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Abstract. The set of André spreads and generalized André spreads obtained using multiple
André replacement of order qsn is generalized to produce new constructions of r − (sn, q)-
spreads, which are called extended André spreads and generalized extended André spreads.
These sn-spreads produce new Sperner Spaces.
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1 Introduction

This article concerns a generalization of the construction of the finite André
planes π with kernel containing GF (q) from Desarguesian affine planes Σqn of
order qn, where q = pr, for p a prime. The first André planes constructed are
those of ‘dimension two’, that of order q2 with kernel containing GF (q), or
equivalently, with their spreads in PG(3, q). If the spread for the Desarguesian
plane Σqn is given by

x = 0, y = xm;m ∈ GF (qn),

then an ‘André partial spread’ Aδ is defined by

Aδ :
{
y = xm;m

(qn−1)
(q−1) = δ

}
,

δ ∈ GF (q). Aδ is a replaceable partial spread with n − 1 replacement nets Aq
i

δ

with partial spread

Aq
i

δ :
{
y = xq

i
m;m

(qn−1)
(q−1) = δ

}
.

When n = 2, the André partial spreads are reguli and the replacement partial
spread Aqδ is the opposite regulus to Aδ. In this case, any translation plane
obtained from a Desarguesian plane of order q2 by ‘deriving’ ‘multiply deriving’
a set of André partial spreads, is called an André plane (or more precisely,
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142 N. L. Johnson

an André plane of dimension two or equivalently with spread in PG(3, q)).
More generally, any translation plane obtained by replacing a set of André
partial spreads by one of the n − 1 replacements per partial spread is called
an ‘André plane of order qn with kernel containing GF (q)’ (i.e. with spread in
PG(2n − 1, q)). The ‘kernel homology group’ of the Desarguesian plane Σqn , is
the group of central collineations with axis the line at infinity and center the
zero vector of the associated vector space. This group of order qn − 1 then will
act on each André plane but the replacement nets are now in an orbit of length
(qn−1)
(q−1) under the kernel homology group.

In the present article, we generalize the concept of an André plane as aris-
ing from a Desarguesian affine plane to analogous structures constructable from
what are called ‘Desarguesian t-spreads’. Any t-spread of a vector space pro-
duces a Sperner space as realized by Barlotti and Cofman [1]. Thus we obtain
new Sperner spaces in a similar way that André planes are produced from Desar-
guesian affine planes. In the present construction, new sn-spreads over GF (q)
that we called ‘generalized extended André’ r − (sn, q)-spreads, in a manner
analogous to the construction of the generalized André translation planes, are
constructed by what we call ‘extended André’ and ‘generalized extended André’
replacement. In this way, we obtain a vast variety of new sn-spreads from vector
spaces of dimension r over GF (qsn). The reader is directed to Biliotti, Jha and
Johnson [2] for additional background on André and generalized André planes.

Actually, some of our constructed r − (sn, q)-spreads, when r = s, have
been obtained by other methods. Recently, Ebert and Mellinger [3] construct
some new subgeometry partitions of projective spaces. All of these subgeometry
partitions ‘lift’ to rn-spreads. The methods that we employ look first for the
spread in the affine setting and then ask what property such spread might have
so that it is possible to ‘retract’ to a subgeometry partition. Indeed, it is this
perspective that gives rise to the generalized extended André spreads. In fact, we
note that all of the rn-spreads of Ebert and Mellinger may be constructed using
our techniques. Furthermore, many of the generalized André spreads ‘retract’
to a great variety of subgeometry partitions of projective spaces, and this work
will be reported in a companion article (see Johnson [4]).

2 r − (sn, q)-spreads

Consider a field GF (qrsn), where q = pz, for p a prime. Then GF (qrsn)
is an r-dimensional vector space over GF (qsn). More generally, let V be the
r-dimensional vector space over GF (qsn).

1 Definition. A ‘1-dimensional r-spread’ or ‘Desarguesian r−(sn, q)-spread’
is defined to be a partition of V by set of all 1-dimensional GF (qsn)-subspaces,
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Sperner spaces 143

where q is a prime power.
In this case, the vectors are represented in the form (x1, x2, . . . , xr), where

xi ∈ GF (qsn).
2 Definition. Furthermore, the 1-dimensional GF (qsn)-subspaces may be

partitioned in the following sets called ‘j-(0-sets)’. A ‘j-(0-set)’is the set of
vectors with j of the entries equal to 0. For a specific set of j zeros among the r
elements, the set of such non-zero vectors in the remaining r−j non-zero entries
is called a ‘(j−(0-subset))’.

Note that there are exactly
( r
r−j

)
(qsn − 1)r−j vectors (non-zero vectors) in

each j-(0-set) and exactly (qsn − 1)r−j vectors in each of the
( r
r−j

)
disjoint

j − (0-subsets).
3 Notation. Hence, j = 0, 1, . . . , r − 1 and we denote the j − (0-sets) by

Σj and by specifying any particular order, we index the
( r
r−j

)
j−(0-subsets) by

Σj,w, for w = 1, 2, . . . ,
(
r
r−j

)
. We note that

∪( r
r−j)
w=1 Σj,w = Σj,

a disjoint union.
4 Remark. Furthermore, the (qrsn− 1) non-zero vectors are partitioned in

the j−(0-sets) by

(qrsn − 1) =
∑∑∑r−1

j=0

(
r

r − j

)
(qsn − 1)r−j ,

and the number of 1-dimensional GF (qsn)-subspaces is

(qrsn − 1)
(qsn − 1)

=
∑∑∑r−1

j=0

(
r

r − j

)
(qsn − 1)r−j−1.

