Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent

Jan Chabrowski
Department of Mathematics, University of Queensland, St. Lucia 4072, Queensland, Australia
jhc@maths.uq.edu.au

Received: 05/09/2006; accepted: 23/11/2006.

Abstract

We study the nonlinear Neumann problem (1) involving a critical Sobolev exponent and a nonlinearity of lower order. Our main results assert that for every $k \in \mathbb{N}$ problem (1) admits at least k pairs of nontrivial solutions provided a parameter μ belongs to some interval $\left(0, \mu^{*}\right)$.

Keywords: Sobolev exponent, multiple solutions, concentration-compactness principle, Neumann problem

MSC 2000 classification: primary 35B33, secondary 35J65, 35Q55

1 Introduction and preliminaries

In this paper we are concerned with the existence of solutions of the nonlinear Neumann problem

$$
\left\{\begin{align*}
-\Delta u & =\mu|u|^{2^{*}-2} u+f(x, u) \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega, u>0 \text { on } \Omega
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{\mathbb{N}}$ is a bounded domain with a smooth boundary $\partial \Omega, \nu$ is the outward normal to the boundary, $\mu>0$ is a parameter and $2^{*}=\frac{2 N}{N-2}, N \geq 3$, is the critical Sobolev exponent.

Throughout this work we assume that the nonlinearity $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition and $(*)$ for every $M>0 \sup \{|f(x, s)| ; x \in$ $\Omega,|s| \leq M\}<\infty$.

We impose the following conditions on f :
$\left(f_{1}\right)$ There exist constants $a_{1}, a_{2}>0$ and $\sigma \in[0,2)$ such that

$$
\frac{1}{2} f(x, s) s-F(x, s) \geq-a_{1}-a_{2}|s|^{\sigma}
$$

for $(x, s) \in \Omega \times \mathbb{R}$, where $F(x, s)=\int_{0}^{s} f(x, t) d t$.
(f_{2}) $\lim _{|s| \rightarrow \infty} \frac{f(x, s)}{|s|^{2^{*}-1}}=0$ uniformly a. e. in $x \in \Omega$.
(f_{3}) There exist constants $b_{1}, b_{2}>0$ and $2<q<2^{*}$ such that

$$
F(x, s) \leq b_{1}+b_{2}|s|^{q}
$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$.
$\left(f_{4}\right)$ There exist a constant $c_{1}>0$ and $h \in L^{1}(\Omega)$ and $\Omega_{\circ} \subset \Omega$ with $\left|\Omega_{\circ}\right|>0$ such that

$$
F(x, s) \geq-h(x)|s|^{2}-c_{1}
$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$ and

$$
\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{s^{2}}=\infty
$$

uniformly a.e. in $x \in \Omega_{0}$, where $\left|\Omega_{0}\right|$ denotes the Lebesgue measure of the set Ω_{0}.

It is easy to see that $(*)$ and $\left(f_{2}\right)$ yield: for every $\epsilon>0$ there exists $C_{\epsilon}>0$ such that

$$
\begin{equation*}
|f(x, s) s|,|F(x, s)| \leq \epsilon|s|^{2^{*}}+C_{\epsilon} \tag{2}
\end{equation*}
$$

for every $s \in \mathbb{R}$ and a. e. in $x \in \Omega$. The assumption $\left(f_{1}\right)$ replaces the usual Ambrosetti-Rabinowitz type assumption in order to apply the mountain-pass principle.

Solutions of (1) are sought in the Sobolev space $H^{1}(\Omega)$. We recall that by $H^{1}(\Omega)$ we denote the usual Sobolev space equipped with the norm

$$
\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

We recall that a C^{1} functional $\phi: X \rightarrow \mathbb{R}$ on a Banach space X satisfies the Palais-Smale condition at level $c\left((P S)_{c}\right.$ condition for short), if each sequence $\left\{x_{n}\right\} \subset X$ such that $(i) \phi\left(x_{n}\right) \rightarrow c$ and $(i i) \phi^{\prime}\left(x_{n}\right) \rightarrow 0$ in X^{*} is relatively compact in X. Finally, any sequence $\left\{x_{n}\right\}$ satisfying (i) and (ii) is called a Palais-Smale sequence at level $c\left(\mathrm{a}(P S)_{c}\right.$ for short).

Throughout this paper we denote strong convergence by " \rightarrow " and weak convergence by " Δ ". The norms in the Lebesgue spaces $L^{p}\left(\mathbb{R}^{\mathbb{N}}\right)$ are denoted by $\|\cdot\|_{p}$.

