Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent

Jan Chabrowski

Department of Mathematics, University of Queensland, St. Lucia 4072, Queensland, Australia jhc@maths.uq.edu.au

Received: 05/09/2006; accepted: 23/11/2006.

Abstract. We study the nonlinear Neumann problem (1) involving a critical Sobolev exponent and a nonlinearity of lower order. Our main results assert that for every $k \in \mathbb{N}$ problem (1) admits at least k pairs of nontrivial solutions provided a parameter μ belongs to some interval $(0, \mu^*)$.

 ${\bf Keywords:} \ {\rm Sobolev} \ {\rm exponent, \ multiple \ solutions, \ concentration-compactness \ principle, \ Neumann \ problem$

MSC 2000 classification: primary 35B33, secondary 35J65, 35Q55

1 Introduction and preliminaries

In this paper we are concerned with the existence of solutions of the nonlinear Neumann problem

$$\begin{cases} -\Delta u = \mu |u|^{2^* - 2} u + f(x, u) & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega, \ u > 0 & \text{on } \Omega, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^{\mathbb{N}}$ is a bounded domain with a smooth boundary $\partial\Omega$, ν is the outward normal to the boundary, $\mu > 0$ is a parameter and $2^* = \frac{2N}{N-2}$, $N \geq 3$, is the critical Sobolev exponent.

Throughout this work we assume that the nonlinearity $f : \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory condition and (*) for every $M > 0 \sup\{|f(x,s)|; x \in \Omega, |s| \le M\} < \infty$.

We impose the following conditions on f:

 (f_1) There exist constants $a_1, a_2 > 0$ and $\sigma \in [0, 2)$ such that

$$\frac{1}{2}f(x,s)s - F(x,s) \ge -a_1 - a_2|s|^{\sigma}$$

for $(x,s) \in \Omega \times \mathbb{R}$, where $F(x,s) = \int_0^s f(x,t) dt$.

- (f₂) $\lim_{|s|\to\infty} \frac{f(x,s)}{|s|^{2^*-1}} = 0$ uniformly a. e. in $x \in \Omega$.
- (f_3) There exist constants $b_1, b_2 > 0$ and $2 < q < 2^*$ such that

$$F(x,s) \le b_1 + b_2 |s|^q$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$.

(f₄) There exist a constant $c_1 > 0$ and $h \in L^1(\Omega)$ and $\Omega_{\circ} \subset \Omega$ with $|\Omega_{\circ}| > 0$ such that

$$F(x,s) \ge -h(x)|s|^2 - c_1$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$ and

$$\lim_{|s|\to\infty}\frac{F(x,s)}{s^2}=\infty$$

uniformly a.e. in $x \in \Omega_{\circ}$, where $|\Omega_{\circ}|$ denotes the Lebesgue measure of the set Ω_{\circ} .

It is easy to see that (*) and (f_2) yield: for every $\epsilon > 0$ there exists $C_{\epsilon} > 0$ such that

$$|f(x,s)s|, |F(x,s)| \le \epsilon |s|^{2^*} + C_{\epsilon}$$

$$\tag{2}$$

for every $s \in \mathbb{R}$ and a. e. in $x \in \Omega$. The assumption (f_1) replaces the usual Ambrosetti-Rabinowitz type assumption in order to apply the mountain-pass principle.

Solutions of (1) are sought in the Sobolev space $H^1(\Omega)$. We recall that by $H^1(\Omega)$ we denote the usual Sobolev space equipped with the norm

$$||u||^2 = \int_{\Omega} (|\nabla u|^2 + u^2) dx.$$

We recall that a C^1 functional $\phi: X \to \mathbb{R}$ on a Banach space X satisfies the Palais-Smale condition at level c $((PS)_c$ condition for short), if each sequence $\{x_n\} \subset X$ such that $(i) \ \phi(x_n) \to c$ and $(ii) \ \phi'(x_n) \to 0$ in X^* is relatively compact in X. Finally, any sequence $\{x_n\}$ satisfying (i) and (ii) is called a Palais-Smale sequence at level c (a $(PS)_c$ for short).

Throughout this paper we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". The norms in the Lebesgue spaces $L^p(\mathbb{R}^{\mathbb{N}})$ are denoted by $\|\cdot\|_p$.