Also, note that this is then also the number of sn-dimensional GF (q)-subspaces
in a r − (sn, q)-spread.

5 Notation. Consider a vector (x1, x2, . . . , xr) over GF (qsn), we use the
notation (x1, y) for this vector. Consider a j-(0-set) Σj and let xj1 denote the
first non-zero entry. Then all of the other entries are of the form xj1m, for
m ∈ GF (qsn). For example, the elements of an element of a 0-(0-set) may be
presented in the form (x1, x1m1, . . . , x1mr−1), for x1 non-zero and mi also non-
zero in GF (qsn). That is, y = (x1m1, . . . , x1mr−1). More importantly, if we vary
x1 over GF (qsn), then

y = (x1m1, . . . , x1mr−1),

is a 1-dimensional GF (qsn)-subspace. However, we now consider this subspace
as an sn-dimensional GF (q)-subspace.
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144 N. L. Johnson

In this notation, a Desarguesian 1-spread leads to an affine translation plane
by defining ‘lines’ to be translates of the 1-dimensional GF (qsn)-subspaces.

6 Definition. In general, for r > 2, a Desarguesian r-spread leads to a
‘Desarguesian translation Sperner space’ (simply the associated affine space)
by the same definition on lines. Every 1-dimensional GF (qsn)-space may be
considered an sn-space over GF (q). When this occurs we have what we shall
call an ‘r−(sn-spread)’ (or also a ‘r − (sn, q)-spread’).

More generally,
7 Definition. A partition of an rsn-dimensional vector space over GF (q)

by mutually disjoint sn-dimensional subspaces shall be called an ‘r − (sn, q)-
spread’. In the literature, this is often called an ‘sn-spread’ or projectively on
the associated projective space as an ‘sn− 1-spread’.

If r = 2, any ‘2− (sn, q)-spread’ is equivalent to a translation plane of order
q2n, with kernel containing GF (q).

8 Definition. Let Σ be a r-(sn-spread). We define the ‘collineation group’
of Σ to be the subgroup of ΓL(rsn, q) that permutes the spread elements (hence-
forth called ‘components’).

For a Desarguesian r-spread Σ, the subgroup with elements

(x1, x2, . . . , xr) �−→ (dx1, dx2, . . . , drxr)

for all d nonzero in GF (qsn) is called the ‘sn-kernel’ subgroup of Σ. The group
fixes each Desarguesian component and acts transitively on its points. The group
K∗
sn union the zero mapping is isomorphic to GF (qqn). K∗

sn has a subgroup K∗
s ,

where d above is restricted to GF (qs)∗, and K∗
s union the zero mapping is

isomorphic to GF (qs). K∗
s is called the ‘s-kernel’ subgroup’.

9 Definition. More generally, also for a Desarguesian spread Π, we note
that the group G(sn)r

of order (qsn − 1)r with elements

(x1, x2, . . . , xr) �−→ (d1x1, d2x2, . . . , drxr); di ∈ GF (qsn)∗, i = 1, 2, . . . , r

also acts as a collineation group of Π. We call G(sn)r
, the ‘generalized kernel

group’.
Let Σ be a Desarguesian r-spread with vectors (x1, x2, . . . , xr). Consider

any set Σj, and suppress the set of j zeros and write vectors in the form
(x∗1, x∗2, . . . , x∗r−j), in the order of non-zero elements within (x1, . . . , xr) Assume
that j ≤ r − 1.

10 Definition. We consider such vectors of the following form(
x∗1, x

∗qλ1

1 m1, . . . , x
∗qλr−j

1 mr−j
)
.
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Sperner spaces 145

If x∗1 varies over GF (qsn), and consider Σ as a rsn-vector space over GF (q),
we then have a sn-vector subspace over GF (q) that we call

y =
(
x∗q

λ1

1 m1, . . . , x
∗qλr−j−1

1 mr−j−1

)
,

where λi are integers between 0 and sn− 1.
11 Definition. We are interested in the set of Desarguesian sn-subspaces

y = (x∗1w1, . . . , x
∗
1wr−j−1)

(using the same notation) that can intersect

y =
(
x∗q

λ1

1 m1, . . . , x
∗qλr−j−1

1 mr−j−1

)
.

We note that we have a non-zero intersection if and only if

x∗q
λi−1

1 =
wi
mi

, for all i = 1, 2, . . . , r − j − 1.

This set of non-zero intersections of Σ shall be called an ‘extended André
set of type (λ1, λ2, . . . , λr−j−1)’. The set of all subspaces

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
,

such that
x∗q

λi−1
1 =

wi
ni

, for all i = 1, 2, . . . , r − j − 1,

has a solution is called an ‘extended André replacement’.

