
xσ−1

1 − xσ−1
2

)
=

(
xσ

−1−1
2 − xσ

−1−1
1

)
b .

Note that (
xσ

−1−1
2 − xσ

−1−1
1

)σ
=

(
xσ−1

1 − xσ−1
2

)
(x1x2)

σ−1

Hence we obtain(
xσ

−1−1
2 − xσ

−1−1
1

)σ
(x1x2)

σ−1 =
(
xσ

−1−1
2 − xσ

−1−1
1

)
b.

Since b ∈ L − Lσ−1, it can only be that xσ−1
1 = xσ−1

2 , so that
(
x1x

−1
2

)σ =(
x1x

−1
2

)
, implying that x1x

−1
2 ∈ K. Hence, any non-trivial intersection is nec-

essarily of dimension 1 over K.
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Then if the original subspace y = xσ + xσ
−1
b intersects y = xm; m ∈ λ, it

follows that each such component y = xm is completely covered by mutually
disjoint K-subspaces, each of which intersects each y = xm in a 1-dimensional
K-subspace.

Observe that
xσd1−σ + xσ

−1
d1−σ−1

b = xσ + xσ
−1
b

for x non-zero, provided that

xσ−σ
−1 (

d1−σ − 1
)

= b
(
1− d1−σ−1

)
.

If d1−σ = 1 then we have the same subspace. Hence, assume that d1−σ �= 1,
implying that

b = xσ
−1(σ+1)(σ−1)

(
d1−σ − 1

)(
1− d1−σ−1

) = xσ
−1(σ+1)(σ−1)

(
d1−σ − 1

)
d1−σ−1

(
dσ−1−1 − 1

) .
Note that (

dσ
−1−1 − 1

)σ
= d1−σ − 1 .

Hence,

b = xσ
−1(σ+1)(σ−1)

(
dσ

−1−1 − 1
)σ−1

d1−σ−1 .

Now d1−σ−1
= dσ

−1(σ−1), implying that

b =

((
xσ

−1(σ+1)

dσ
−1

)(
dσ

−1−1 − 1
))(σ−1)

,

which is contrary to our assumptions. Hence, we have a partial spread. This
completes the proof to the theorem. QED

7 Theorem. Under the above assumptions, let T be a subgroup of K\{0} =
Fixσ\{0}, such that T ∩ Lσ−1 = 〈1〉 and Lσ−1K is proper in L. Assume that
b ∈ L− Lσ−1T . For α ∈ T , let

H∗
α =

{
y = xσαd1−σ + xσ

−1
α−1d1−σ−1

b; d ∈ L\{0}
}
.

Then
∪α∈TH∗

α

is a set of mutually disjoint hyper-reguli.
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Proof. Look at

xσβ + xσ
−1
β−1b = xσαd1−σ + xσ

−1
α−1d1−σ−1

b .

Assume that β = αd1−σ . Then β/α = d1−σ . Since β/α ∈ T and d1−σ ∈ Lσ−1,
then d1−σ = 1 and β = α. Thus, we may assume that d1−σ �= 1 and β �= αd1−σ

Then the question, just as above, is whether there is a non-zero x satisfying the
above equation. If so then

xσ−σ
−1

(
β − αd1−σ)

α−1β−1d1−σ−1
(
β − αdσ

−1−1
) = b.

Note that
(
β − αdσ

−1−1
)σ

=
(
β − αd1−σ). Hence, we obtain a general equation

of the form:
b = e(σ−1)αβ ,

implying that
b ∈ Lσ−1T ,

a contradiction. QED

We now generalize these constructions as follows:
8 Theorem. Let L be any field and σ be any automorphism of L. Assume

that Lσ−1 �= L. Then (L\{0})σ−1 = L∗(σ−1) is a proper subgroup of L\{0} = L∗.
Let B be a coset representative set for L∗(σ−1).

Let λ be a subset of B for which that
⋃
ωiωjL

∗(σ−1) �= L∗, for all ωi, ωj in
λ. For ωi ∈ λ, let H∗

i

H∗
i =

{
y = xσωid

1−σ + xσ
−1
ω−σ−1

i d1−σ−1
b; d ∈ L∗

}
.

(1) If b ∈ L∗ −
⋃
ωiωjL

∗(σ−1) then

∪ωi∈λH∗
i

is a set of mutually disjoint hyper-reguli, where

y = xm;m ∈ L, x = 0,

defines the corresponding Pappian spread Σ coordinatized by L.
(2) Choose any subset λ∗ of λ. Then there is a corresponding Sperner space

constructed using these subspaces together with the components of Σ not inter-
secting the components of λ∗ and forming a spread.

If the spread is a congruence partition (for example, in the finite-dimensional
or finite case), any such translation plane will have kernel containing the fixed
field of σ.

________________________________________________________________________________________________
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Proof. We need only show that we obtain a partial spread. So assume that

xσωid
1−σ + xσ

−1
ω−σ−1

i d1−σ−1
b = xσωj + xσ

−1
ω−σ−1

j b.

If ωid1−σ = ωj then the two elements ωi and ωj are equal since they are in a coset
representative set. In this case then d1−σ = 1 and we have the same subspace.
Hence, we may assume that ωid1−σ �= ωj . Similarly ω−σ−1

i d1−σ−1 �= ω−σ−1

j .
Assume that x is not zero. Then this would require that

b = xσ−σ
−1

(
ωid

1−σ − ωj

ω−σ−1

j − ω−σ−1

i d1−σ−1

)

= xσ−σ
−1

(
ωid

1−σ − ωj

ω−σ−1

j ω−σ−1

i d1−σ−1(ωσ−1

i dσ
−1−1 − ωσ

−1

j )

)

= xσ−σ
−1

(
ωid

1−σ − ωj

ω−σ−1

j ω−σ−1

i d1−σ−1(ωid1−σ − ωj)σ
−1

)

= xσ−σ
−1

(
(ωid1−σ − ωj)1−σ

−1

ω−σ−1

j ω−σ−1

i d1−σ−1

)

=

(
(ωiωj)

(
xσ

2−1(ωid1−σ − ωj)σ−1

dσ−1

))σ−1

.