The Neumann problem for the equation

$$
\begin{equation*}
-\Delta u+u=Q(x)|u|^{2^{*}-2} u \text { in } \Omega, \tag{**}
\end{equation*}
$$

where $\lambda>0$ is a parameter and Q is a positive and continuous function on $\bar{\Omega}$, has an extensive literature. If $Q \equiv 1$, we refer to the papers $[1,3,4,6,21]$, where the existence of least energy solutions and their properties have been investigated. The least-energy solutions are one-peak solutions and concentrate on $\partial \Omega$ as $\lambda \rightarrow \infty$ (see [17], [18]). These results have been extended to the case when Q is not constant in the papers [7] and [8]. The existence of multi-peak solutions has been studied in the papers $[11,22,23]$. If $Q \equiv 1$, then problem $\left({ }^{* *}\right)$ obviously admits also constant solutions. If λ is small then these are the only least energy solutions [5]. It appears that the first result on the existence of multiple solutions were given in [23] and [16] for $\left({ }^{* *}\right)$ with $Q \equiv 1$. The multiplicity of solutions in these two papers is expressed in terms of a relative category of $\partial \Omega$. If Ω is a ball, $Q \equiv 1$ and the right side of $\left({ }^{* *}\right)$ has a nontrivial perturbation of lower order, then there exist infinitely many solutions [9, 10].

The paper is organized as follows. In Section 2 we establish the Palais-Smale condition for the variational functional corresponding to problem (1). To obtain the existence of solutions we apply some versions of the mountain-pass theorem due to E.A.B. Silva [20]. These existence results are discussed in Sections 3 and 4. In this paper we follow the approach from the paper [19] where the existence of multiple solutions for equation (1) with the Dirichlet boundary conditions has been obtained.

2 Palais-Smale condition

We look for solutions of (1) as critical points of the variational functional

$$
I_{\mu}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{\mu}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x-\int_{\Omega} F(x, u) d x
$$

It is easy to see that under our assumptions on $f I_{\mu}$ is a C^{1} functional on $H^{1}(\Omega)$. To show that I_{μ} satisfies the Palais-Smale condition we shall use the following version of the concentration-compactness principle (see [14]). Let $u_{m} \rightharpoonup u$ in $H^{1}(\Omega)$. Then up to a subsequence there exist positive measures μ and ν on $\bar{\Omega}$ such that

$$
\left|\nabla u_{m}\right|^{2} \rightharpoonup \mu \text { and }\left|u_{m}\right|^{2^{*}} \rightharpoonup \nu
$$

weakly in the sense of measure. Moreover, there exist at most countable set J and a collection of points $\left\{x_{j}, j \in J\right\} \subset \bar{\Omega}$ and numbers $\nu_{j}>0, \mu_{j}>0, j \in J$, such that

$$
\nu=|u|^{2^{*}} d x+\sum_{j \in J} \nu_{j} \delta_{x_{j}}
$$

and

$$
\mu \geq|\nabla u|^{2} d x+\sum_{j \in J} \mu_{j} \delta_{x_{j}} .
$$

The numbers ν_{j} and μ_{j} satisfy

$$
\begin{equation*}
S \nu_{j}^{\frac{2}{2^{*}}} \leq \mu_{j} \text { if } x_{j} \in \Omega \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{S}{2^{\frac{2}{N}}} \nu_{j}^{\frac{2}{2 *}} \leq \mu_{j} \quad \text { if } x_{j} \in \partial \Omega \tag{4}
\end{equation*}
$$

where S is the best Sobolev constant for the continuous embedding of $H_{\circ}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$. Here $\delta_{x_{j}}$ denotes the Dirac measure concentrated at x_{j}. Moreover, we have $\sum_{j \in J} \nu_{j}^{\frac{2}{2 *}}<\infty$.

1 Proposition. Suppose that $\left(f_{1}\right)$ and $\left(f_{2}\right)$ hold. Then for every $M>0$ there exists $\mu^{*}>0$ such that I_{μ} satisfies the $(P S)_{c}$ condition for $c<M$ and $0<\mu<\mu^{*}$.

Proof. Let $\left\{u_{m}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence with $c<M$. First we show that $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. For large m we have

$$
\begin{aligned}
c+1+\left\|u_{m}\right\| \geq I_{\mu}\left(u_{m}\right)-\frac{1}{2}\left\langle I_{\mu}^{\prime}\left(u_{m}\right), u_{m}\right\rangle & =\frac{\mu}{N} \int_{\Omega}\left|u_{m}\right|^{2^{*}} d x \\
& +\int_{\Omega}\left[\frac{1}{2} f\left(x, u_{m}\right) u_{m}-F\left(x, u_{m}\right)\right] d x .
\end{aligned}
$$

It follows from $\left(f_{1}\right)$ that

$$
\begin{equation*}
c+1+\left\|u_{m}\right\| \geq \frac{\mu}{N} \int_{\Omega}\left|u_{m}\right|^{2^{*}} d x-a_{1}|\Omega|-a_{2} \int_{\Omega}\left|u_{m}\right|^{\sigma} d x \tag{5}
\end{equation*}
$$