2.1 Examples

To get a feel for where this idea arose, we consider when r−j−1 = 1. So, we
have vectors of the basic form (x∗1, x

∗
2) and sn-subspaces y = x∗q

λ1

1 m1 that are
covered by sets of Desarguesian sn-subspaces y = x∗1w1, such that x∗q

λ1−1

1 = w1
m1

.
In this setting, ⎧⎨

⎩y = x∗1w1;w
(qsn−1)

(q(λ1,sn)−1)

1 = m

(qsn−1)

(q(λ1,sn)−1)
1 = δ

⎫⎬
⎭ ,

is called an ‘André set Aδ’, where δ ∈ GF (q(λ1,sn)). This set has replacements
sets

Aρδ =

⎧⎨
⎩y = xq

(λ1,sn)ρ
w1;w

(qsn−1)

(q(λ1,sn)−1)
1 = δ

⎫⎬
⎭ ,

where 1 ≤ ρ ≤ sn/(λ1, sn)− 1.
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146 N. L. Johnson

12 Example. For some examples, let r − j = 3, and consider the sn-space

y =
(
x∗q1 m1, x

∗q
1 m2

)
,

this space generates the corresponding André net

{y = (x∗1w1, x
∗
1w2)}

as follows: The intersections are

x∗q−1
1 =

w1

m1
=
w2

m2
.

Let w1
m1

= w2
m2

= τ , so that τ
(qsn−1)
(q−1) = 1. Then, w1 = m1τ , and w2 = m2τ , and

hence we have {
y = (x∗1m1τ, x

∗
1m2τ); τ

(qsn−1)
(q−1) = 1

}
.

Now consider the kernel group Ksn, which fixes element of the André set and
maps

y = (x∗q1 m1, x
∗q
1 m2) �−→ y = (x∗q1 m1d

1−q, x∗q1 m2d
1−q).

Since Ksn is transitive on each component of the André set, it follows that we
have a replacement set{

y = (x∗q1 m1d
1−q, x∗q1 m2d

1−q); d ∈ GF (qsn)∗
}

.

Note that in this case, each component of the replacement set intersects each
component of the André set in a 1-dimensional GF (q)-subspace.

13 Example. Now consider again r − j = 3 and the set

y =
(
x∗q1 m1, x

∗q2
1 m2

)
.

We would then obtain a typical Desarguesian intersection of the form

y =
(
xm1τ,m2τ

q+1
)
; τ

(qsn−1)
(q−1) = 1.

The kernel group would then map

y =
(
x∗q1 m1, x

∗q2
1 m2

)
�−→ y =

(
x∗q1 m1d

1−q, x∗q
2

1 m2d
1−q2

)
; d ∈ GF (qsn)∗,

and we would have an André set{
y =

(
x1m1τ, x1m2τ

q+1
)
; τ

(qsn−1)
(q−1) = 1

}
with replacement set{

y =
(
x∗q1 m1d

1−q, x∗q
2

1 m2d
1−q2

)
; d ∈ GF (qsn)∗

}
.

Note that d1−q = τ implies that d1−q2 = τ q+1, so we obtain a cover.
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Sperner spaces 147

We now show that any sn-subspace of the type

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
,

generates an extended André set and an extended André replacement set.

3 The main theorem on extended André replace-

ments

14 Theorem. Let Σ be a Desarguesian r-spread of order qsn. Let Σj,w be
any the j-(0-subset) for j = 0, 1, 2, . . . , r − 1.

Choose any sn-dimensional subspace

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
;

where ni ∈ GF (qsn)∗, i = 1, 2, . . . , r− j− 1. Let d = (λ1, λ2, . . . , λr−j−1), where
0 ≤ λi ≤ sn− 1.

(1) Then

A(n1,...,nr−j−1) =
{
y = (x∗1w1, . . . , x

∗
1wr−j−1); there is an x∗1 such that

x∗q
λi−1

1 =
wi
ni
, for all i = 1, 2, . . . , r − j − 1

}

is a set of (qsn−1)
(qd−1)

sn-subspaces, which is covered by the set of (qsn−1)
(qd−1)

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)
=

{
y = (x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1 );

d ∈ GF (qsn)∗
}
.

(2) Let C (qsn−1)
(q−1)

denote the cyclic subgroup of GF (qsn)∗ of order (qsn−1)
(q−1) .

Then, for each
y = (x∗1w1, . . . , x

∗
1wr−j−1) ,

there exists an element τ in C (qsn−1)
(q−1)

such that

wi = niτ
(qλi−1)
(q−1) .
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148 N. L. Johnson

(3) The
(qsn − 1)

(q(λ1,...,λr−j−1,sn) − 1)
components of{

y =
(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
are in (

(qsn−1)“
q(λ1,...,λr−j−1)−1

”
)

(
(qs−1)“

q(λ1,λ2,...,λr−j−1,s)−1
”
)

orbits of length
(qs − 1)(

q(λ1,λ2,...,λr−j−1,s) − 1
)

under the s-kernel homology group Ks.
Proof. There exists an integer i0 such that λi0 = dρi0 , for (ρi0 , sn/d) = 1.

For fixed ni0 non-zero in GF (qsn)∗, consider the set of all elements wi0 such

that wi0/nio = τ0 for some τ0 such that τ
(qsn−1)

(q
dρi0 −1) = 1, clearly a set of (qsn−1)

(qd−1)

elements in GF (qsn)∗.
There exists an element x∗(q−1)

1 = τ so that

x∗q
λi−1

1 =
wi
ni

= τ
(qλi−1)
(q−1) .