The Neumann problem for the equation

$$-\Delta u + u = Q(x)|u|^{2^*-2}u \text{ in } \Omega, \qquad (**)$$

where $\lambda > 0$ is a parameter and Q is a positive and continuous function on $\overline{\Omega}$, has an extensive literature. If $Q \equiv 1$, we refer to the papers [1, 3, 4, 6, 21], where the existence of least energy solutions and their properties have been investigated. The least-energy solutions are one-peak solutions and concentrate on $\partial\Omega$ as $\lambda \to \infty$ (see [17], [18]). These results have been extended to the case when Q is not constant in the papers [7] and [8]. The existence of multi-peak solutions has been studied in the papers [11, 22, 23]. If $Q \equiv 1$, then problem (**) obviously admits also constant solutions. If λ is small then these are the only least energy solutions [5]. It appears that the first result on the existence of multiple solutions were given in [23] and [16] for (**) with $Q \equiv 1$. The multiplicity of solutions in these two papers is expressed in terms of a relative category of $\partial\Omega$. If Ω is a ball, $Q \equiv 1$ and the right side of (**) has a nontrivial perturbation of lower order, then there exist infinitely many solutions [9, 10].

The paper is organized as follows. In Section 2 we establish the Palais-Smale condition for the variational functional corresponding to problem (1). To obtain the existence of solutions we apply some versions of the mountain-pass theorem due to E.A.B. Silva [20]. These existence results are discussed in Sections 3 and 4. In this paper we follow the approach from the paper [19] where the existence of multiple solutions for equation (1) with the Dirichlet boundary conditions has been obtained.

2 Palais-Smale condition

We look for solutions of (1) as critical points of the variational functional

$$I_{\mu}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\mu}{2^*} \int_{\Omega} |u|^{2^*} \, dx - \int_{\Omega} F(x, u) \, dx.$$

It is easy to see that under our assumptions on $f I_{\mu}$ is a C^1 functional on $H^1(\Omega)$. To show that I_{μ} satisfies the Palais-Smale condition we shall use the following version of the concentration-compactness principle (see [14]). Let $u_m \rightharpoonup u$ in $H^1(\Omega)$. Then up to a subsequence there exist positive measures μ and ν on $\overline{\Omega}$ such that

$$|\nabla u_m|^2 \rightharpoonup \mu$$
 and $|u_m|^{2^*} \rightharpoonup \nu$

weakly in the sense of measure. Moreover, there exist at most countable set J and a collection of points $\{x_j, j \in J\} \subset \overline{\Omega}$ and numbers $\nu_j > 0$, $\mu_j > 0$, $j \in J$, such that

$$\nu = |u|^{2^*} dx + \sum_{j \in J} \nu_j \delta_{x_j}$$

and

$$\mu \ge |\nabla u|^2 \, dx + \sum_{j \in J} \mu_j \delta_{x_j}.$$

The numbers ν_j and μ_j satisfy

$$S\nu_j^{\frac{2}{2^*}} \le \mu_j \quad \text{if} \quad x_j \in \Omega,$$
(3)

and

$$\frac{S}{2^{\frac{2}{N}}}\nu_j^{\frac{2}{2^*}} \le \mu_j \quad \text{if } x_j \in \partial\Omega, \tag{4}$$

where S is the best Sobolev constant for the continuous embedding of $H^1_{\circ}(\Omega)$ into $L^{2^*}(\Omega)$. Here δ_{x_j} denotes the Dirac measure concentrated at x_j . Moreover, we have $\sum_{j \in J} \nu_j^{\frac{2}{2^*}} < \infty$.

1 Proposition. Suppose that (f_1) and (f_2) hold. Then for every M > 0 there exists $\mu^* > 0$ such that I_{μ} satisfies the $(PS)_c$ condition for c < M and $0 < \mu < \mu^*$.

