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Abstract. Let (M, g) be a compact Riemannian manifold. We denote by JM the Jacobi
operator of the identity map which is a second order elliptic differential operator. In this paper
we study the following problem: which geometric properties are determined by the spectrum
Spec(JM )?
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Introduction

Let (M,g) and (N,h) be two Riemannian manifolds, (M,g) being compact.
The Jacobi operator Jf (also called second variation operator) of a harmonic
map f : (M,g) → (N,h) is a second order elliptic differential operator. H.
Urakawa [14], applying the Gilkey results [4] to the Jacobi operator Jf , obtained
a series of interesting geometric results distinguishing typical harmonic maps.

The identity map IM is a trivial example of harmonic map but the theory
of the corresponding Jacobi operator JM is much more complex.
If (M,g) and (M ′, g′) are two compact isometric Riemannian manifolds, it is
well-known that Spec(JM ) = Spec(JM ′). As the inverse problem is concerned:
Are (M,g) and (M ′, g′) isometric if Spec(JM ) = Spec(JM ′)?
The answer is, in general, negative. In fact, if (T n, g) is a flat torus, then
Spec(JM ) = n × Spec(∆) ([14], page 258), where ∆ is the Laplace-Beltrami
operator, and Milnor (see [7] or [2], page 154) showed that there exist two
16-dimensional flat tori which are isospectral (with respect to ∆) but not iso-
metric. However the spectrum of JM is strictly linked to the geometry and, in
particular, to the curvature of (M,g) [14, 11, 5]. Therefore it is reasonable to
investigate the geometrical properties which can be derived from the spectrum
and, in particular, if special Riemannian manifolds (M,g) can be characterized
by the spectrum Spec(JM ). The analogous problem for the Jacobi operator of
a Riemannian foliation has been studied by Nishikawa, Tondeur and Vanhecke
in [8].
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30 L. Vergori

The main aim of this paper consists in characterizing the Euclidean sphere
Sn by the spectrum Spec(JSn) and the corresponding problems for the complex
projective space CP

2q and the quaternionic projective space HP
4q endowed with

the standard metrics.

1 Preliminaries

In this section, we apply the Gilkey results [4] to the Jacobi operator of
the identity map of a compact Riemannan manifold. First we recall the second
variation formula of the energy of a harmonic map.

Let (M,g) be a n-dimensional compact Riemannian manifold and (N,h) a
m-dimensional Riemannian manifold. A smooth map φ : (M,g) → (N,h) is said
to be harmonic if it is a critical point of the functional energy E(·)

E : φ ∈ C∞(M) �→ 1
2

∫
M

trg(φ∗h)vg ∈ R,

where φ∗ is the dual map of the differential of φ and vg is the volume element
of (M,g), namely, for any vector field V along φ:

d
dt
E(φt)

∣∣∣∣
t=0

= 0.

Here φt : M → N is a one parameter family of smooth maps with φ0 = φ and

d
dt
φt(p)

∣∣∣∣
t=0

= Vp ∈ Tφ(p)N ∀p ∈M.

The second variation formula of the energy E for a harmonic map φ is given
by

d2

dt2
E(φt)

∣∣∣∣
t=0

=
∫
M
h(V, JφV )vg.

The differential operator Jφ, called the Jacobi operator of φ, is given by

JφV = ∆̄φV −RicφV,

where ∆̄φ is the rough Laplacian along φ and, denoting by Rh the curvature
tensor of (N,h) and by {ei}i=1,...,n a local orthonormal frame field on (M,g),

RicφV =
n∑
i=1

Rh(φ∗ei, V )φ∗ei.
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Spectral geometry for JM 31

Since Jφ is self-adjoint and elliptic andM is compact, Jφ has a discrete spectrum
of real eigenvalues with finite multiplicities:

Spec(Jφ) = {µ1 ≤ µ2 ≤ · · · ≤ µi ≤ · · · ↑ +∞}.