This proves part (2).
Now to show that the indicated set{
y =

(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
covers the set{

y =

(
x∗1n1τ

(qλ1−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
; τ ∈ C (qsn−1)

(q−1)

}
.

First note that the following sets are equal:{
x∗q

λi

1 nid
1−qλi ;x∗i , d ∈ GF (qsn)∗

}
=

{
x∗1niτ

(qλi−1)/(q−1);xi ∈ GF (qsn), τ ∈ C (qsn−1)
(q−1)

}
.
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Assume for a fixed x∗1 that

x
∗(q−1)
1 d1−q = τ .

Then
(x∗1d

−1)(q
λi−1) = τ (qλi−1)/(q−1),

which is true if and only if

x∗q
λi

1 nid
1−qλi = x∗1niτ

(qλi−1)
(q−1) .

Therefore, as {
x∗q1 τ ; τ ∈ C (qsn−1)

(q−1)

}
covers {

x∗1d
1−q; d ∈ GF (qsn)∗

}
,

it follows that{
y = (x∗1n1τ

(qλ1−1)/(q−1), . . . , x∗1nr−j−1τ
(q

λr−j−1−1)
(q−1) ); τ ∈ C (qsn−1)

(q−1)

}
.

is covered by{
y = (x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1 ); d ∈ GF (qsn)∗

}
.

Now to determine the total number of components in the extended André net
(λ1, λ2, . . . , λr−j−1). Thus, the question is, when is

τ
(qλi−1)
(q−1) = 1

for all i = 1, 2, . . . , r − j − 1, where τ is an arbitrary element of C (qsn−1)
(q−1)

. It is

then clear that τ must have order(
q(λ1,...,λr−j−1) − 1

)
(q − 1)

.

In other words, there are exactly

(qsn − 1)(
q(λ1,...,λr−j−1) − 1

)
components of the extended André set A(λ1,...,λr−j−1).
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Now consider an orbit in the replacement set under the s-kernel homology
group Ks.

y = (x∗q
λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1)

maps to

y = (x∗q
λ1

1 n1
1−qλ1

d1−qλ1
, . . . , x∗q

λr−j−1

1 nr−j−1d
1−qλr−j−1 )

for d ∈ GF (qs)∗. This orbit clearly has the cardinality indicated. QED

15 Definition. The André planes of order qsn and kernel containing GF (q)
are defined as follows. We let

Aδ =
{
y = xm;m

(qsn−1)
(q−1) = δ

}
, δ ∈ GF (q),

called an ‘André partial spread’ of degree (qsn−1)
(q−1) and order qsn. This partial

spread is replaceable by any partial spread

Aq
λ

δ =
{
y = xq

λ
m;m

(qsn−1)
(q−1) = δ

}
, δ ∈ GF (q), 0 ≤ λ ≤ sn− 1,

called an ‘André replacement’. Hence, there are exactly sn − 1 non-trivial re-
placements and, of course, if λ = 0, the partial spread has not been replaced.
There are exactly q− 1 André nets each admitting sn replacements. An ‘André
plane’ is defined as any translation plane obtained with spread consisting of
q − 1 André replacement partial spreads together with x = 0, y = 0.

Therefore, there are (sn)q−1 − 1 distinct André spreads obtained from a
given Desarguesian affine plane.

16 Remark. If we take y = xq
λ
m0 for a fixed element of GF (qsn)∗, Let

Nλ,m0 define the set of components of the associated Desarguesian affine plane
which non-trivially intersect this subspace. Then the set of images under the
kernel homology group of order (qsn − 1) is{

y = xq
λ
m0d

1−qλ
}
,

and we see that we obtain a net of degree

(qsn − 1)(
q(λ,sn) − 1

) .
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The partial sn−spread

A =

{
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
; τ has order

dividing
(qsn − 1)
(q − 1)

.

}

is a set of
(qsn − 1)

(q(λ1,λ2,...,λr−j−1,sn) − 1)

sn-subspaces, which is covered by the set of

(qsn − 1)
(q(λ1,λ2,...,λr−j−1,sn) − 1)

sn-subspaces

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)
=

{
y = (x∗q

λ1

1 n1d
1−qλ1 , . . . , x∗q

λr−j−1

1 nr−j−1d
1−qλr−j−1 );

d ∈ GF (qsn)∗
}
.

17 Definition. We shall call A(n1,...,nr−j−1) an ‘extended André partial
spread’ of degree (qsn − 1)/(q(λ1 ,λ2,...,λr−j−1,sn) − 1)’ and order qsn. So, we note
that A(λ1,...,λr−j−1)

(n1,...,nr−j−1)
is a replacement partial spread of the same degree and order,

called an ‘extended André replacement’.

