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Abstract. It is shown that the Hall plane of order 9 admits a collineation group isomorphic
to SL(2, 3) generated by Baer 3-collineations, whose Baer axes are disjoint as subspaces, where
the union of whose components completely cover the components of the Hall plane. This group
acts doubly transitive on a set of four points on the line at infinity of the plane.
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1 Introduction

The Hall planes of order q2 are now well known to be exactly those trans-
lation planes that may be derived from an affine Desarguesian plane of order
q2 by the replacement (i.e. derivation) of a single regulus net. When q is not 3,
the full collineation group of the Hall plane of order q2 has component orbits of
lengths (q + 1) and (q2 − q) and admits SL(2, q) acting doubly transitively on
the orbit of length q+1. However, when q is 3, the situation is truly remarkable.
It is known by Hall [8], that the group is transitive on the components and that
if G is the full translation complement and T is the translation group that GT is
doubly transitive on the affine points. Furthermore, by André [1], the set of ten
infinite points may be partitioned into five sets of two each, which are permuted
by GT . Indeed, André [1] shows that the group action on this set of 5 is S5 and
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that the full collineation group has order 25 ·5!. It would not seem that like there
is much more to be said about the collineation groups of the Hall planes. This
is where the work of Foulser [4] on groups generated by Baer p-collineations in
translation planes of order p2r = q2, p a prime, becomes very much of interest.

When p > 3, Foulser [4] shows that the group generated by Baer p-collinea-
tions in the translation complement in the non-solvable case is SL(2, pt) and the
Baer axes (subspaces pointwise fixed by the Baer p-groups) are mutually disjoint
as vector subspaces and ‘line up’, in the sense that all such Baer subplanes are
in the same net of degree q + 1. When p = 3 and one makes the assumption
that the Baer subplanes pointwise fixed by Baer 3-groups as mutually disjoint
as vector subspaces, then, assuming that there are at least two Baer subplanes,
the group generated is either SL(2, 3) or SL(2, 5). Furthermore, it is possible to
prove, as Foulser [4] does, if SL(2, 3t), for t > 1, is generated by Baer 3-groups
then the Baer axes are disjoint and line up in the same net of degree q + 1.
When the group is SL(2, 5), two of the authors (Jha and Johnson [9]) show if
the group is generated by Baer 3-collineations then indeed the 10 Baer subplanes
are mutually disjoint as vector subspaces and line up on a net of degree q + 1.

This leaves the question of the group SL(2, 3) as generated by Baer 3-
collineations in translation planes of order 32r and whether the four Baer sub-
planes pointwise fixed by the Baer 3-collineations are mutually disjoint and/or
whether all lie in the same net of degree 3r + 1. Actually, Foulser [5] shows
that there are translation planes of order 81 that admit overlapping Baer 3-axes
(i.e. the axes are not disjoint) and whose Baer groups generate SL(2, 3), and,
of course, the Baer axes cannot lie in the same net of degree 10. Indeed such a
phenomenon exists in the Hall planes as well.

But, here we are interested in asking if there are translation planes of order
32r admitting SL(2, 3) generated by Baer 3-elements, where the Baer axes are
now disjoint but still do not lie in the same net of degree 3r + 1. Actually, this
problem arises in the analysis of the following problem:

1 Problem. Completely determine those projective translation planes π+

of order q2, extending the affine translation planes π that admit a collineation
group G that acts doubly transitive on a set Γ of q + 1 points.

Since we are interested in SL(2, pt) groups, if we assume that the group G
is SL(2, q) or PSL(2, q) then the problem is solved by the work of Foulser and
Johnson.

2 Theorem (Foulser and Johnson [6, 7]). Let π denote an affine translation
plane of order q2. Assume that π admits a collineation group G in the translation
complement isomorphic to SL(2, q).

Then π is one of the following planes:
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(1) Desarguesian,

(2) Hall,

(3) Hering,

(4) Ott-Schaeffer

(5) one of three planes of Walker of order 25 or

(6) the Dempwolff plane of order 16.

Going back to the problem listed above, the question is in the projective
plane π+, which of these types of translation planes admit a group isomorphic
to SL(2, q) acting doubly transitive on a set of q+ 1 points? The Desarguesian,
Hering and Ott-Schaeffer planes do admit such permutation group actions and
we in this note show that the Hall planes of order larger than 9, the Walker
planes of order 25 (which are not Hering) and the Dempwolff plane of order 16
‘never’ admit such groups.