φ is said to be stable if µ1 ≥ 0, unstable if µ1 < 0. The trace

Z(t) =
+∞∑
i=1

exp(−tµi)

of the heat kernel for the operator Jφ has the asymptotic expansion

Z(t) ∼
1

(4πt)n/2
{
a0(Jφ) + a1(Jφ)t+ a2(Jφ)t2 + · · ·

}
as t→∞. (1)

According to [4, 14],
a0(Jφ) = m vol(M,g), (2)

a1(Jφ) =
m

6

∫
M
rvg +

∫
M

trg(φ∗ρh)vg (3)

and

a2(Jφ) =
m

360

∫
M

[
5r2 − 2‖ρ‖2 + 2‖R‖2

]
vg (4)

+
1

360

∫
M

[
−30‖φ∗Rh‖2 + 60r trg(φ∗ρh) + 180‖Ricφ‖2

]
vg,

where R, ρ, r denote respectively the curvature tensor, the Ricci tensor, the
scalar curvature of (M,g) and ρh is the Ricci tensor of (N,h). For all X,Y
vector fields belonging to X (M) and for all V vector field along φ we set
(φ∗Rh)(X,Y )V = Rh(φ∗X,φ∗Y )V .

If we consider the identity map IM , which is a harmonic map, and denote
by JM the corresponding Jacobi operator, then the spectral invariants (2), (3)
and (4) are now given by

a0(JM ) = n vol(M,g), (5)

a1(JM ) =
(n

6
+ 1

) ∫
M
rvg, (6)

and

a2(JM ) =
1

360

∫
M

[
5(n+ 12)r2 + 2(90 − n)‖ρ‖2 + 2(n − 15)‖R‖2

]
vg (7)

From (1), (5)-(7) we readily get
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32 L. Vergori

1 Theorem. Let (M,g) and (M ′, g′) be two compact Riemannian mani-
folds. If Spec(JM ) = Spec(JM ′), then

n = dimM = dimM ′ = n′, (8)

vol(M,g) = vol(M ′, g′), (9)∫
M
rvg =

∫
M ′
r′v′g, (10)

∫
M

[
5(n+ 12)r2 + 2(90 − n)‖ρ‖2 + 2(n− 15)‖R‖2

]
vg

=
∫
M ′

[
5(n+ 12)r′2 + 2(90− n)‖ρ′‖2 + 2(n − 15)‖R′‖2

]
v′g. (11)

2 Spectral geometry of JM for Riemannan manifolds

Let (M,g) be a n-dimensional Riemannian manifold. We will now use the
spectral invariants (8)-(11) to derive some results about the geometry of M .
Before starting on this we recall that, for n ≥ 3,

‖ρ‖2 ≥ r2

n
(12)

where the equality holds if and only if (M,g) is an Einstein manifold. Further

‖R‖2 ≥ 2
n(n− 1)

r2 (13)

where the equality holds if and only if (M,g) has constant sectional curvature
and n ≥ 3. For n = 2 we always have the equality.

Next, for n ≥ 3, we denote by C the Weyl conformal curvature tensor
associated to R. Then (see for example [8]):

‖C‖2 = ‖R‖2 − 4
n− 2

‖ρ‖2 +
2

(n− 1)(n− 2)
r2. (14)

For n = 3, C = 0 while for n ≥ 4, C = 0 if and only if the Riemannian manifold
(M,g) is conformally flat. Finally we note that, for n ≥ 4, (M,g) has constant
sectional curvature if and only if it is conformally flat and Einstein.

In the sequel we denote by n the dimension of M and by n′ the dimension
of M ′.

Now we are ready to prove the following results.
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Spectral geometry for JM 33

2 Theorem. Let (M,g) and (M ′, g′) be two compact Riemannian mani-
folds with n ∈ {2, 3, 16, 17, 18, . . . , 93}. If Spec(JM ) = Spec(JM ′), then (M ′, g′)
has constant sectional curvature c′ if and only if (M,g) has constant sectional
curvature c = c′.

Proof. We suppose that (M ′, g′) has constant sectional curvature c′ and
observe that from (8) n′ = dimM ′ = dimM = n.