3.1 Extended André replacements

Note that is more problematic to define all of the André replacements for a
given extended André partial spread. Furthermore, by purposely not trying to
make such a definition will free us to consider more general situations. However,
if we are looking for extended André partial spreads of the same degree, we take
other exponent sets {ρ1, ρ2, . . . , ρr−j−1} so that

(ρ1, ρ2, . . . , ρr−j−1, sn) = (λ1, λ2, . . . , λr−j−1, sn) ,

there are are exactly

(q(λ1,λ2,...,λr−j−1,sn) − 1)(qsn − 1)r−j−2,

________________________________________________________________________________________________



152 N. L. Johnson

possible extended André partial spreads of degree

(qsn − 1)
(q(λ1,λ2,...,λr−j−1,sn) − 1)

.

Therefore, if we let ρi = λiti, for 0 ≤ ti ≤ sn/(λi, sn)− 1, then let

(λ1, λ2, . . . , λr−j−1, sn) = s∗ ,

(ρ1, ρ2, . . . , ρr−j−1, sn) = (λ1t1, λ2t2, . . . , λr−j−1tr−j−1, sn)

=
(
λ1t1
s∗

,
λ2t2
s∗

, . . . ,
λr−j−1tr−j−1

s∗
,
sn

s∗

)
.

18 Remark. Now assume that all λi = 1, for i = 1, 2, . . . , r − j − 1. Then
the extended André partial spread

A(n1,...,n),

has degree (qsn−1)
(q−1) and we have a replacement partial spread with components

A
(1,...,1)
(n1,...,nr−j−1)

=
{
y =

(
xq1n1d

1−q, xq2n2d
1−q, . . . , xqr−j−1nr−j−1d

1−q
)}

.

As noted,

A
(n1τ (qλ1−1)/(q−1),...,nr−j−1τ (q

λr−j−1−1)/(q−1))

=

{
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

.

}

is a set of
(qsn − 1)

(q(λ1,λ2,...,λr−j−1,sn) − 1)
sn-subspaces, which is covered by the set of

(qsn − 1)
(q(λ1,λ2,...,λr−j−1,sn) − 1)

sn−subspaces

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)

=
{
y = (x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1 ); d ∈ GF (qsn)∗

}
.
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19 Remark. Now consider{
(n1d

1−q, n2d
1−q, . . . , nr−j−1d

1−q); d ∈ GF (qsn)∗
}
.

If τ
(qλk−1)
(q−1) = τ

(qλi−1)
(q−1) , for all k, i, so for example λi = λz, for all i =

1, 2, . . . , r − j − 1 then we would obtain that (qsn−1)

(q(λ1,sn)−1)
components in this

extended André partial spread and if we vary over the cosets

(qsn − 1)
(q − 1)

/
(qsn − 1)

(q(λ1‘sn) − 1)
=

(q(λ1‘sn) − 1)
(q − 1)

of the cyclic group of order
(qsn − 1)

(q(λ1‘sn) − 1)

with respect to the group of order

(qsn − 1)
(q − 1)

.

Therefore, we would have

(nid1−q)
(qsn−1)
(q−1) = n

(qsn−1)
(q−1)

i = δi .

Hence, we might then call this net

Aδ1,δ2,...,δr−j−1
,

which is then covered by

A(S)(λ1,...,λr−j−1)
δ1,...,δr−j−1

=

⎧⎨
⎩ y = (xq

λ1

1 n∗1, x
qλ1

1 n∗2, . . . , x
qλ1

1 n∗r−j−1);

n
∗ (qsn−1)

(q−1)

i = δi, i = 1, 2, . . . , r − j − 1.

⎫⎬
⎭

So that there are sn− 1 non-trivial extended André replacements for this par-
ticular extended André partial spread.

In this setting, there are

(qn − 1)r−j−2(q − 1),

mutually disjoint extended André partial spreads and each admit sn − 1 non-
trivial extended André replacements.
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20 Remark. To consider the analogous situation, for André planes, we note
that we can make such replacements for all j-(0-subset)’s subsets, for each j such
that r − j ≥ 2.

Hence, we define ‘extended André r-(sn)-spreads’ to be any of the sn re-
placements for each of the

( r
r−j

)
j-(0-subsets), for each of the j ≥ r−2 j-(0-sets).

This then constructs a set of

∑∑∑r−2

j=0

(
r

r − j

)
(sn)(q

n−1)r−j−2(q−1) − 1

distinct non-trivial r − (sn) − spreads, not equal to the original Desarguesian
r − (sn)−spread.

4 Multiple extended André replacement

An André plane is obtained by making replacements all of the same degree,
say (qsn − 1)/(q − 1). However, if we partition a given André partial spread in
(qs

∗ − 1)/(q − 1) André partial spreads of degree (qsn − 1)/(qs
∗ − 1), where s∗

divides sn, in this setting a typical subspace of a replacement has the form y =
xh

i
m, where h = qs

∗
. Normally, one would take 0 ≤ i ≤ sn/s∗− 1. Any of these

André partial spreads may be further subdivided and André replacements of
various different degrees may be considered. Any translation plane constructed
by making André replacements of various degrees is not (always) an André plane
but is a ‘generalized André plane’, since the components of the constructed
translation plane have the general form y = xq

λ(m)
m, where m is in GF (qsn)

and λ is a function from GF (qsn)∗ to the set of integers 0, 1, . . . , sn− 1.

21 Definition. We say that the generalized André plane constructed using
the method above is constructed by ‘multiple André replacement’.