This leaves the Hall plane of order 9. There is a natural group SL(2, 3) gen-
erated by Baer 3-collineations and inherited from the associated Desarguesian
plane constructing the Hall plane. However, this group has infinite point orbit
lengths of 1 or 6. It would appear that the Hall plane of order 9 does not admit a
group isomorphic to SL(2, 3) that acts doubly transitive on a set of four points.
However, in this note, we show that in fact, it does! Furthermore, the group
is generated by Baer 3-collineations whose Baer axes are mutually disjoint as
vector spaces but ‘do not’ fall into the same net of degree 4 + 1.

Actually, we prove the following theorem.

3 Theorem. The Hall plane π of order 9 admits exactly 10 sets Γi, i =
1, 2, . . . , 10, of four infinite points each and 10 collineation groups Gi isomorphic
to SL(2, 3), where Gi acts doubly transitively on Γi. Each group is generated by
Baer 3-collineations, where the Baer axes are disjoint as vector spaces and the
union of whose components is the complete spread of π.

So, we see that there is an associated problem which is of interest.

4 Problem. Determine the projective translation planes of order q2 ad-
mitting two distinct sets Γ1 and Γ2 of q + 1 points each such that there exist
collineation groups G1 and G2 such that Gi acts doubly transitive on Γi, for
i = 1, 2.

We solve part of this problem as follows:

5 Theorem. Let π+ be a projective translation planes of order q2 admitting
two distinct sets Γ1 and Γ2 of q+1 points each such that there exist collineation
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groups G1 and G2 such that Gi acts doubly transitive on Γi, for i = 1, 2 and is
isomorphic to SL(2, q). Then π+ is either Desarguesian or Hall of order 9.

2 Hering and Ott-Schaeffer cases

In general, if a group G acts doubly transitively on a set Γ of q+1 points on
a projective plane of order q2, Γ could be on a line, a (q+1)-arc, or a 2−(v, k, 1)-
design. However, it turns out that the latter case can never occur (see e.g. [3]),
when considering a non-Desarguesian projective translation plane. So, here we
consider only when Γ is contained in a line or is possible a (q + 1)-arc. There
are more general arguments given in [3], showing that affine cases do not occur.
But, the arguments can be given more directly for the individual planes and so
these are included here for the various classes of planes Hering, Ott-Schaeffer,
Hall, Walker of order 25 and Dempwolff of order 16.

Assume the plane is Hering or Ott-Schaeffer. There is a group H0 isomorphic
to SL(2, q), fixing an affine point 0, with three infinite point orbits, one of
length q + 1 and two of length (q2 − q)/2. The full collineation group of either
plane is NΓL(4,q)(H0)T , where T is the translation group of order q4 (see e.g.
Lüneburg [11], p. 262, 50.3). If Γ is affine and G contains a normal subgroup
W isomorphic to SL(2, q) acting doubly transitively on Γ then W contains no
translations. Assume that Γ is contained in an affine line L, so that W leaves L
invariant and is a subgroup of NΓL(4,q)(H0)T . The subgroupH0L

ofH0 that fixes
L fixes exactly q points on L and these points are within a 1-dimensional GF (q)-
subspace, and is transitive on the remaining q 1-dimensional GF (q)-subspaces.
Assume that Γ contains the zero vector 0. This means that one point of Γ may
be considered the zero vector 0 and so W0 permutes q+1 1-dimensional GF (q)-
subspaces and the unique Sylow S0 p-subgroup of order q of W0 must fix one
X and since W is a subgroup of GL(4, q)T , it follows that W0 is a subgroup
of GL(4, q). Therefore, S0 must fix X pointwise. There is a Sylow p-subgroup
SH0 of H0 that fixes X pointwise. Assume that S0 is not a subgroup of SH0 .
Since SH0 fixes X pointwise, then S0 normalizes SH0 , as it fixes X. Then in
SH0S0 there is a collineation group that fixes L pointwise, a contradiction (see
e.g. Lüneburg [11], p. 261, 50.1). Hence, W0 fixes one 1-dimensional GF (q)-
subspace of L pointwise and is transitive on the remaining q 1-dimensional
GF (q)-subspaces on L. Therefore, Γ consists of 0 and one point from each of q
1-dimensional GF (q)-subspaces. The normalizer NH0(S0) of S0 in H0 has order
q(q − 1), fixes X and fixes a second 1-dimensional subspace X1 incident with
L and is transitive on the remaining q − 1 one dimensional GF (q)-subspaces
on L. Note that G is a subgroup of GL(2, q) as it fixes L, fixes 0 and is in
GL(4, q)T and fixes a 1-dimensional GF (q)-subspace X. Hence, the order of G
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must divide q(q− 1)2. Let Z∗ denote the kernel homology group of order q− 1.
Then, Z∗ ∩W and Z∗ ∩ H0 are groups of order dividing 2. Thinking of L as
a Desarguesian spread, it follows that NH0(S0) is normal in G and NH0(S0)Z∗