We assume first 16 ≤ n ≤ 93. From (14) and (11) we get∫
M

[
αn‖C‖2 + βn

(
‖ρ‖2 − r2

n

)]
vg = γn

(∫
M ′
r′2vg′ −

∫
M
r2vg

)
(15)

with
αn = 2(n− 15),

βn =
−2n2 + 192n − 480

n− 2
and

γn =
5n4 + 43n3 + 20n2 − 492n + 480

n(n− 1)(n − 2)
=

5n3 + 45n2 − 174n + 180
(n− 1)(n − 2)

+
βn
n
.

It is easy to check that αn, βn and γn are positive for 16 ≤ n ≤ 93.
Since r′ is constant, Spec(JM ) = Spec(JM ′) implies∫

M
r2vg ≥

∫
M ′
r′2vg′ . (16)

In fact, by using (9) and (10), we have∫
M
r2vg −

∫
M ′
r′2vg′ =

∫
M
r2vg − 2r′

∫
M ′
r′vg′ + r′2

∫
M ′
vg′

=
∫
M

(
r2 − 2rr′ + r′2

)
vg =

∫
M

(r − r′)2vg ≥ 0. (17)

From (17) we readily deduce that the equality sign in (16) holds if and only if
r = constant = r′. Hence (15) and (16) yield C = 0 and ‖ρ‖2 = r2/n. So (M,g)
has constant sectional curvature c. This is equal to c′ because r = r′ = n(n−1)c′.

For n = 3, we have C = 0 and hence (14) and (11) give

78
∫
M

(
‖ρ‖2 − r2

3

)
vg = 125

(∫
M ′
r′2vg′ −

∫
M
r2vg

)
.

Then (16) implies that ‖ρ‖2 = r2/3 and r = r′. Consequently (M,g) is a
3-dimensional Einstein manifold and so it has constant sectional curvature c.
This equals c′ since r = r′.
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34 L. Vergori

For n = 2, denoting by K and K ′ the Gaussian curvatures of M and M ′,
respectively, we have

r = 2K, ‖R‖2 = 4K2, ‖ρ‖2 = 2K2.

Then, from (11), we get∫
M
r2vg = 4

∫
M
K2vg = 4

∫
M ′
K ′2vg′ =

∫
M ′
r′2vg′

So, from (16) and (17) we have K = constant = K ′ = c′. QED

We now denote by (Sn(c), g0) the Euclidean n-sphere with constant sectional
curvature c > 0. Theorem 2 gives the following

3 Corollary. Let (M,g) be a compact simply connected Riemannian mani-
fold. If Spec(JM ) = Spec(JSn(c)), with n ∈ {2, 3, 16, 17, 18, . . . , 93}, then (M,g)
is isometric to (Sn(c), g0).

4 Proposition. Let (M,g) and (M ′, g′) be two compact Riemannian man-
ifolds with n = 2. If Spec(JM ) = Spec(JM ′), then the Euler numbers χ(M)
and χ(M ′) are equal. In particular, if M and M ′ are both orientable (resp. not
orientable), then M and M ′ are homeomorphic.

Proof. From (8) dimM ′ = dimM = 2, so

r = 2K and r′ = 2K ′.

Then, by Gauss-Bonnet formula and (10), we get

χ(M) =
1
2π

∫
M
Kvg =

1
4π

∫
M
rvg =

1
4π

∫
M ′
r′v′g =

1
2π

∫
M ′
K ′v′g = χ(M ′).

If M and M ′ are both orientable (resp. not orientable) then they have the
same genus p = 1 − χ(M)/2 (resp. q = 2 − χ(M)) and, by the classifica-
tion Theorem for 2-dimensional compact connected manifolds [3], they are both
homeomorphic to

S2� T 2� . . . �T 2︸ ︷︷ ︸
p−times

(resp. S2�P
2� . . . �P2︸ ︷︷ ︸
q−times

),

where �, T 2, P
2 denote respectively the connected sum between manifolds, the

2-dimensional torus and the real projective plane. QED

5 Proposition. Let (M,g) and (M ′, g′) be two compact Riemannian man-
ifolds with n = 4 and (M ′, g′) Einstein. If Spec(JM ) = Spec(JM ′), then