In the sequel we always denote by C a positive constant independent of m which may change from one inequality to another. Using the Young inequality we obtain

$$
\int_{\Omega}\left|u_{m}\right|^{\sigma} d x \leq \kappa \int_{\Omega}\left|u_{m}\right|^{2^{*}} d x+c
$$

for every $\kappa>0$, where $C>0$ is a constant depending on on κ and $|\Omega|$. Inserting this inequality with $\kappa=\frac{\mu}{2 N a_{2}}$ into (5) we derive

$$
\begin{equation*}
\left\|u_{m}\right\|_{2^{*}}^{2^{*}} \leq C\left(\left\|u_{m}\right\|+1\right) \tag{6}
\end{equation*}
$$

for some constant $C>0$. To proceed further we use the equality

$$
\begin{align*}
I_{\mu}\left(u_{m}\right)-\frac{1}{2^{*}}\left\langle I_{\mu}^{\prime}\left(u_{m}\right), u_{m}\right\rangle=\frac{\mu}{N} & \int_{\Omega}\left|\nabla u_{m}\right|^{2} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} f\left(x, u_{m}\right) u_{m} d x-\int_{\Omega} F\left(x, u_{m}\right) d x \tag{7}
\end{align*}
$$

Using (2) we deduce from (7) that

$$
\int_{\Omega}\left|\nabla u_{m}\right|^{2} d x \leq C\left(\int_{\Omega}\left|u_{m}\right|^{2^{*}} d x+\left\|u_{m}\right\|+1\right)
$$

This combined with (6) leads to the estimate

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{m}\right|^{2} d x \leq C\left(\left\|u_{m}\right\|+1\right) \tag{8}
\end{equation*}
$$

We now need the decomposition $H^{1}(\Omega)=\mathbb{R} \oplus V$, where

$$
V=\left\{v \in H^{1}(\Omega) ; \int_{\Omega} v d x=0\right\}
$$

We equip $H^{1}(\Omega)$ with an equivalent norm

$$
\|u\|_{V}=\left(\int_{\Omega}|\nabla v|^{2} d x+t^{2}\right)^{\frac{1}{2}}
$$

for $u=t+v, v \in V$ and $t \in \mathbb{R}$. Using this decomposition we can write $u_{m}=v_{m}+$ $t_{m}, v_{m} \in V, t_{m} \in \mathbb{R}$. We claim that $\left\{t_{m}\right\}$ is bounded. Arguing by contradiction we may assume that $t_{m} \rightarrow \infty$. The case $t_{m} \rightarrow-\infty$ is similar. We put $w_{m}=\frac{v_{m}}{t_{m}}$. It then follows from (8) that

$$
\int_{\Omega}\left|\nabla w_{m}\right|^{2} d x \leq C\left[t_{m}^{-2}+t_{m}^{-1} \int_{\Omega}\left(\left|\nabla w_{m}\right|^{2} d x+1\right)^{\frac{1}{2}} d x\right]
$$

This yields $\int_{\Omega}\left|\nabla w_{m}\right|^{2} d x \rightarrow 0$ and hence $w_{m} \rightarrow 0$ in $L^{p}(\Omega)$ for every $2 \leq p \leq 2^{*}$. Here we have used the fact that the space V equipped with norm $\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}}$ is continuously embedded into $L^{p}(\Omega)$ for $2 \leq p \leq 2^{*}$. We now observe that

$$
\begin{align*}
t_{m}^{-2^{*}}\left(I_{\mu}\left(u_{m}\right)-\frac{1}{2}\left\langle I_{\mu}^{\prime}\left(u_{m}\right), u_{m}\right\rangle\right) & =\frac{\mu}{N} \int_{\Omega}\left|w_{m}+1\right|^{2^{*}} d x \\
+t_{m}^{-2^{*}} & {\left[\frac{1}{2} \int_{\Omega} f\left(x, u_{m}\right) u_{m} d x-\int_{\Omega} F\left(x, u_{m}\right) d x\right] } \tag{9}
\end{align*}
$$

Using (2) and letting $m \rightarrow \infty$ in (9) we obtain $\frac{\mu}{N} \int_{\Omega} d x=0$. This is a contradiction. Since $\left\{t_{m}\right\}$ is bounded we deduce from (8) that $\left|\nabla v_{m}\right|$ is bounded in $L^{2} \Omega$. Thus $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. By the concentration-compactness principle we have up to a subsequence that

$$
\left|\nabla u_{m}\right|^{2} \rightharpoonup \mu \text { and }\left|u_{m}\right|^{2^{*}} \rightharpoonup \nu
$$

in the sense of measure. It is easy to check that the constants ν_{j} and μ_{j} from (3) and (4) satisfy $\mu_{j}=\mu \nu_{j}$. Therefore, if $\nu_{j}>0$, then $(a) \nu_{j}>\left(\frac{S}{\mu}\right)^{\frac{N}{2}}$ and if $x_{j} \in \partial \Omega$, then $(b) \nu_{j}>\frac{1}{2}\left(\frac{S}{\mu}\right)^{\frac{N}{2}}$. Hence the set J is finite. We now consider the inequality

$$
\begin{equation*}
I_{\mu}\left(u_{m}\right)-\frac{1}{2}\left\langle I_{\mu}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \geq \frac{\mu}{N} \int_{\Omega}\left|u_{m}\right|^{2^{*}} d x-a_{1}|\Omega|-a_{2}|\Omega|^{\alpha}\left\|u_{m}\right\|_{2^{*}}^{2^{*}(1-\alpha)} \tag{10}
\end{equation*}
$$

which follows from $\left(f_{1}\right)$, where $\alpha=\frac{2^{*}-\sigma}{2^{*}}<1$. Put $A=a_{1}|\Omega|+a_{2}|\Omega|^{\alpha}$ and

$$
\mu^{*}=\min \left(2^{-\frac{2}{N}} S,\left[\frac{S^{\frac{N}{2}}}{2(N(M+A))^{\frac{1}{\alpha}}}\right]^{\frac{1}{\frac{N}{2}-\frac{1}{\alpha}}}\right)
$$