has index 1 or 2 in G. But, this also says that W0S0 ≤ H0S0Z
∗. Since H0 fixes

exactly two 1-dimensional GF (q)-subspaces X and X1 on L, it follows that we
may assume that W0 ≤ Ht

0Z
∗, where t is in S0. Since Z∗ fixes all 1-dimensional

GF (q)-subspaces, it is then clear that we may assume that W0 and H0 fix X
and X1 so that W0 ≤ H0Z

∗. However, W0 must act on Γ and fix X1, and X1∩Γ
is a unique point. Therefore, W0 fixes X1 pointwise. So, W0 is forced into being
a Baer group of order q− 1, which is a contradiction to the known action of the
collineation groups of the Hering and Ott-Schaeffer planes.

Now assume that Γ is a (q+1)-arc. Again, we may assume that 0 is incident
with Γ. Let S0 be a Sylow p-subgroup ofW0.There are then exactly q components
0P , where P ∈ Γ − {0}, permuted by a group W0 of order q(q − 1). Note
that S0 is normal in W0, must fix a component L and fixes a 1-dimensional
GF (q)-subspace pointwise on L. The previous argument applies to show that
S0 may be considered a subgroup of H0 and W0 is a subgroup of NH0(S0)Z∗.
Therefore, as a group S0 has a unique fixed component L. Hence, L is not
0P for any point P ∈ Γ − {0}. So, S0 is regular on this set of q components.
There is a cyclic subgroup C0 of W0 that fixes L and acts on the remaining
q-components and hence fixes one a component M . But, M contains a unique
point of Γ − {0}, which then must be fixed by C0. Since we know that C0

is in GL(4, q), it follows that C0 fixes a 1-dimensional GF (q)-subspace on M
pointwise. But, since W0 ≤ NH0(S0)Z∗, it follows that C0 also fixes two 1-
dimensional subspaces. Hence, C0 is a Baer collineation group of order q − 1, a
contradiction as noted previously

Hence, if the plane is Hering or Ott-Schaeffer then Γ can only be
a set of infinite points of π.

3 The Hall planes of order > 9

Assume that Γ is affine and let 0 be a point of Γ. Assume that Γ is a
q + 1-arc. Form the components 0P , for P ∈ Γ− {0} and let W be a subgroup
isomorphic to SL(2, q) that acts doubly transitive on Γ. Let H0 be the subgroup
in the translation complement that fixes 0, which is isomorphic to SL(2, q) and
generated by Baer p-collineations, for q = pr. All Baer axes are on the same
net N of degree q + 1, and H0 is transitive on the set of components outside
of N . Consider W0, the subgroup of W of order q(q − 1) and let S0 denote the
Sylow p-subgroup of W0. S0 will fix a component L and fix a 1-dimensional
GF (q)-subspace pointwise on L. Since S0 is regular on the set of components
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0P , P ∈ Γ− {0}, it follows that L is not one of these components.