PROOF. Let $\{u_m\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence with c < M. First we show that $\{u_m\}$ is bounded in $H^1(\Omega)$. For large m we have

$$c+1 + ||u_m|| \ge I_{\mu}(u_m) - \frac{1}{2} \langle I'_{\mu}(u_m), u_m \rangle = \frac{\mu}{N} \int_{\Omega} |u_m|^{2^*} dx + \int_{\Omega} \left[\frac{1}{2} f(x, u_m) u_m - F(x, u_m) \right] dx$$

It follows from (f_1) that

$$c+1+\|u_m\| \ge \frac{\mu}{N} \int_{\Omega} |u_m|^{2^*} \, dx - a_1 |\Omega| - a_2 \int_{\Omega} |u_m|^{\sigma} \, dx.$$
 (5)

In the sequel we always denote by C a positive constant independent of m which may change from one inequality to another. Using the Young inequality we obtain

$$\int_{\Omega} |u_m|^{\sigma} \, dx \le \kappa \int_{\Omega} |u_m|^{2^*} \, dx + c$$

for every $\kappa > 0$, where C > 0 is a constant depending on on κ and $|\Omega|$. Inserting this inequality with $\kappa = \frac{\mu}{2Na_2}$ into (5) we derive

$$\|u_m\|_{2^*}^{2^*} \le C\left(\|u_m\| + 1\right) \tag{6}$$

for some constant C > 0. To proceed further we use the equality

$$I_{\mu}(u_{m}) - \frac{1}{2^{*}} \langle I'_{\mu}(u_{m}), u_{m} \rangle = \frac{\mu}{N} \int_{\Omega} |\nabla u_{m}|^{2} dx + \frac{1}{2^{*}} \int_{\Omega} f(x, u_{m}) u_{m} dx - \int_{\Omega} F(x, u_{m}) dx.$$
(7)

Using (2) we deduce from (7) that

$$\int_{\Omega} |\nabla u_m|^2 \, dx \le C \left(\int_{\Omega} |u_m|^{2^*} \, dx + ||u_m|| + 1 \right).$$

This combined with (6) leads to the estimate

$$\int_{\Omega} |\nabla u_m|^2 \, dx \le C \left(\|u_m\| + 1 \right). \tag{8}$$

We now need the decomposition $H^1(\Omega) = \mathbb{R} \oplus V$, where

$$V = \{ v \in H^1(\Omega); \ \int_{\Omega} v \, dx = 0 \}.$$

We equip $H^1(\Omega)$ with an equivalent norm

$$||u||_V = \left(\int_{\Omega} |\nabla v|^2 \, dx + t^2\right)^{\frac{1}{2}}$$

for u = t + v, $v \in V$ and $t \in \mathbb{R}$. Using this decomposition we can write $u_m = v_m + t_m$, $v_m \in V$, $t_m \in \mathbb{R}$. We claim that $\{t_m\}$ is bounded. Arguing by contradiction we may assume that $t_m \to \infty$. The case $t_m \to -\infty$ is similar. We put $w_m = \frac{v_m}{t_m}$. It then follows from (8) that

$$\int_{\Omega} |\nabla w_m|^2 \, dx \le C \left[t_m^{-2} + t_m^{-1} \int_{\Omega} \left(|\nabla w_m|^2 \, dx + 1 \right)^{\frac{1}{2}} \, dx \right].$$

This yields $\int_{\Omega} |\nabla w_m|^2 dx \to 0$ and hence $w_m \to 0$ in $L^p(\Omega)$ for every $2 \le p \le 2^*$. Here we have used the fact that the space V equipped with norm $\left(\int_{\Omega} |\nabla v|^2 dx\right)^{\frac{1}{2}}$ is continuously embedded into $L^p(\Omega)$ for $2 \le p \le 2^*$. We now observe that

$$t_m^{-2^*} \left(I_\mu(u_m) - \frac{1}{2} \langle I'_\mu(u_m), u_m \rangle \right) = \frac{\mu}{N} \int_{\Omega} |w_m + 1|^{2^*} dx + t_m^{-2^*} \left[\frac{1}{2} \int_{\Omega} f(x, u_m) u_m \, dx - \int_{\Omega} F(x, u_m) \, dx \right].$$
(9)