χ(M) ≥ χ(M ′), (18)

where the equality holds if and only if (M,g) is also an Einstein manifold and
r = r′.
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Spectral geometry for JM 35

Proof. We start noticing that, by (8), n = n′ = 4. The Gauss-Bonnet
formula for any 4-dimensional compact manifold M is given by [3]

χ(M) =
1

32π2

∫
M

(
‖R‖2 − 4‖ρ‖2 + r2

)
vg. (19)

Since (M ′, g′) is Einstein, by using (11) and (19), (15) becomes

704π2
(
χ(M)− χ(M ′)

)
= 84

∫
M

(
‖ρ‖2 − r2

4

)
vg

+ 123
(∫

M
r2vg −

∫
M ′
r′2vg′

)
. (20)

Hence, (12) and (16) give (18).
In particular, if χ(M) = χ(M ′), (20) gives ‖ρ‖2 = r2/4 and r = r′. Vice

versa if (M,g) is Einstein, the right hand side in (20) vanishes and then the
required result follows. QED

6 Theorem. Let (M,g) and (M ′, g′) be two compact Einstein manifolds
with n �= 15. If Spec(JM ) = Spec(JM ′), then (M ′, g′) has constant sectional
curvature c′ if and only if (M,g) has constant sectional curvature c = c′.

Proof. Since M and M ′ are both Einstein, using (8)-(10), we get

n = n′, r = r′ and hence ‖ρ‖ = ‖ρ′‖.

From (9) and (11), taking into account that n �= 15, we have∫
M
‖R‖2vg =

∫
M ′
‖R′‖2vg′

and then∫
M

[
‖R‖2 − 2

n(n− 1)
r2

]
vg =

∫
M ′

[
‖R′‖2 − 2

n(n− 1)
r′2

]
vg′ .

The required result follows from (13) and the fact that manifolds with constant
sectional curvature c satisfy r = n(n− 1)c. QED

By combining Proposition 5 and Theorem 6 we get
7 Theorem. Let (M,g) and (M ′, g′) be two compact Riemannian manifolds

with n = 4, χ(M) ≤ χ(M ′) and (M ′, g′) having constant sectional curvature c′.
If Spec(JM ) = Spec(JM ′), then (M,g) has constant sectional curvature c = c′.

8 Theorem. Let (M,g) and (M ′, g′) be two compact conformally flat Rie-
mannian manifolds with 2 ≤ n ≤ 93. If Spec(JM ) = Spec(JM ′), then (M ′, g′)
has constant sectional curvature c′ if and only if (M,g) has constant sectional
curvature c = c′.
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36 L. Vergori

Proof. The cases n = 2 and n = 3 have been studied in Theorem 2. For
4 ≤ n ≤ 93 the required result readily follows from (15) and (16) taking into
account that C = C ′ = 0 and that βn and γn are positive for such values of
n. QED

9 Theorem. Let (M,g) and (M ′, g′) be two compact conformally flat Rie-
mannian manifolds with constant scalar curvature. If Spec(JM ) = Spec(JM ′),
then (M ′, g′) has constant sectional curvature c′ if and only if (M,g) has con-
stant sectional curvature c = c′.

Proof. We suppose that (M ′, g′) has constant sectional curvature c′. By
(9) and (10) we get r = r′ = n(n−1)c′. Then (15) implies that (M,g) is Einstein
and hence it has constant sectional curvature c = c′. QED

Finally by Theorems above we get the following
10 Corollary. Let (M,g) be a compact simply connected Riemannian mani-

fold. Assume that Spec(JM ) = Spec(JSn(c)). If one of the following cases occurs:

(a) n = 4 and χ(M) ≤ 2,

(b) (M,g) Einstein and n �= 15,

(c) (M,g) conformally flat and 2 ≤ n ≤ 93,

(d) (M,g) conformally flat with constant scalar curvature and n ≥ 2,

then (M,g) is isometric to (Sn(c), g0).
From now on we denote by λ1 the least positive eigenvalue of the Laplace-

Beltrami operator.
11 Proposition. Let (M,g) and (M ′, g′) be two compact Riemannian man-

ifolds with (M,g) 15-dimensional and Einstein. If Spec(JM ) = Spec(JM ′), then:

(i) (M ′, g′) is Einstein with r = r′,

(ii) λ1 ≥ 2/15r if and only if λ′1 ≥ 2/15r.