Therefore, let C0 be a cyclic subgroup of W0 and note that C0 must fix
one of the q components, say M . It follows that C0 will fix a 1-dimensional
GF (q)-subspace pointwise on W0. Since C0 has order q − 1, each element of
prime power order τ will be a Baer collineation. Since S0 has order q, will have
fix at least one of these components L. But, H0 then will also fix L (or a group
isomorphic to H0, if the order of the Hall planes is 9). The fixed point space of
S0 on L is then also fixed pointwise by a Baer group B0 of H0. Clearly, both
S0 and B0 are regular on the remaining 1-dimensional GF (q)-subspaces of L.
Hence, S0 and B0 are quartic groups on L, are therefore identical on L and so
have identical point orbits. If S0 is not B0 and s0 is not in B0 then there is
an element b0 of B0 such that s0b0 fixes L pointwise, a contradiction by the
known action of the Hall planes. Therefore, S0 is in H0, so S0 is Baer of order
q. Hence, the set of q components 0P , for P ∈ Γ − {0}, is outside the net N .
So, each element τ of prime power of C0 will fix one of these q-components
and is Baer with Baer subplane π0 outside of the net N . Assume that q − 1
is not 2a, for some a. If q > 3, the full collineation group of the Hall plane
leaves N invariant. In this case, then there is an element τ0 of odd prime power
order that fixes at least two components of N . This element τ0 is Baer and then
acts on the associated Desarguesian affine plane obtained by the derivation of
N still as a Baer collineation of odd order. However, this is a contradiction
to the structure theory for Desarguesian affine groups. Therefore, assume that
q − 1 = 2a. Therefore, a generator τ of order 2a will fix a component of the
plane and since (q − 1, q + 1) = 2, then for q > 3, τ2 will fix a component
of N . Hence, again we have a Baer collineation of the associated Desarguesian
affine plane of order (q − 1)/2 so (q − 1)/2 = 2, implying that q = 5. If q = 5,
and there is a Baer collineation in C0 on Σ but this means that C0 contains an
affine homology acting on the Desarguesian subplane of order 5 fixed pointwise
by S0 in the Hall plane. So, this means that C0, since Abelian must fix two
components of N , which implies that there actually is a Baer group of order 4
in Σ, a contradiction.

So, if q is not 3 then Γ cannot be a q + 1-arc.

Assume that Γ is a set of infinite points. Then we may assume that W fixes
an affine point by analysis by the authors in the paper [2]. Again, if q > 3, there
is an invariant net N of q + 1 components, which has a subgroup of GL(2, q)
that fixes N componentwise, and this is the full subgroup of GL(2, q2) of the
associated Desarguesian affine plane constructing the Hall plane that acts on
the Hall plane. It now follows that no element of Γ can lie on the subline at
infinity of N . Since W fixes 0, it follows that W is a subgroup of GL(2, q)Z2,
where Z2 is a Baer involution, a contradiction.
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Therefore, if q is not 3 then Γ cannot be contained on the infinite
line.

Now assume that Γ is contained in an affine line L. Similar arguments as
given above will show that W0 contains a Baer group B0 = S0 of H0 and if
W0 = S0C0, then C0 must fix a non-zero point and hence fix a 1-dimensional
subspace on L pointwise. It now is easy to see that if q > 3, then C0 must
be a central collineation group of order q − 1 of the associated Desarguesian
affine plane Σ constructing the Hall plane. Hence, W0 ≤ GL(2, q) acting on Σ.
Moreover, since W ≤ GL(2, q)TZ2, where T is the translation group of order
q4 and Z2 is a Baer involution, it follows that W = 〈S0, S

g
0 〉, for some element

g of GL(2, q)TZ2. This means that Sg0 is a Baer collineation fixing a line of Σ
pointwise. Clearly, S0 and Sg0 must have a common fixed point since they fix
pointwise line of Σ that are in distinct parallel classes. Hence, we may then
assume that that common point is 0, without loss of generality, which implies
that W is a subgroup of GL(2, q), and hence W is H0. But, then the group of
order q − 1 must be Baer in H0, a contradiction, since H0 is SL(2, q).

If q > 3 then Γ cannot be contained in an affine line.
Summary: The Hall planes of order q2, for q not 3 cannot admit a

collineation group isomorphic to SL(2, q) acting doubly transitive on
q + 1 points on the projective extension.

4 The Walker planes of order 25

There are three Walker planes of order 25, of which one is the Hering plane of
order 25. In the other two planes, there is always a component fixed L, under the
full translation complement. Hence, under a group W isomorphic to SL(2, q),
this means that W fixes an infinite point. Furthermore, all elements of order 5
are quartic (fix exactly q = 5 affine points). This means that Γ must lie on a
component L or be a 6-arc. If this case, the stabilizer of a point 0 of Γ contains a
group S0 of order 5, which is then a quartic group and fixes exactly q = 5 points
of L. Let S1 be another subgroup of order 5 of W which then fixes exactly 5
points on a line M in the same parallel class (α) as L. Suppose M = L. If the
fixed point spaces share a point then W fixes an affine point 0, since otherwise,
there would 6 ·5 affine points on L. If M is not L, there there are exactly 6 lines
of (α) permuted by W . But there are exactly 25 affine lines on (α), implying
that W permutes the remaining 19. But, then S0 would fix a second line of (α),
a contradiction to the known action of S0. Hence, we may assume that W fixes
an affine point. If Γ lies on a component, this means that the points of Γ lie one
each in each of the 6 GF (5)-subspaces relative to 0. That normalizer of a group
of order 5 then fixes 0 and fixes a second point of Γ, implying that the element
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fixes a second and hence third 1-dimensional GF (5)-subspace, both pointwise.
This means that there is a group of order 4 that fixes L pointwise, but then
there is a normal subgroup of SL(2, 5) that fixes L pointwise, a contradiction.
Clearly Γ cannot be on the infinite line so assume that Γ is a 6-arc, so in this
case, we do not assume that Γ contains the point 0 fixed by W . But then there
is a point of Γ fixed by S0 which is outside of L, forcing S0 to be a Baer group,
a contradiction.