It is easy to see that

$$
\begin{equation*}
1<\frac{1}{2}\left(\frac{S}{\mu}\right)^{\frac{N}{2}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{N(M+A)}{\mu}\right)^{\frac{1}{\alpha}}<\frac{1}{2}\left(\frac{S}{\mu}\right)^{\frac{N}{2}} \tag{12}
\end{equation*}
$$

for $0<\mu<\mu^{*}$. In the final part of the proof we show that

$$
\begin{equation*}
\int_{\Omega} d \nu<\frac{1}{2}\left(\frac{S}{\mu}\right)^{\frac{N}{2}} \tag{13}
\end{equation*}
$$

If $\int_{\Omega} d \nu \leq 1$, then (11) yields (13). Hence it remains to consider the case $\int_{\Omega} d \nu>$ 1. Letting $m \rightarrow \infty$ in (10) we obtain

$$
\frac{\mu}{N} \int_{\Omega} d \nu \leq c+a_{1}|\Omega|+a_{2}|\Omega|^{\alpha}\left(\int_{\Omega} d \nu\right)^{1-\alpha} \leq(M+A)\left(\int_{\Omega} d \nu\right)^{1-\alpha}
$$

In view of (12) we have

$$
\int_{\Omega} d \nu \leq\left(\frac{N(M+A)}{\mu}\right)^{\frac{1}{\alpha}}<\frac{1}{2}\left(\frac{S}{\mu}\right)^{\frac{N}{2}}
$$

and this establishes inequality (13). Using (13), (a) and (b) we see that $\nu_{j}=0$ for every $j \in J$. This means that $\int_{\Omega}\left|u_{m}\right|^{2^{*}} d x \rightarrow \int_{\Omega}|u|^{\left.\right|^{*}} d x$. It is now routine to show that up to a subsequence $u_{m} \rightarrow u$ in $H^{1}(\Omega)$.

QED
We point out here that if $\mu=0$, then the Palais-Smale condition is not satisfied (see [19]).

3 Existence of multiple solutions

First, we recall the symmetric version of the mountain-pass theorem [20].
2 Theorem. Let $E=V \oplus X$, where E is a real Banach space and $\operatorname{dim} V<$ ∞. Let $I \in C^{1}(E, \mathbb{R})$ be an even functional satisfying $I(0)=0$ and
(I_{1}) there exists a constant $\rho>0$ such that

$$
I \mid \partial B_{1} \cap X \geq \rho
$$

(I_{2}) there exists a subspace $W \subset E$ with $\operatorname{dim} V<\operatorname{dim} W<\infty$ and there exists a constant $M>0$ such that

$$
\max _{u \in W} I(u)<M .
$$

(I_{3}) I satisfies the $(P S)_{c}$-condition for $0 \leq c \leq M$.
Then I has at least $\operatorname{dim} W-\operatorname{dim} V$ pairs of nontrivial critical points.
To establish the existence of multiple solutions of problem (1) we check that functional I_{μ} with $0<\mu<\mu^{*}$ satisfies the assumptions of Theorem 2. We denote by $\left\{\lambda_{j}\right\}, j \in \mathbb{N}$, the eigenvalues of the problem

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \text { in } \Omega, \tag{14}\\
\frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega .
\end{align*}\right.
$$

Let $\left\{e_{i}\right\}$ be the corresponding orthonormal sequence of eigenfunctions. The first eigenvalue $\lambda_{1}=0$ and the corresponding eigenfunctions are constant. Then for each $u \in H^{1}(\Omega)$ we have a unique representation

$$
u=\sum_{j=1}^{\infty} \alpha_{j} e_{j} .
$$

Let $e_{n}^{*}, n \in \mathbb{N}$, be continuous linear functionals on $H^{1}(\Omega)$ defined by $e_{n}^{*}(u)=\alpha_{n}$. We define the following decomposition of the space $H^{1}(\Omega)$:

$$
V_{j}=\left\{u \in H^{1}(\Omega) ; e_{i}^{*}(u)=0, i>j\right\},
$$

$$
X_{j}=\left\{u \in H^{1}(\Omega) ; e_{i}^{*}(u)=0, i \leq j\right\}
$$

so $H^{1}(\Omega)=V_{j} \oplus X_{j}$. Since $e_{1}=\frac{1}{|\Omega|^{\frac{1}{2}}}$ on Ω and $e_{1}^{*}(u)=\int_{\Omega} u e_{1} d x=\alpha_{1}$, we see that $\int_{\Omega} u d x=0$ for every $u \in X_{j}, j \in \mathbb{N}$. Therefore $\|\nabla v\|_{2}$ is a norm equivalent to $\|\cdot\|$, on each subspaces X_{j}. Consequently, functions belonging to X_{j} satisfy the Gagliardo-Nirenberg type inequality (see [13, p. 66, inequality 2.10]). These observations allow us to formulate