Proof. (i) Since (M ′, g′) is Einstein, for n = 15, (11) becomes

30
∫
M

(
‖ρ‖2 − r2

15

)
vg = 29

(∫
M ′
r′2vg′ −

∫
M
r2vg

)
. (21)

By (16) the right hand side in (21) is non-positive and so ‖ρ‖2 = r2/15 and
r = r′.

(ii) We recall that if (M,g) is a compact Einstein manifold (ρ = kg), by
Smith stability Theorem [11], the identity map IM is stable if and only if λ1

satisfies the inequality λ1 ≥ 2k. Since (M,g) and (M ′, g′) are Einstein manifolds
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Spectral geometry for JM 37

with ρ = r/15g and ρ′ = r′/15g′, respectively, Smith stability Theorem and (i)
give the required result. QED

Now, let (M,g) be a n-dimensional compact Riemannian manifold and as-
sume that there exists k > 0 such that ρ ≥ kg. By Lichnerowicz-Obata Theorem
([2], pages 179-180) λ1 satisfies the inequality

λ1 ≥
n

n− 1
k

where the equality holds if and only if (M,g) is isometric to
(
Sn

(
k

n−1

)
, g0

)
.

By combining the Lichnerowicz-Obata Theorem and Proposition 11 (i) we
achieve the following

12 Corollary. The Euclidean sphere
(
S15(c), g0

)
is completely characterized

by λ1 and Spec
(
JS15(c)

)
.

13 Remark. Let (M,g) be a n-dimensional compact Einstein manifold with
n ≥ 3, ρ = kg and k > 0. Assume that IM is unstable, then, by Lichnerowicz-
Obata and Smith Theorems, we have

n

n− 1
k ≤ λ1 < 2k.

3 Spectral geometry of JM for Kähler manifolds

Let (M,g, J) be a Kähler manifold with dimRM = n = 2q, q = dimCM ≥ 2.
By B we denote the Bochner curvature tensor associated to R [8]. Then

‖B‖2 = ‖R‖2 − 8
q + 2

‖ρ‖2 +
2

(q + 1)(q + 2)
r2. (22)

Further, we have

‖R‖2 ≥ 2
q(q + 1)

r2 (23)

with the equality sign valid if and only if (M,g, J) has constant holomorphic
sectional curvature. (M,g, J) is said to be Bochner-Kähler (or Bochner flat) if
its conformal curvature Bochner tensor B vanishes. We remark that (M,g, J) is
a Bochner-Kähler-Einstein manifold if and only if it has constant holomorphic
sectional curvature.

Now let ω be the cohomology class represented by the fundamental 2-form
Φ, and c1 the first Chern class of (M,g, J). It is well-known that c1 is repre-
sented by the Ricci form γ. Following [9] (M,g, J) is said to be a cohomological
Einstein manifold if c1 = aω for some constant a ∈ R. Of course a compact
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38 L. Vergori

Kähler manifold (M,g, J) with the second Betti number b2(M) = 1 is cohomo-
logically Einstein. Finally (M,g, J) is cohomologically Einstein with constant
scalar curvature if and only if it is Einstein.

14 Theorem. Let (M,g, J) and (M ′, g′, J ′) be two compact Kähler mani-
folds with 8 ≤ q = dimCM ≤ 51. If Spec(JM ) = Spec(JM ′), then (M ′, g′, J ′) has
constant holomorphic sectional curvature c′ if and only if (M,g, J) has constant
holomorphic sectional curvature c = c′.

Proof. We suppose that (M ′, g′, J ′) has constant holomorphic sectional
curvature c. From (11) and (22) we have∫

M

[
λq‖B‖2 + δq

(
‖ρ‖2 − r2

2q

)]
vg = εq

(∫
M ′
r′2vg′ −

∫
M
r2vg

)
(24)

where
λq = 2(2q − 15),

δq =
−4q2 + 204q + 120

q + 2

and

εq =
10q4 + 88q3 + 292q2 + 342q + 60

q(q + 1)(q + 2)
.