We now consider an analogous construction procedure using a different ap-
proach. First we note:

22 Lemma.

A(n1,...,nr−j−1) ={
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , x∗1n2τ

(qλ2−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

}
,
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and

A(n∗
1,...,n

∗
r−j−1)

=

{
y =

(
x∗1n

∗
1τ

(q
λ∗
1−1)

(q−1) , x∗1n
∗
2τ

(q
λ∗
2−1)

(q−1) , . . . , x∗1n
∗
r−j−1τ

(q
λ∗

r−j−1−1)
(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

}
,

share a component if and only if there exist elements τ1 and τ∗1 of order dividing
(qsn−1)
(q−1) such that

niτ
(qλi−1)
(q−1)

1 = n∗i τ
∗(qλ∗

i −1)/(q−1)
1 ; i = 1, 2, . . . , r − j − 1.

Proof. Suppose in the first listed set we have τ1 in place of τ and in the
second listed set have τ∗1 in place of τ , such that the corresponding components

y =

(
x∗1n1τ

(qλ1−1)
(q−1)

1 , x∗1n2τ
(qλ2−1)
(q−1)

1 , . . . , x∗1nr−j−1τ
(q

λr−j−1−1)
(q−1)

1

)

= y =

⎛
⎝x∗1n∗1τ∗ (q

λ∗
1−1)

(q−1)

1 , x∗1n
∗
2τ

∗ (q
λ∗
2−1)

(q−1)

1 , . . . , x∗1n
∗
r−j−1τ

∗ (q
λ∗

r−j−1−1)
(q−1)

1

⎞
⎠

are equal. Then we must have

niτ
(qλi−1)
(q−1)

1 = n∗i τ
∗(qλ∗

i −1)/(q−1)
1 ; i = 1, 2, . . . , r − j − 1.

Since the extended André partial spread is an orbit, we may assume that
τ1 = 1. So, the only way that this could occur is if (n1, . . . , nr−j−1) and
(n∗1, n∗2, . . . , n∗r−j−1) are related by the set of equations above. This completes
the proof of the lemma. QED

4.1 Algorithm for constructing r − (sn, q)-spreads

The approach that we have taken to construct r − (sn)-spreads will be as
follows:

I. Choose a j-(0-set) then choose any of the
(
r
r−j

)
j−(0-subsets).

II.
(a) Within this subset choose an ordered set E1 of exponents of q,

(λ1, λ2, . . . , λr−j−1), where 0 ≤ λi ≤ sn− 1, for each i = 1, 2, . . . , r − j − 1.
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(b) Choose an ordered set C1 of coefficients (n1, n2, . . . , nr−j−1).
(c) From (a) and (b), form the corresponding sn-dimensional

GF (q)-subspace:

y = (x∗q
λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1).

III. Determine the minimal extended André partial spread non-trivially in-
tersecting the given subspace. This will be

A(n1,...,nr−j−1)

=

{
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , x∗1n2τ

(qλ2−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

}
,

which has (qsn−1)“
q(λ1,λ2,...,λr−j−1,sn)−1

” components

IV. Apply the kernel group of order (qsn − 1) to

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
.

This constructs the following replacement partial spread.

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)

=
{
y =

(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
.

V. There are

(qsn − 1)r−j−1 − (qsn − 1)(
q(λ1,λ2,...,λr−j−1,sn) − 1

)
sn-dimensionalGF (q)-subspaces remaining in Σj,w1, and return to II and choose
another ordered set E2 of exponents (λ∗1, λ∗2, . . . , λ∗r−j−1) and another ordered
set C2 of coefficients (n∗1, n

∗
2, . . . , n

∗
r−j−1) such that the following set of equations

is not valid, for any τ1, τ∗1 of order dividing (qsn−1)
(q−1) :

niτ
(qλi−1)
(q−1)

1 = n∗i τ
∗ (q

λ∗
i −1)

(q−1)

1 ; i = 1, 2, . . . , r − j − 1.

This makes the corresponding replacement partial spreads and the correspond-
ing generated extended André partial spread mutually disjoint on sn−GF (q)-
subspaces.
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Repeat II, III, IV. There are

(qsn − 1)r−j−1 − (qsn − 1)(
q(λ1,λ2,...,λr−j−1,sn) − 1

) − (qsn − 1)(
q(λ

∗
1,λ

∗
2,...,λ

∗
r−j−1,sn) − 1

)
remaining sn−dimensional GF (q)-subspaces remaining.

VI. If this number at least (qsn−1)
(q−1) , go back to II and repeat II, III, IV.

Continue as long as possible.
VII. Do this for each j and for each of the

( r
r−j

)
j-(0-subsets).

Note that when the process terminates, we add to our sn-spreads whatever
left over Desarguesian 1-spaces over GF (qsn) remain.

Let Dsn denote the set of divisors of sn (including 1 and sn). When a
replacement set of (qsn−1)

(qd∗−1)
sn-spaces is obtained for d∗ ∈ Dsn, let kd∗ denote the

number of different and mutually disjoint replacement sets of (qsn−1)

(qd∗−1)
sn-spaces

(kd∗ could be 0). Then we merely require that

∑
d∗∈Dsn

(
qsn − 1
qd∗ − 1

)
kd∗ = (qsn − 1)r−j−1.