3 Lemma. Let $2 \leq r<2^{*}$ and $\delta>0$ be given. Then there exists a $j \in \mathbb{N}$ such that

$$
\|u\|_{r}^{r} \leq \delta\|\nabla u\|_{2}^{r}
$$

for all $u \in X_{j}$.
For the proof we refer to [19] (see Lemma 4.1 there).
4 Lemma. Suppose (f_{3}) holds. Then there exist $\bar{\mu}>0, j \in \mathbb{N}$ and $\rho, \alpha>0$ such that $I_{\mu}(u) \geq \alpha$ for all $u \in X_{j}$ with $\|u\|=\rho$ and $0<\mu<\bar{\mu}$.

Proof. In the proof we shall use the equivalent norm $\|\nabla u\|_{2}$ on X_{j}. It follows from $\left(f_{3}\right)$ that

$$
I_{\mu}(u) \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-C_{1}-b_{2} \int_{\Omega}|u|^{q} d x-\frac{\mu}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x
$$

where $C_{1}=b_{1}|\Omega|$. Let $\delta>0$ and $\|\nabla u\|_{2}=\rho$. We choose $\rho>0$ so that

$$
\delta b_{2} \rho^{q-2}=\frac{1}{4}
$$

Since $\rho(\delta) \rightarrow \infty$ as $\delta \rightarrow 0$ we select $\delta>0$ so that

$$
\frac{\rho^{2}}{4}-C_{1}>\frac{\rho^{2}}{8}
$$

With this choice of δ we apply Lemma 3 and the Sobolev inequality to obtain

$$
I_{\mu}(u) \geq \rho^{2}\left(\frac{1}{2}-b_{2} \delta \rho^{q-2}\right)-C_{1}-C_{3} \mu \rho^{2^{*}} \geq \frac{\rho^{2}}{4}-C_{1}-C_{3} \mu \rho^{2^{*}} \geq \frac{\rho}{8}-C_{3} \mu \rho^{2^{*}}
$$

for some constant $C_{3}>0$ and for all $u \in X_{j}$ with $\|\nabla u\|_{2}=\rho$. (Here the existence of j has been guaranteed by Lemma 3). Finally, we choose $\bar{\mu}>0$ so that

$$
I_{\mu}(u) \geq \frac{\rho^{2}}{8}-C_{3} \mu \rho^{2^{*}}>0
$$

for $u \in X_{j}$ with $\|\nabla u\|_{2}=\rho$ and $0<\mu<\bar{\mu}$.

5 Lemma. Suppose that $\left(f_{4}\right)$ holds. Then for every $m \in \mathbb{N}$ there exists a subspace $W \subset H^{1}(\Omega)$ (more precisely of $H_{\circ}^{1}(\Omega)$) and a constant $M_{m}>0$ independent of μ such that $\operatorname{dim} W=m$ and $\max _{w \in W} I_{0}(w)<M_{m}$.

Proof. It is easy to construct a family of functions v_{1}, \ldots, v_{m} in $C_{\circ}^{\infty}(\Omega)$ with supports in $B\left(x_{1}, r_{1}\right), \ldots, B\left(x_{m}, r_{m}\right)$, respectively, so that $\operatorname{supp} v_{i} \cap \operatorname{supp} v_{j}$ $=\emptyset$ for $i \neq j$ and $\left|\left(\operatorname{supp} v_{j}\right) \cap \Omega_{\circ}\right|>0$ for every j. We recall that Ω_{\circ} is a set from assumption $\left(f_{4}\right)$. Let $W=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. It is clear that $\operatorname{dim} W=m$ and $\int_{\Omega_{0}}|v|^{p} d x>0$ for every $v \in W-\{0\}$. We now observe that

$$
\max _{u \in W-\{0\}} I_{0}(u)=\max _{t>0,\|\nabla v\|_{2}=1, v \in W}\left\{t^{2}\left(\frac{1}{2}-\frac{1}{t^{2}} \int_{\Omega} F(x, t v) d x\right)\right\} .
$$

To complete the proof it is sufficient to show that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t^{2}} \int_{\Omega} F(x, t v) d x>\frac{1}{2} \tag{15}
\end{equation*}
$$

uniformly in $v \in W$ with $\|\nabla v\|_{2}=1$. In view of $\left(f_{4}\right)$ given $L>0$ we can find $C>0$ such that

$$
F(x, s) \geq L s^{2}-C
$$

for every $s \in \mathbb{R}$ and a. e. $x \in \Omega_{0}$. Hence, for $v \in W$ with $\|\nabla v\|_{2}=1$ we have

$$
\begin{equation*}
\int_{\Omega} F(x, t v) d x \geq L t^{2} \int_{\Omega_{\circ}} v^{2} d x-C\left|\Omega_{\circ}\right|-t^{2} \int_{\Omega-\Omega_{\circ}} h v^{2} d x-c_{1}\left|\Omega-\Omega_{\circ}\right| \tag{16}
\end{equation*}
$$

Here we have used the lower estimate for F from the assumption $\left(f_{4}\right)$. Since $\operatorname{dim} W<\infty$, we obviously have

$$
0<r=\min _{\|\nabla v\|_{2}=1, v \in W} \int_{\Omega_{0}} v^{2} d x \text { and } 0<R=\max _{\|\nabla v\|_{2}^{2}=1, v \in W}\|v\|_{\infty}^{2}<\infty
$$

Combining this with (16) and choosing $L>0$ sufficiently large we derive (15).