Hence, the Walker planes of order 25 do not admit a collineation
group isomorphic to SL(2, 4) acting doubly transitive on 6 points.

5 The Dempwolff plane of order 16

This leaves us to consider the Dempwolff plane of order 16. From John-
son [10], we have the following results. The Dempwolff plane of order 16 has
ΓL(2, 4) as the full translation complement and (1) has orbits lengths on the
line at infinity of size 1, 1, 15, (2) The groups of order 4 of SL(2, 4) fix Baer
subplanes pointwise that share 0 but otherwise are disjoint, (3) the elements
of order 3 in the center of GL(2, 4) are affine homologies. Let W be a group
isomorphic to SL(2, 4) and acting doubly transitively on Γ. If Γ is on the infinite
line then we may assume that W fixes an affine point 0. However, the group
action of the translation complement provides such an action.

Hence, assume that Γ is affine. First assume that Γ lies on an affine line L,
so clearly L is one of the component orbits of length 1. Let 0 be an element of Γ.
Our group is in SL(2, 4)T , where T is the translation group leaving L invariant.
Now there is a subgroup B fixing 0 of order 4 which then is in SL(2, 4) and
hence is Baer. L becomes a GF (4)-subspace and there is a spread induced on
L by the fixed point spaces of Baer groups of SL(2, 4). Since B is transitive on
this set of 4 remaining subspaces, again it follows that the points of Γ fall one
each in 5 GF (4)-subspaces on L (one point is 0). The normalizer of order 3 of
B must then fix another point, fix the corresponding GF (4)-subspace pointwise
and fix another GF (4)-subspace pointwise, implying we have a homology group
of order 3 in SL(2, 4), a contradiction.

Finally assume that Γ is a 16+1-arc and let 0 be an element of Γ, so there is
a group W0 of order 4 · 3 fixing 0. All 2-groups that fix an affine point are Baer
groups (noting that any such Baer axis defines a derivable net by Johnson [10]).

6 The Hall plane of order 9

The 3-elements in the Hall plane of order 9 are Baer. It is known that the full
collineation group G has order 25 ·5! ·94 (see e.g. Lüneburg [11] p. 36, 8.3).and G
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acts on a set of five pairs of infinite points {(∞), (0)}G exactly as S5, so there is
a normal subgroup Z of order 25 that fixes each of these five pairs. Every group
of order 3 must fix two of these pairs and when the 3-element fixes a pair, it
must fix the pair pointwise. Hence, every group B1 of order 3 fixes exactly two
pairs and has two orbits of length 3 on the remaining pairs. Suppose that we
have a group G that acts doubly transitive on a set Γ of four points on the line
at infinity. It follows that if we have a group acting 2-transitively on 4 points on
the line at infinity then the four points are all from different pairs. This means
that the group G must fix the 5th pair, implying that all of the 3-elements
will fix the same two infinite points. If two Baer 3-groups have the same set of
infinite fixed points then there is a group SL(2, 3) fixing four points and acting
transitively on the remaining 6 points, but no subgroup is doubly transitive on
a set of four infinite points. Assuming that G fixes an affine point, no two Baer
groups of order 3 can fix pointwise the same set of four infinite points. Assume
that the order of G > 12. Then the group stabilizer of two pairs is non trivial.
Our group G is a subgroup of AΓL(1, 4) acting on Γ. There are exactly four
Baer groups of order 3 in G. The normalizer of a Baer group of order 3 in the full
group has order 12 and the 2-group is generated by the kernel involution and
the Frobenius automorphism collineation of the associated Desarguesian affine
plane. An involution in the normalizer of a Baer 3-group must permute the two
orbits of length 3 and by our assumptions must fix both of these. This means
that this involution is the kernel involution which would not act in G. Hence,
G has order 12 and is generated by two Baer 3-elements and so is AGL(1, 4). If
the Baer axes are not disjoint, it follows from Foulser p. 115, [5] that the group
generated would contain a quaternion homology group of order 8 (the group
action also works in the order 9 case), which has an infinite orbit of length 8.
So, the Baer axes are disjoint and share exactly two components. There is such
a group action, as is now demonstrated.