This implies that

bσ = (ωiωj)

(
xσ

2−1(ωid1−σ − ωj)σ−1

dσ−1

)

= (ωiωj)
(
xσ+1(ωid1−σ − ωj)

d

)(σ−1)

.

Hence, bσ ∈
⋃
ωiωjL

∗(σ−1). Note that ωiL∗(σ−1) = ωσi L
∗(σ−1). So, (ωiL∗(σ−1))σ

= ωiL
∗(σ−1). Hence, it follows that b ∈

⋃
ωiωjL

∗(σ−1), a contradiction to our
assumptions. Hence, we obtain a partial spread. Now choose any subset of λ,
λ∗, and define a set of subspaces of the following form: Let M denote the set of
components y = xm not intersected by any of the subspaces of λ∗. Then

{x = 0, y = xm;m ∈M} ∪ ∪ωi∈λ∗H∗
i

defines a Sperner space or a translation plane with kernel containing the fixed
field of σ. Every subspace y = xσt + xσ

−1
t−σ−1

b is a vector space over Fixσ

________________________________________________________________________________________________
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isomorphic to L over Fixσ. Clearly, y = xσt + xσ
−1
t−σ−1

b and y = xm (where
this subspace does not intersect the given subspace) generate L⊕ L. However,
it is not completely clear that two disjoint subspaces y = xσt+ xσ

−1
t−σ−1

b and
y = xσα + xσ

−1
α−σ−1

b will generate L ⊕ L. If this condition is satisfied then
we obtain a congruence partition for L ⊕ L and a corresponding translation
plane. QED

2.1 André hyper-reguli

Previous to Jha and Johnson [2], the only known hyper-reguli were André
hyper-reguli and these were only known in the finite case. Here we show that
our constructed hyper-reguli are never André hyper-reguli when the associated
automorphism does not have order 2 or 3.

9 Theorem. Let L be a field and σ a non-identity automorphism of L.
Assume that the order of σ is not 2 or 3 (note that the order could be finite
or infinite). Then any hyper-regulus defined by any subspace of the form y =
xσt+ xσ

−1
t−σ−1

b is never an André hyper-regulus.

Proof. Let πΣ denote the associated Pappian plane coordinatized by L
with spread Σ. Since GL(2, L) is doubly transitive on the line at infinity, any
André hyper-regulus may be defined by the image of a subspace of the form y =
xτm, where τ is a non-trivial automorphism of L. Hence, if y = xσt+xσ

−1
tσ

−1
b

defines an André hyper-regulus, it must be an image of some y = xτm under
[ a ec d ] ; ad− ce �= 0. Therefore, we obtain the following condition:

(xa+ xτmc)σ t+ (xa+ xτmc)σ
−1

t−σ
−1
b = xe+ xτmd .

Then, consider the automorphism set
{
σ, τσ, σ−1, τσ−1, 1, τ

}
. Assume that this

is a set of distinct automorphisms. Then, since such sets are linearly indepen-
dent, it would follow that aσt = (mc)σt = 0, so that a = c = 0, a contradiction.
Hence, it can only be that τ = σ or σ−1, or σ−1 = σ. In the latter case, σ2 = 1.
So, assume that τ = σ, implying that

{
σ, τσ, σ−1, τσ−1, 1, τ

}
=

{
σ, σ2, σ−1, 1

}
.

Since this is now, by assumption, a distinct set of automorphisms, it follows
that the coefficient of xσ

2
, namely (mc)σt, is zero. Hence, c = 0. This leaves the

coefficient of xσ
−1

, (aσ
−1
t−σ−1

b) = 0, so a = 0, a contradiction. This completes
the proof. QED

3 Examples

In this section, we offer just a few of the many fields L that admit automor-
phisms such that L �= Lσ − 1.
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10 Theorem. Let G be any finite group. Let K be any infinite field. Then
there is a field extension L of K admitting G as its automorphism group. Let
F denote the fixed field of G. We may assume that L is a Galois extension
of F with Galois group G. For any automorphism σ of G, we may construct
non-André translation planes obtained by the replacement of mutually disjoint
hyper-reguli in the Pappian spread coordinatized by L.

Proof. We note that L is Galois over Fixσ ⊇ F , so it follows that Lσ−1∩F
has only elements of finite order. Since F is proper in this group, it follows that
Lσ−1 �= L. QED

11 Theorem. Let K be the fixed field of an automorphism σ of L, where σ
has finite order, and assume that K is infinite. Assume that K has only a finite
number of elements of finite order. For example, let Qa, the field of rationals,
be K and let σ have finite odd order. Then K∗∩L∗(σ−1) = 〈1〉 and KLσ−1 �= L.

Proof. If k = aσ−1, then k1+σ+···+σn−1
= kn = 1, if n = |a|. The rational

numbers of finite order are ±1, so if n is odd, we have K∗ ∩L∗(σ−1) = 〈1〉. Now
assume that for each c in L, there exists an element k in K and dσ−1 in L such
that c = kdσ−1. Then c(σ

n−1)/(σ−1) = kn. We note that since K∗ ∩ L∗(σ−1) =
〈1〉, the representation of elements is unique. Since both groups are normal
subgroups, it follows that L∗ 	 K∗ × L∗(σ−1). QED
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