We are now in a position to formulate our first existence result.
6 Theorem. Suppose that $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right)$ and $\left(f_{4}\right)$ hold and that f is odd in s. Then for every $k \in \mathbb{N}$ there exists $\mu_{k} \in(0, \infty]$ such that problem (1) has at least k nontrivial solutions for all $\mu \in\left(0, \mu_{k}\right)$.

Proof. We apply Theorem 1 with decomposition $H^{1}(\Omega)=V_{j} \oplus X_{j}$. By Lemma 4 there exist $j \in \mathbb{N}$ and $\tilde{\mu}$ such I_{μ} satisfies $\left(I_{1}\right)$ with $X=X_{j}$ for $0<\mu<\tilde{\mu}$. With the aid of Lemma 5 we can find a subspace $W \in H^{1}(\Omega)$ with $\operatorname{dim} W=k+j=k+\operatorname{dim} V_{j}$ such that I_{μ} satisfies $\left(I_{2}\right)$. Finally, we select $\tilde{\mu}$ smaller if necessary so that $(P S)_{c}$ hold for $\mu \in(0, \tilde{\mu})$ with $c<M$, where $\max _{w \in W} I_{\mu}(u)<M$. The result follows from Theorem 2 .

Theorem 6 can be applied to the problem

$$
\left\{\begin{align*}
-\Delta u & =|u|^{2^{*}-2} u+\lambda u+\beta|u|^{q-2} u \text { in } \Omega \tag{17}\\
\frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega
\end{align*}\right.
$$

where $\lambda \in \mathbb{R}$ and $\beta>0$ are constants and $2<q<2^{*}$. By changing the unknown function $u: v=\beta^{\frac{1}{q-2}} u$ the above equation can be reduced to

$$
-\Delta v=\mu|v|^{2^{*}-2} v+\lambda v+|v|^{q-2} v
$$

where $\mu=\beta^{-\frac{2^{*}-2}{q-2}}$. Therefore, by Theorem 6 , given $k \in \mathbb{N}$ we can find $\beta_{k}>0$ so that problem (17) has at least k pairs of nontrivial solutions for $\beta>\beta_{k}$. We point out here that problem (17) admits at most one constant solution $u=t$, where t satisfies the equation

$$
|t|^{2^{*}-2}+\lambda+\beta|t|^{q-2}=0 .
$$

4 Case of interference of nonlinearity with eigenvalues

First we consider the case where f interferes with the first eigenvalue $\lambda_{1}=0$.
7 Lemma. Let $a(x)$ be bounded and measurable function on Ω such that $a(x) \leq 0$ with strict inequality on a set of positive measure. Then there exists $\eta>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{2}-a(x) u^{2}\right) d x \geq \eta \int_{\Omega} u^{2} d x \tag{18}
\end{equation*}
$$

for every $u \in H^{1}(\Omega)$.
Proof. If $-a(x)$ is bounded from below by a positive constant then (18) is obvious. In a general situation we argue by contradiction. Assume that for each $m \in \mathbb{N}$ there exists $u_{m} \in H^{1}(\Omega)$ with $\left\|u_{m}\right\|_{2}=1$ such that

$$
\int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}-a(x) u_{m}^{2}\right) d x \leq \frac{1}{m} .
$$

Then $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. We may assume that $u_{m} \rightharpoonup u$ in $H^{1}(\Omega)$ and $u_{m} \rightarrow u$ in $L^{2}(\Omega)$. By the lower semicontinuity of norm with respect to weak convergence, we derive

$$
\int_{\Omega}\left(|\nabla u|^{2}-a(x) u^{2}\right) d x=0 .
$$

This is a contradiction since $\int_{\Omega} u^{2} d x=1$.

8 Theorem. Suppose that $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{4}\right)$ hold and that
$\left(\tilde{f}_{3}\right) \lim _{s \rightarrow 0} \frac{2 F(x, s)}{s^{2}}=a(x)$ uniformly a.e. in $x \in \Omega$, where $a(x)$ satisfies assumptions of Lemma 7 .

If $f(x, s)$ is odd in s, then for every $k \in \mathbb{N}$ there exists $\mu_{k}>0$ such that problem (1) has at least k pairs of nontrivial solutions for every $\mu \in\left(0, \mu_{k}\right)$.