We create a convenient coordinate system for the Hall plane of order 9 as
follows. Let

x = 0, y = x

[
u −t
t u

]
;u, t ∈ GF (3)

be the spread for a Desarguesian affine plane Σ of order 9. Derive the net with
partial spread R, where

R = {x = 0, y = xα;α ∈ GF (3)} .

Apply the ‘Albert Switch’ to determine the spread for the Hall plane. That is, co-
ordinates for the Desarguesian plane (x1, x2, y1, y2) are switched by (x1, y1, x2, y2)
to determine the spread for the Hall plane. Let x∗1 = x1, x

∗
2 = y1, so that
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y = x
[
u −t
t u

]
, for t non-zero as (x1, x2, x1u+ x2t,−x1t,+x2u) becomes

y = x

[
−ut−1 −(t+ t−1u2)
t−1 ut−1

]
.

Now t−1 = t and u2 = 0 or 1. So the spread for the Hall plane π is

x = 0, y = xα; α ∈ GF (3), y = x

[
−ut −(t+ tu2)
t ut

]
.

We know that the Hall plane is the regular nearfield plane of order 9, so it
follows that

g : (x, y) �→ (x, y)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦

is an affine homology of π. We also know that

B =

〈
τ =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦
〉
,

is a collineation group (Baer 3-group) of π, inherited from an affine elation of
Σ as is Bt, where

Bt =

〈⎡
⎢⎢⎣
1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦
〉
.

If we conjugate Bt by g, we then obtain a Baer group B1 = Btg of π, where an
easy calculation shows that B1 is as follows:

B1 =

〈
ρ =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 0 −1
0 0 1 −1

⎤
⎥⎥⎦
〉
.

We now take the group 〈B,B1〉. Now B fixes {(0, x2, 0, y2)} = π1 pointwise
and B1 fixes {(x1, 0, y1, y1)} = π2 pointwise, for all xi, yi, i = 1, 2 in GF (3).
It follows directly that τ maps π2 onto π3 = {(x1, x1, y1,−y1), and τ2 maps
π2 onto π3 = {(x1,−x1, y1, 0)}. Moreover, ρ of B1 maps π1 onto π3 and ρ2

maps π1 onto π4. Hence, we observe the following: {π1, π2, π3, π4} is a set of
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mutually disjoint Baer subplanes (as subspaces) in an orbit under the group
〈B,B1〉. Since the groups are Baer and the Baer subspaces are mutually disjoint,
it follows essentially from the ideas behind the Hering-Ostrom theorem that
〈B,B1〉 	 SL(2, 3) and furthermore that the center of the group is −1 on both
of the fixed axes x = 0, y = 0. This means that the central involution is the kernel
involution of π. Hence, the group restricted to the line at infinity is PSL(2, 3)
and acts on a set of 8 infinite points. The elementary Abelian normal subgroup
A has two orbits of length 4, which are necessarily permuted by every element
τ of order 3. Hence, τ fixes both of the A-orbits of length 4 and necessarily fixes
exactly one point in each orbit (since the Baer group also fixes x = 0, y = 0 and
has exactly four fixed infinite points). Therefore, we have two sets Γ1 and Γ2

that admit collineation groups acting doubly transitive on them.
Since there are five possible ways to choose the fixed axes x = 0, y = 0, we

observe the following theorem.

6 Theorem. The Hall plane of order 9 admits exactly 10 sets Γi, i =
1, 2, . . . , 10, of four infinite points each and 10 collineation groups Gi isomorphic
to SL(2, 3), where Gi acts doubly transitively on Γi. Each group is generated by
Baer 3-collineations, where the Baer axes are disjoint as vector spaces and the
union of whose components is the complete spread of π.

We also note that the affine cases Γ, when Γ is contained in an affine line or
is a 4-arc cannot hold as follows.