Using (2) and letting $m \to \infty$ in (9) we obtain $\frac{\mu}{N} \int_{\Omega} dx = 0$. This is a contradiction. Since $\{t_m\}$ is bounded we deduce from (8) that $|\nabla v_m|$ is bounded in $L^2\Omega$. Thus $\{u_m\}$ is bounded in $H^1(\Omega)$. By the concentration-compactness principle we have up to a subsequence that

$$|\nabla u_m|^2 \rightharpoonup \mu$$
 and $|u_m|^{2^*} \rightharpoonup \nu$

in the sense of measure. It is easy to check that the constants ν_j and μ_j from (3) and (4) satisfy $\mu_j = \mu \nu_j$. Therefore, if $\nu_j > 0$, then (a) $\nu_j > \left(\frac{S}{\mu}\right)^{\frac{N}{2}}$ and if $x_j \in \partial\Omega$, then (b) $\nu_j > \frac{1}{2} \left(\frac{S}{\mu}\right)^{\frac{N}{2}}$. Hence the set J is finite. We now consider the inequality

$$I_{\mu}(u_m) - \frac{1}{2} \langle I'_{\mu}(u_m), u_m \rangle \ge \frac{\mu}{N} \int_{\Omega} |u_m|^{2^*} dx - a_1 |\Omega| - a_2 |\Omega|^{\alpha} ||u_m||^{2^*(1-\alpha)}_{2^*}, \quad (10)$$

which follows from (f_1) , where $\alpha = \frac{2^* - \sigma}{2^*} < 1$. Put $A = a_1 |\Omega| + a_2 |\Omega|^{\alpha}$ and

$$\mu^* = \min\left(2^{-\frac{2}{N}}S, \left[\frac{S^{\frac{N}{2}}}{2\left(N(M+A)\right)^{\frac{1}{\alpha}}}\right]^{\frac{1}{\frac{N}{2}-\frac{1}{\alpha}}}\right).$$

It is easy to see that

$$1 < \frac{1}{2} \left(\frac{S}{\mu}\right)^{\frac{N}{2}} \tag{11}$$

and

$$\left(\frac{N(M+A)}{\mu}\right)^{\frac{1}{\alpha}} < \frac{1}{2} \left(\frac{S}{\mu}\right)^{\frac{N}{2}} \tag{12}$$

for $0 < \mu < \mu^*$. In the final part of the proof we show that

$$\int_{\Omega} d\nu < \frac{1}{2} \left(\frac{S}{\mu}\right)^{\frac{N}{2}}.$$
(13)

If $\int_{\Omega} d\nu \leq 1$, then (11) yields (13). Hence it remains to consider the case $\int_{\Omega} d\nu > 1$. Letting $m \to \infty$ in (10) we obtain

$$\frac{\mu}{N} \int_{\Omega} d\nu \le c + a_1 |\Omega| + a_2 |\Omega|^{\alpha} \left(\int_{\Omega} d\nu \right)^{1-\alpha} \le (M+A) \left(\int_{\Omega} d\nu \right)^{1-\alpha}$$

In view of (12) we have

$$\int_{\Omega} d\nu \le \left(\frac{N(M+A)}{\mu}\right)^{\frac{1}{\alpha}} < \frac{1}{2} \left(\frac{S}{\mu}\right)^{\frac{N}{2}}$$

and this establishes inequality (13). Using (13), (a) and (b) we see that $\nu_j = 0$ for every $j \in J$. This means that $\int_{\Omega} |u_m|^{2^*} dx \to \int_{\Omega} |u|^{2^*} dx$. It is now routine to show that up to a subsequence $u_m \to u$ in $H^1(\Omega)$.

We point out here that if $\mu = 0$, then the Palais-Smale condition is not satisfied (see [19]).

3 Existence of multiple solutions

First, we recall the symmetric version of the mountain-pass theorem [20].

2 Theorem. Let $E = V \oplus X$, where E is a real Banach space and dim $V < \infty$. Let $I \in C^1(E, \mathbb{R})$ be an even functional satisfying I(0) = 0 and

 (I_1) there exists a constant $\rho > 0$ such that

$$I \mid \partial B_1 \cap X \ge \rho.$$

(I₂) there exists a subspace $W \subset E$ with dim $V < \dim W < \infty$ and there exists a constant M > 0 such that

$$\max_{u \in W} I(u) < M.$$

(I₃) I satisfies the $(PS)_c$ -condition for $0 \le c \le M$.

Then I has at least $\dim W - \dim V$ pairs of nontrivial critical points.