Proof. We apply Theorem 2 with $V=\{0\}$. Since assumption $\left(\tilde{f}_{3}\right)$ replaces $\left(f_{3}\right)$ we only need to check that I_{μ} satisfies $\left(I_{1}\right)$ of Theorem 2 . It is clear that for a given $\epsilon>0$ we can find $C_{\epsilon}>0$ such that

$$
F(x, s) \leq \frac{a(x)+\epsilon}{2} s^{2}+C_{\epsilon}|s|^{2^{*}}
$$

for every $(x, s) \in \Omega \times \mathbb{R}$. Applying Lemma 7 we have

$$
\begin{aligned}
& I_{\mu}(u) \geq \frac{1+\epsilon}{2(1+\epsilon)} \int_{\Omega}\left(|\nabla u|^{2}-a(x) u^{2}\right) d x-\frac{\epsilon}{2} \int_{\Omega} u^{2} d x \\
& \quad-\left(\frac{\mu}{2^{*}}+C_{\epsilon}\right) \int_{\Omega}|u|^{2^{*}} d x \\
& \geq \frac{\eta-\epsilon(1+\epsilon)}{2(1+\epsilon)} \int_{\Omega} u^{2} d x+\frac{\epsilon}{2(1+\epsilon)} \int_{\Omega}|\nabla u|^{2} d x \\
& \quad-C(\epsilon)\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{\frac{2^{*}}{2}}
\end{aligned}
$$

We choose $\epsilon>0$ so that $\eta-\epsilon(1+\epsilon)>0$. Put

$$
\beta_{\circ}=\min \left(\frac{\eta-\epsilon(1+\epsilon)}{2(1+\epsilon)}, \frac{\epsilon}{2(1+\epsilon)}\right)
$$

Thus

$$
I_{\mu}(u) \geq \beta_{\circ}\|u\|^{2}-C(\epsilon)\|u\|^{2^{*}}
$$

Obviously this implies $\left(I_{1}\right)$ of Theorem 2.
We now consider the situation where f interferes with eigenvalues of higher order. We need the following two assumptions:
$\left(\tilde{f}_{4}\right)$ Let $k>1$. There exists a constant $B \geq 0$ such that

$$
F(x, s) \geq \lambda_{k} \frac{s^{2}}{2}-B
$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$.
$\left(\tilde{f}_{5}\right) \lim _{s \rightarrow 0} \frac{2 F(x, s)}{s^{2}}=a(x)$ uniformly a. e. in $x \in \Omega$, where $a(x)$ is a bounded and measurable function such that $a(x) \leq \lambda_{j} \leq \lambda_{k}$ for some $j \leq k$ and with strict inequality on a set of positive measure.

For $j>1$ we set $V_{j}=\operatorname{span}\left\{e_{1}, \ldots, e_{j-1}\right\}$ and $W=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$.
Lemma 9 below follows from the variational characterization of eigenfunctions.

9 Lemma. Suppose that f satisfies $\left(\tilde{f}_{4}\right)$. Then there exists a constant $M_{k}>$ 0 independent of μ such that

$$
\max _{u \in W} I_{\mu}(u)<M_{k}
$$

10 Lemma. Suppose that $a(x)$ is a measurable and bounded function such that $a(x) \leq \lambda_{j}$ on Ω with a strict inequality on a set of positive measure. Then there exists $\beta>0$ such that

$$
\int_{\Omega}\left(|\nabla u|^{2}-a^{+}(x) u^{2}\right) d x \geq \beta \int_{\Omega} u^{2} d x
$$

for all $u \in H^{1}(\Omega) \cap V_{j}^{\perp}$.
This follows from the continuation property of eigenfunctions and the fact that $\|\nabla u\|_{2}$ is a norm on V_{j}^{\perp}. The proof is similar to that of Lemma 7.

11 Theorem. Suppose that $\left(f_{1}\right),\left(f_{2}\right),\left(\tilde{f}_{4}\right)$ and $\left(\tilde{f}_{5}\right)$ hold. If $f(x, s)$ is odd in s, then for every $k \in \mathbb{N}$ there exists $\mu_{k}>0$ such that problem (1) has at least $k-j+1$ pairs of nontrivial solutions for $\mu \in\left(0, \mu_{k}\right)$.

Proof. With the aid of Lemma 10 and repeating the argument used in the proof of Theorem 8 we show that assumption $\left(I_{1}\right)$ of Theorem 2 holds. Applying this theorem and Proposition 1 we derive the existence of $k-j+1$ pairs of nontrivial solutions.

QED

Finally, we establish the existence of solutions which do not change sign. We need the following abstract result (see [20]).

12 Theorem. Let E be a real Banach space. Suppose that $I \in C^{1}(E, \mathbb{R})$ satisfies $I(0)=0$ and
(I_{1}) there exists a constant $\rho>0$ such that $I(u) \geq 0$ for $\|u\|=\rho$.
(\hat{I}_{2}) there exist $v_{1} \in E$ with $\left\|v_{1}\right\|=1$ and a constant M such that

$$
\sup _{t \geq 0} I\left(t v_{1}\right) \leq M
$$

and
$\left(I_{3}\right)$ if M is a constant from $\left(\hat{I}_{2}\right)$, then I satisfies the $(P S)_{c}$ condition for $0<c<M$.