We remark that if 8 ≤ q ≤ 51, then λq > 0, δq > 0 and εq > 0. Hence, by
(16), (24) gives B = 0 and ‖ρ‖2 = r2/2q. Consequently, (M,g) has constant
holomorphic sectional curvature c and, since r = r′ = q(q+ 1)c′, c = c′. QED

We denote by (CP
q(c), g0, J0) the complex projective space with the Study-

Fubini metric of constant holomorphic sectional curvature c > 0.
15 Corollary. Let (M,g, J) be a compact Kähler manifold with 8 ≤ q ≤ 51.

If Spec(JM ) = Spec(JCP
q(c)), then (M,g, J) is holomorphically isometric to

(CP
q(c), g0, J0).
16 Theorem. Let (M,g, J) and (M ′, g′, J ′) be two compact cohomological

Einstein Kähler manifolds, with q ≥ 8. If Spec(JM ) = Spec(JM ′), then (M ′, g′,
J ′) has constant holomorphic sectional curvature c′ if and only if (M,g, J) has
constant holomorphic sectional curvature c = c′.

Proof. Since (M,g) and (M ′, g′) are cohomological Einstein

c1 = aω, c′1 = a′ω′,

then (see [9, 10] for details)

a =
1

8πq vol(M,g)

∫
M
rvg , a′ =

1
8πq′ vol(M ′, g′)

∫
M ′
r′vg′

________________________________________________________________________________________________



Spectral geometry for JM 39

and ∫
M

(
r2 − 2‖ρ‖2

)
vg = 16q(q − 1)a2π2 vol(M,g),∫

M ′

(
r′2 − 2‖ρ′‖2

)
vg′ = 16q′(q′ − 1)a′2π2 vol(M ′, g′).

By (8)-(10) we obtain a = a′ and, consequently,∫
M

(
r2 − 2‖ρ2‖2

)
vg =

∫
M ′

(
r′2 − 2‖ρ′2‖2

)
vg′ . (25)

Now we suppose that (M ′, g′, J ′) has constant holomorphic sectional curvature
c. From (11) and (25) we have

λq

∫
M

(
‖R‖2 − 2

q(q + 1)
r2

)
vg = µq

(∫
M ′
r′2vg′ −

∫
M
r2vg

)
, (26)

where

µq =
8q3 + 158q2 + 158q − 60

q(q + 1)
.

Since λq > 0 and µq > 0 for q ≥ 8, (16) and (26) yield

‖R‖2 =
2

q(q + 1)
r2

and hence (M,g, J) has constant holomorphic sectional curvature c. This is
equal to c′ because r = r′ = q(q + 1)c′. QED

17 Remark. By the same proof of Theorem 6, replacing the inequality (13)
with the corresponding inequality (23) for Kähler manifolds, we can prove that,
if (M,g, J) and (M ′, g′, J ′) are two compact Einstein Kähler manifolds with
Spec(JM ) = Spec(JM ′), then (M ′, g′, J ′) has constant holomorphic sectional
curvature c′ if and only if (M,g, J) has constant holomorphic sectional curvature
c = c′.

Moreover Proposition 5 and Remark 17 give
18 Theorem. Let (M,g, J) and (M ′, g′, J ′) be two compact Kähler mani-

folds with q = 2, χ(M) ≤ χ(M ′) and (M ′, g′, J ′) having constant holomorphic
sectional curvature c′. If Spec(JM ) = Spec(JM ′), then (M,g, J) has constant
holomorphic sectional curvature c = c′.