To establish the existence of multiple solutions of problem (1) we check that functional I_{μ} with $0 < \mu < \mu^*$ satisfies the assumptions of Theorem 2. We denote by $\{\lambda_j\}, j \in \mathbb{N}$, the eigenvalues of the problem

$$\begin{cases} -\Delta u = \lambda u \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega. \end{cases}$$
(14)

Let $\{e_i\}$ be the corresponding orthonormal sequence of eigenfunctions. The first eigenvalue $\lambda_1 = 0$ and the corresponding eigenfunctions are constant. Then for each $u \in H^1(\Omega)$ we have a unique representation

$$u = \sum_{j=1}^{\infty} \alpha_j e_j.$$

Let $e_n^*, n \in \mathbb{N}$, be continuous linear functionals on $H^1(\Omega)$ defined by $e_n^*(u) = \alpha_n$. We define the following decomposition of the space $H^1(\Omega)$:

$$V_j = \{ u \in H^1(\Omega); e_i^*(u) = 0, i > j \},\$$

$$X_j = \{ u \in H^1(\Omega); \ e_i^*(u) = 0, \ i \le j \},\$$

so $H^1(\Omega) = V_j \oplus X_j$. Since $e_1 = \frac{1}{|\Omega|^{\frac{1}{2}}}$ on Ω and $e_1^*(u) = \int_{\Omega} ue_1 dx = \alpha_1$, we see that $\int_{\Omega} u \, dx = 0$ for every $u \in X_j$, $j \in \mathbb{N}$. Therefore $\|\nabla v\|_2$ is a norm equivalent to $\|\cdot\|$, on each subspaces X_j . Consequently, functions belonging to X_j satisfy the Gagliardo-Nirenberg type inequality (see [13, p. 66, inequality 2.10]). These observations allow us to formulate

3 Lemma. Let $2 \leq r < 2^*$ and $\delta > 0$ be given. Then there exists a $j \in \mathbb{N}$ such that

$$\|u\|_r^r \le \delta \|\nabla u\|_2^r$$

for all $u \in X_j$.

For the proof we refer to [19] (see Lemma 4.1 there).

4 Lemma. Suppose (f_3) holds. Then there exist $\bar{\mu} > 0$, $j \in \mathbb{N}$ and $\rho, \alpha > 0$ such that $I_{\mu}(u) \ge \alpha$ for all $u \in X_j$ with $||u|| = \rho$ and $0 < \mu < \bar{\mu}$.

PROOF. In the proof we shall use the equivalent norm $\|\nabla u\|_2$ on X_j . It follows from (f_3) that

$$I_{\mu}(u) \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - C_1 - b_2 \int_{\Omega} |u|^q \, dx - \frac{\mu}{2^*} \int_{\Omega} |u|^{2^*} \, dx$$

where $C_1 = b_1 |\Omega|$. Let $\delta > 0$ and $\|\nabla u\|_2 = \rho$. We choose $\rho > 0$ so that

$$\delta b_2 \rho^{q-2} = \frac{1}{4}$$

Since $\rho(\delta) \to \infty$ as $\delta \to 0$ we select $\delta > 0$ so that

$$\frac{\rho^2}{4} - C_1 > \frac{\rho^2}{8}.$$

With this choice of δ we apply Lemma 3 and the Sobolev inequality to obtain

$$I_{\mu}(u) \ge \rho^{2} \left(\frac{1}{2} - b_{2}\delta\rho^{q-2}\right) - C_{1} - C_{3}\mu\rho^{2^{*}} \ge \frac{\rho^{2}}{4} - C_{1} - C_{3}\mu\rho^{2^{*}} \ge \frac{\rho}{8} - C_{3}\mu\rho^{2^{*}}$$

for some constant $C_3 > 0$ and for all $u \in X_j$ with $\|\nabla u\|_2 = \rho$. (Here the existence of j has been guaranteed by Lemma 3). Finally, we choose $\bar{\mu} > 0$ so that

$$I_{\mu}(u) \ge \frac{\rho^2}{8} - C_3 \mu \rho^{2^*} > 0$$

for $u \in X_j$ with $\|\nabla u\|_2 = \rho$ and $0 < \mu < \overline{\mu}$.