Then I has a nontrivial critical point.
13 Theorem. Suppose that $f(x, 0)=0$ on Ω and that $\left(f_{1}\right),\left(f_{2}\right),\left(\tilde{f}_{4}\right)$ with $\lambda_{k}=\lambda_{1}$, and $\left(\tilde{f}_{3}\right)$ hold. (In fact, we need only the estimate from below for F from assumption $\left(f_{4}\right)$). Then there exists $\mu_{1}>0$ such that problem (1) has a nontrivial nonnegative and nontrivial nonpositive solution for every $\mu \in\left(0, \mu_{1}\right)$.

Proof. We only show the existence of nonnegative nontrivial solution. Put $\bar{f}(x, s)=f(x, s)$ for $s \geq 0$ and $\bar{f}(x, s)=0$ for $s<0$. A solution will be obtained as a critical point of the functional

$$
J_{\mu}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{\mu}{2^{*}} \int_{\Omega}\left(u^{+}\right)^{2^{*}} d x-\int_{\Omega} \bar{F}(x, u) d x
$$

where $\bar{F}(x, s)=\int_{0}^{s} \bar{f}(x, t) d t$. To check $\left(\hat{I}_{2}\right)$ we use $v=\frac{1}{\sqrt{|\Omega|}}$. Then for $t \geq 0$

$$
J_{\mu}(t v) \leq-\frac{\mu}{2^{*}}|\Omega|^{1-\frac{2^{*}}{2}} t^{2^{*}}+\frac{t^{2}}{|\Omega|} \int_{\Omega} h d x+c_{1}|\Omega| .
$$

It is clear that $\max _{t \geq 0} J_{\mu}(t v)<\infty$. To check the $(P S)_{c}$ condition, let $\left\{u_{m}\right\}$ be a $(P S)_{c}$ sequence. It is easy to show that $u_{m}^{-} \rightarrow 0$ in $H^{1}(\Omega)$. Then it suffices to apply Proposition 1 to $\left\{u_{m}^{+}\right\}$.

References

[1] Adimurthi, G. Mancini: The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, (1991), 9-25.
[2] Adimurthi, G. Mancini: Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18.
[3] Adimurthi, G. Mancini, S. L. Yadava: The role of the mean curvature in semilinear Neumann problem involving critical exponent, Commun. in Partial Diff. Equations, 20 (1995), 591-631.
[4] Adimurthi, F. Pacella, S. L. Yadava: Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.
[5] Adimurthi, S. L. Yadava: On a conjecture of Lin-Ni for a semilinear Neumann problem, Trans. Am. Math. Soc., 336, n. 2 (1993), 631-442.
[6] Adimurthi, S. L. Yadava: Existence and nonexistence of positive solutions of Neumann problems with critical Sobolev exponents, Arch. Rat. Mech. Anal., 115 (1991), 275-296.
[7] J. Chabrowski, E. Tonkes: On the nonlinear Neumann problem with critical and supercritical nonlinearities, Dissertationes Mathematicae, 417, Warszawa 2003.
[8] J. Chabrowski, M. Willem: Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), 421-431.
[9] D. CaO, P. Han: A note on positive solutions for elliptic equations involving critical Sobolev exponents, Applied Math. Letters, 16 (2003), 1105-1113.
[10] M. Comte, M. C. Knaap: Solutions of elliptic equations involving critical Sobolev exponent with Neumann boundary conditions, Manuscripta Math., 69 (1990), 43-70.
[11] C. Gui, N. Ghoussoub: Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.
[12] I. Ekeland, N. Ghoussoub: Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc., 39, n. 2 (2002), 207-265.
[13] A. A. Ladyzhenskaya, N. N. Ural'ceva: Linear and quasilinear elliptic equations, Nauka, Moscow 1964 (Russian).
[14] P. L. Lions: The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, n. 1 and n. 2 (1985), 145-201 and 45-120. 1-20.
[15] P. L. Lions, F. Pacella, M. Tricarico: Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37 (1988), 301-324.
[16] G. Mancini, R. Musina: The role of the boundary in some semilinear Neumann problems, Rend. Sem. Mat. Univ. Padova, 88 (1992), 127-138.
[17] Wei-Ming Ni, Xing-Bin Pan, I. Takagi: Singular behavior of least energy solutions of a semilinear problem involving critical Sobolev exponent, Duke Math. J., 67, n. 1 (1992), 1-20.
[18] Wei-Ming Ni, I. Takagi: On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
[19] Elves A. B. Silva, Magda S. Xavier: Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponent, Ann. I.H. Poincaré - AN, 20, n. 2 (2003), 341-358.
[20] Elves A. B. Silva: Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Analysis, TMA, 16, n. 5 (1991), 455-477.
[21] X. J. Wang: Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equations, 93 (1993), 247-281.
[22] Zhi-Qiang Wang: High-energy and multipeak solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. Edin., 125, A (1995), 1003-1029.
[23] Zhi-Qiang Wang: The effect of the domain geometry on the number of positive solutions of Neumann problem with critical exponent, Diff. Int. Equations, 8 (1995), 1533-1554.