For example, if we take kd∗ = (qd
∗ − 1)k∗d∗ , then we would require that∑

d∗∈Dsn

k∗d∗ = (qsn − 1)r−j−2 .

23 Conclusion. The process above constructs r−(sn, q)-spreads by finding
replacement sets of extended André sets of ( q

sn−1
qd∗−1

) sn-dimensional subspaces for
d∗ ∈ Dsn that we term ‘generalized extended André r−(sn, q)-spreads obtained
by multiple extended André replacement’.

5 Variations

The algorithm of the previous section, produces a vast number of new
r − (sn, q)-spreads. In this section, we give a few other constructions, using
a variation of the same theme.

5.1 Algorithm for constructing partitions of j-(0-sets)

In this setting, we partition the sets using the action of the subgroup Ks of
order qs − 1 of the kernel subgroup Ksn of order qsn − 1

I. Choose a j-(0-set) then choose any of the
( r
r−j

)
j-(0-subsets).
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IIs∗: Choose any divisor of s, say s∗.
(a) Within this subset choose an ordered set E1 of exponents of q,

(λ1, λ2, . . . , λr−j−1), such that gcd(λ1, λ2, . . . , λr−j−1, s) = s∗,

where 0 ≤ λi ≤ sn− 1, for each i = 1, 2, . . . , r − j − 1.

(b) Choose an ordered set C1 of coefficients (n1, n2, . . . , nr−j−1).
(c) From (a) and (b), form the corresponding sn-dimensional GF (q)-

subspace:
From (a) and (b), form the corresponding sn-dimensional GF (q)-subspace:

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
.

III. Determine the minimal extended André partial spread non-trivially in-
tersecting the given subspace. This will be

A(n1,...,nr−j−1)

=

{
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , x∗1n2τ

(qλ2−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

}
,

which has

(qsn − 1)
(q(λ1,λ2,...,λr−j−1,sn) − 1)

=
(qsn − 1)

(q(λ1,λ2,...,λr−j−1,sn) − 1)

components
IV. Apply the kernel group of order (qsn − 1) to

y =
(
x∗q

λ1

1 n1, . . . , x
∗qλr−j−1

1 nr−j−1

)
.

This constructs the following replacement partial spread.

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)

=
{
y =

(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
.

Vs: Now determine the orbit lengths under the kernel subgroup of order
(qs − 1), which will turn out to be

(qs − 1)
(qs∗ − 1)

.
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Noting that
s∗ = gcd(λ1, λ2, . . . , λr−j−1, s),

we have then partitioned the original

(qsn − 1)(
q(λ1,λ2,...,λr−j−1,sn) − 1

)
sn-subspaces into (

qsn−1

q(λ1,...,λs−j−1,sn)−1

)
(

qs−1

q(λ1,λ2,...,λr−j−1,s)−1

) .
In this case, we may either take the same set of exponents or compatible

sets so that the number of components is the same and partition the original
set of

(qsn − 1)
(q(λ1,λ2,...,λr−j−1,sn) − 1)

.

Hence, if we take (
qsn−1

q(λ1,...,λs−j−1,sn)−1

)
(

qs−1

q(λ1,λ2,...,λr−j−1,s)−1

)zs∗
orbits of length (qs − 1)/(qs

∗ − 1), we end up with(
qsn − 1

q(λ1,...,λs−j−1,sn) − 1

)
zs∗

total sn-dimensional GF (q)-subspaces.

∑
d∗∈Dsn

(
qsn − 1
qd∗ − 1

)
kd∗ = (qsn − 1)r−j−1.

For example, if let Ds denote the set of divisors of s. If we take zs∗ = (qs
∗−1)z∗s∗ ,

then we would require that∑
s∗∈Dsn

z∗d∗ = (qsn − 1)r−j−2.

The distinction is that now we have constructed a set of replacement partial
spreads that are orbits under a subgroup of order qs− 1 of the kernel homology
group of order qsn − 1.

If we repeat as in the previous section, we have a specific instance of the
previous algorithm, this one constructing orbits of various lengths under a
subgroup of the kernel group.
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6 Large groups

We note that the generalized kernel group Gsn,r of order (qsn − 1)r acts on
the Desarguesian r− (sn, q)-spread and the kernel group of order (qsn− 1) also
acts on each extended André replacement partial spread, as this is the way that
the replacements are determined. Indeed, the generalized kernel group of order
(qsn − 1)r is transitive on 1-dimensional GF (qsn)-subspaces.

Furthermore, the group Gsn,r fixes each j-(0-subset) and acts transitively on
each set of (non-zero) vectors. Furthermore, if we take a given extended André
replacement set

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)

=
{
y =

(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
,

the kernel group Ksn is transitive on the subspaces and the group Rsn of order
qsn − 1

〈
(x1, x2, . . . , xr−j−1) �−→

(
x∗1m0, x

∗
1m

qλ1

0 , . . . , x∗1m
qλr−j−1

0

)
;m0 ∈ GF (qsn)

〉
,

fixes each sn-dimensional subspace of A(λ1,...,λr−j−1)

(n1,...,nr−j−1)
. Note that the remaining

entries that are 0 are omitted. In order that this group act on the r − (sn, q)-
spread, choose exactly one j and exactly one j − (0-subset). Then the resulting
generalized extended André sn-spread will admit a group of order (qsn − 1)r of
which there is a group of order (qsn−1)2 that acts transitively on the components
of the replaced partial spread and there is a subgroup of order (qsn − 1)j that
acts fixes each vector of the j−(0-subset (set)) (just take the j 0-entries to have
arbitrary coefficients in GF (qsn)∗ and take the other coefficients to be 1). Note
that the remaining sn-dimensional GF (q) subspaces are actually 1-dimensional
GF (qsn)-subspaces and since Gsn,r just maps 1-dimensional GF (qsn)-subspaces
to 1-dimensional GF (qsn)-subspaces, therefore there is an Abelian group of
order (qsn − 1)j+2, acting on such an sn-spread.