19 Theorem. Let (M,g, J) and (M ′, g′, J ′) be two compact Bochner-Kähler
manifolds, with 2 ≤ q ≤ 51. If Spec(JM ) = Spec(JM ′), then (M ′, g′, J ′) has
constant holomorphic sectional curvature c′ if and only if (M,g, J) has constant
holomorphic sectional curvature c = c′.
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40 L. Vergori

Proof. The result readily follows from (24) and (16) taking into account
that B = B′ = 0 and that δq and εq are positive for 2 ≤ q ≤ 51. QED

By Theorems 16, 18, 19, Remark 17 and recalling that χ(CP
2) = 3 (see [3]),

we have

20 Corollary. Let (M,g, J) be a compact Kähler manifold. Assume that
Spec(JM ) = Spec(JCP

q(c)). If one of the following cases occurs:

(a) (M,g, J) cohomologically Einstein and q ≥ 8,

(b) (M,g, J) Einstein,

(c) q = 2 and χ(M) ≤ 3,

(d) (M,g, J) Bochner-Kähler and 2 ≤ q ≤ 51,

then (M,g, J) is holomorphically isometric to (CP
q, g0, J0).

4 Spectral geometry of JM for quaternionic Kähler

manifolds

Let (M,g) be a 4q-dimensional Riemannian manifold (q = dimHM ≥ 1)
whose holonomy group is contained in Sp(n) · Sp(1). For q ≥ 2, (M,g) is called
a quaternionic Kähler manifold. In this case, by a well-known Alekseevskii re-
sult [1], (M,g) is Einstein. Since Sp(1) ·Sp(1) = SO(4), a stronger definition of
quaternionic Kähler manifold is needed in dimension 4. A 4-dimensional mani-
fold is said to be a quaternionic Kähler manifold if it is Einstein and self-dual
with non-zero scalar curvature [6].

Further

‖R‖2 ≥ 5q + 1
4q(q + 2)2

r2 (27)

with the equality sign valid if and only if the manifold (M,g) has constant
quaternionic sectional curvature [12].

21 Theorem. Let (M,g) and (M ′, g′) be two compact quaternionic Kähler
manifold. If Spec(JM ) = Spec(JM ′), then (M ′, g′) has constant quaternionic
sectional curvature c′ if and only if (M,g) has constant quaternionic sectional
curvature c = c′.

________________________________________________________________________________________________
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Proof. Since the manifolds (M,g) and (M ′, g′) are Einstein with q = q′,
Theorem 1 gives

∫
M

[
2(4q − 15)‖R‖2 +

20q2 + 58q + 45
q

r2
]
vg

=
∫
M ′

[
2(4q − 15)‖R′‖2 +

20q2 + 58q + 45
q

r′2
]
vg′ ,

that is, since r = r′ = constant,∫
M
‖R‖2vg =

∫
M ′
‖R′‖2vg′ .

This and (27) give the required result since for constant quaternionic sectional
curvature we have r = r′ = 4q(q + 2)c′. QED

Now, by (HP
q(c), g0) we denote the quaternionic projective space with con-

stant quaternionic sectional curvature c > 0. By Theorem 21 we get

22 Corollary. Let (M,g) be a compact quaternionic Kähler manifold. If
Spec(JM ) = Spec(JIHPq(c)

), then (M,g) is isometric to (HP
q(c), g0).

In dimension four we get the following result.

23 Theorem. Let (M,g) be a compact 4-dimensional self-dual Riemannian
manifold and (M ′, g′) be a compact quaternionic Kähler manifold with positive
scalar curvature and χ(M ′) ≥ χ(M). If Spec(JM ) = Spec(JM ′), then (M,g)
and (M ′, g′) are isometric.

Proof. By (8) dimM ′ = 4, then (M ′, g′) is Einstein and self-dual. Since
the two only 4-dimensional self-dual Einstein manifolds with positive scalar
curvature are S4 and CP

2 endowed with the standard metrics ([3], page 275),
we get that (M ′, g′) is isometric either to (S4, g0) or to (CP

2, g0).
By Proposition 5 we deduce that (M,g) is Einstein. Furthermore, by (9)

and (10), (M,g) has (constant) scalar curvature r = r′ > 0 and hence (M,g)
is also isometric either to (S4, g0) or to (CP

2, g0). Taking into account that IS4

is unstable while I
CP

2 is stable [13], Spec(JM ) = Spec(JM ′) yields the required
result. QED
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