Let K denote the kernel of the action on Γ. If Γ is contained in an affine
line, then K fixes four points on an affine line L. But, we know from André [1]
that the stabilizer of two points in the full collineation group has order 6. But,
a Baer 3-element will fix but three affine points. There is at most an involutory
homology fixing L pointwise. But, there is an elementary Abelian group A of
order 4 induced on Γ and hence induced on L. L becomes a Desarguesian spread
of order 3 admitting an elementary Abelian group of order 4. But, A must fix a
point there are 9− 5 = 5 remaining points of L−Γ. But, there is no elementary
Abelian group of order 4 in the translation complement of a Desarguesian plane
of order 3.

So, assume that Γ is a 4-arc. The kernel, if non-trivial, can only be a Baer
3-group. Still there is an elementary Abelian group A of order 4 acting on Γ
and further acting on the remaining 92 − 4 = 77 points, implying again that
A fixes an affine point 0. So, A does not contain the kernel homology, since A
is transitive on a set of 4 components incident with 0. If K is trivial then all
involutions of A are forced to be Baer involutions, which cannot occur. So, K
is a Baer 3-group. But, then G has order divisible by 9, a contradiction.

Hence, we have

7 Theorem. Let π be a translation plane of order q2 and let π+ denote the
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projective extension. Assume that π+ admits a collineation group G inducing a
two-transitive group isomorphic to SL(2, q) or PSL(2, q) on a set Γ of q + 1
points.

Then π is one of the following types of planes:

(1) Desarguesian,

(2) Hering,

(3) Ott-Schaeffer, or

(4) the Hall plane of order 9.

(5) Furthermore, if the plane π+ is not Desarguesian then Γ is a set of infinite
points of π.

8 Theorem. Let π+ be a projective translation plane of order q2 admitting
two distinct sets Γ1 and Γ2 of q+1 points each such that there exist collineation
groups G1 and G2 such that Gi acts doubly transitive on Γi, for i = 1, 2 and is
isomorphic to SL(2, q). Then π+ is either Desarguesian or Hall of order 9.

Proof. By our previous result, we need only be concerned with the Hering
and Ott-Schaeffer planes. Recalling that the orbit lengths of components is
q+1, (q2−q)/2, (q2−q)/2, it follows that the only set of q+1 points possible must
be the set of infinite points in the orbit of length q+1 since the generated group
can only be SL(2, q). Hence, the only remaining cases are the Desarguesian and
Hall of order 9. QED

9 Remark. The above theorem is actually must more general and can be
proved without the assumption that the groups Gi are isomorphic to SL(2, q).
This is done by the authors in [3].
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[1] J. André: Projektive Ebenen über Fastkörpern, Math. Z., 62 (1955), 137–160.

[2] M. Biliotti, V. Jha, N. L. Johnson, A. Montinaro: Translation Planes of order q2

admitting a two-transitive orbit of length q + 1 on the line at infinity, Designs, Codes,
Cryptography, 44 (2007), 69–86.

[3] M. Biliotti, V. Jha, N. L. Johnson, A. Montinaro: Classification of projective trans-
lation planes of order q2 admitting a two-transitive orbit of length q + 1, J. Geom. (to
appear).

[4] D. A. Foulser: Baer p-elements in translation planes, J. Algebra, 31 (1974), 354–366.

[5] D. A. Foulser: Some translation planes of order 81, Finite geometries and designs (Proc.
Conf., Chelwood Gate, 1980), pp. 114–118, London Math. Soc. Lecture Note Ser., 49,
Cambridge Univ. Press, Cambridge-New York 1981.

________________________________________________________________________________________________



Hall Plane 117

[6] D. A. Foulser, N. L. Johnson: The translation planes of order q2 that admit SL(2, q)
as a collineation group I. Even order, J. Algebra, 86 (1983), 122–139.

[7] D. A. Foulser, N. L. Johnson: The translation planes of order q2 that admit SL(2, q),
II. Odd Order, J. Geom., 18 (1982), 122–139.

[8] M. Hall: Projective planes, Trans. Amer. Math. Soc., 54, 229–277.

[9] V. Jha, N. L. Johnson: The translation planes of order 81 admitting SL(2, 5), Note
Mat. 24 (2005), n. 2, 59–73.

[10] N. L. Johnson: The translation planes of order 16 that admit non-solvable collineation
groups, Math. Z., 185 (1984), 355–372.
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