24 Theorem. Choose any subspace that generates

A
(λ1,...,λr−j−1)

(n1,...,nr−j−1)

=
{
y =

(
x∗q

λ1

1 n1d
1−qλ1

, . . . , x∗q
λr−j−1

1 nr−j−1d
1−qλr−j−1

)
; d ∈ GF (qsn)∗

}
,
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that in turn generates

A(n1,...,nr−j−1)

=

{
y =

(
x∗1n1τ

(qλ1−1)
(q−1) , x∗1n2τ

(qλ2−1)
(q−1) , . . . , x∗1nr−j−1τ

(q
λr−j−1−1)

(q−1)

)
;

τ has order dividing
(qsn − 1)
(q − 1)

}
.

Now in the same j-(0-subset), for each ordered set of coefficients, form the
corresponding extended André set as above. Now partition the associated j-(0-
subset) by constructing extended André sets using possibly different ordered sets
of coefficients (n1, n2, . . . , nr−j−1). There are exactly

(qsn − 1)r−j−2(q(λ1,λ2,...,λr−j−1,sn) − 1)

possible extended André sets. Now for each extended André choose either
(λ1, . . . , λr−j−1) or (0, 0, 0, . . . , 0). Then construct the r−(sn, q)-spread obtained
by replacing the various A(n1,...,nr−j−1) by A

(λ1,...,λr−j−1)

(n1,...,nr−j−1)
, or by A(n1,...,nr−j−1),

where the remaining sn-subspaces are the remaining uncovered 1-dimensional
GF (qsn)-subspaces.

(1) Then any such extended André spread admits an Abelian group of order
(qsn−1)j+2, which is the direct product of j+2 cyclic groups of order (qsn−1),
and r − j ≥ 2.

(2) Let N(λ1,...,λr−j−1) denote the number of different ordered sets of expo-
nents

(λ∗1, λ
∗
2, . . . , λ

∗
r−j−1) ,

such that

gcd(λ∗1, λ
∗
2, . . . , λ

∗
r−j−1, sn) = gcd(λ1, λ2, . . . , λr−j−1, sn) .

There are then(
r

r − j

)(
2(qsn−1)r−j−2(q(λ1,λ2,...,λr−j−1,sn)−1) − 1

)
N(λ1,...,λr−j−1)

proper sn-spreads that admit Abelian groups of order (qsn − 1)j+2.

6.1 The Ebert-Mellinger r − (rn, q)-spreads

Recently, Ebert and Mellinger [3], construct new r − (rn, q)-spreads admit-
ting Abelian groups of order (qrn−1)2 that may be constructed with the methods

________________________________________________________________________________________________



162 N. L. Johnson

of the previous theorem. The construction in Ebert and Mellinger begins with
the construction of new subgeometry partitions in PG(rn−1, qr) by subgeome-
tries isomorphic to PG(rn − 1, q) and PG(n − 1, qr). They describe a ‘lifting’
procedure that constructs new classes of r−(rn, q)-spreads (in our notation). As
their method is completely different than ours, so we will describe the spreads us-
ing Theorem 24, take r = s and j = 0 and (λ1, λ2, . . . , λr−1) = (q, q2, . . . , qr−1).
Then, for any set of coefficients (n1, n2, . . . , nr−j−1), for ni ∈ GF (qrn)∗, there is
a set of

2(qrn−1)r−2(q−1) − 1

r − (rn, q)-spreads admitting an Abelian group of order (qrn − 1)2, which is a
direct product of cyclic groups of orders (qrn − 1).

These r − (rn, q)-spreads are the ones due to Ebert and Mellinger by their
lifting methods.

Now when r = 2, the corresponding 2 − (2n, q)-spread corresponds to a
translation plane of order q2n. Ebert and Mellinger point out that due to the
group action, this translation plane is a generalized André plane. However, from
Theorem 24, the plane is necessarily an André plane of order q2n.

25 Theorem. The r − (rn, q)-spreads of Ebert and Mellinger are extended
André spreads. When r = 2, the spreads correspond to André planes of order
q2n.

26 Remark. In our constructions of generalized extended André spreads,
we have found replacements (the extended André replacements) of extended
André partial spreads of various sizes using the kernel homology group of order
qsn−1. Hence, all of our new spreads necessarily admit the kernel group of order
qsn−1. It is an open question whether is might be possible to find replacements
of the extended André partial spreads that do not admit this kernel group. Any
such sn-spreads would necessary be non-isomorphic to any of the spreads we
construct in this article.
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