QED

5 Lemma. Suppose that (f_4) holds. Then for every $m \in \mathbb{N}$ there exists a subspace $W \subset H^1(\Omega)$ (more precisely of $H^1_{\circ}(\Omega)$) and a constant $M_m > 0$ independent of μ such that dim W = m and $\max_{w \in W} I_0(w) < M_m$.

PROOF. It is easy to construct a family of functions v_1, \ldots, v_m in $C_{\circ}^{\infty}(\Omega)$ with supports in $B(x_1, r_1), \ldots, B(x_m, r_m)$, respectively, so that $\operatorname{supp} v_i \cap \operatorname{supp} v_j$ $= \emptyset$ for $i \neq j$ and $|(\operatorname{supp} v_j) \cap \Omega_{\circ}| > 0$ for every j. We recall that Ω_{\circ} is a set from assumption (f_4) . Let $W = \operatorname{span}\{v_1, \ldots, v_m\}$. It is clear that dim W = mand $\int_{\Omega_{\circ}} |v|^p dx > 0$ for every $v \in W - \{0\}$. We now observe that

$$\max_{u \in W - \{0\}} I_0(u) = \max_{t > 0, \|\nabla v\|_2 = 1, v \in W} \left\{ t^2 \left(\frac{1}{2} - \frac{1}{t^2} \int_{\Omega} F(x, tv) \, dx \right) \right\}.$$

To complete the proof it is sufficient to show that

$$\lim_{t \to \infty} \frac{1}{t^2} \int_{\Omega} F(x, tv) \, dx > \frac{1}{2} \tag{15}$$

uniformly in $v \in W$ with $\|\nabla v\|_2 = 1$. In view of (f_4) given L > 0 we can find C > 0 such that

$$F(x,s) \ge Ls^2 - C$$

for every $s \in \mathbb{R}$ and a. e. $x \in \Omega_0$. Hence, for $v \in W$ with $\|\nabla v\|_2 = 1$ we have

$$\int_{\Omega} F(x,tv) \, dx \ge Lt^2 \int_{\Omega_{\circ}} v^2 \, dx - C|\Omega_{\circ}| - t^2 \int_{\Omega - \Omega_{\circ}} hv^2 \, dx - c_1|\Omega - \Omega_{\circ}|.$$
(16)

Here we have used the lower estimate for F from the assumption (f_4) . Since $\dim W < \infty$, we obviously have

$$0 < r = \min_{\|\nabla v\|_2 = 1, v \in W} \int_{\Omega_o} v^2 \, dx \text{ and } 0 < R = \max_{\|\nabla v\|_2^2 = 1, v \in W} \|v\|_{\infty}^2 < \infty.$$

Combining this with (16) and choosing L > 0 sufficiently large we derive (15). QED

We are now in a position to formulate our first existence result.

6 Theorem. Suppose that (f_1) , (f_2) , (f_3) and (f_4) hold and that f is odd in s. Then for every $k \in \mathbb{N}$ there exists $\mu_k \in (0, \infty]$ such that problem (1) has at least k nontrivial solutions for all $\mu \in (0, \mu_k)$.

PROOF. We apply Theorem 1 with decomposition $H^1(\Omega) = V_j \oplus X_j$. By Lemma 4 there exist $j \in \mathbb{N}$ and $\tilde{\mu}$ such I_{μ} satisfies (I_1) with $X = X_j$ for $0 < \mu < \tilde{\mu}$. With the aid of Lemma 5 we can find a subspace $W \in H^1(\Omega)$ with dim $W = k + j = k + \dim V_j$ such that I_{μ} satisfies (I_2) . Finally, we select $\tilde{\mu}$ smaller if necessary so that $(PS)_c$ hold for $\mu \in (0, \tilde{\mu})$ with c < M, where $\max_{w \in W} I_{\mu}(u) < M$. The result follows from Theorem 2. Theorem 6 can be applied to the problem

$$\begin{cases} -\Delta u = |u|^{2^* - 2} u + \lambda u + \beta |u|^{q - 2} u \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \end{cases}$$
(17)

where $\lambda \in \mathbb{R}$ and $\beta > 0$ are constants and $2 < q < 2^*$. By changing the unknown function $u: v = \beta^{\frac{1}{q-2}} u$ the above equation can be reduced to

$$-\Delta v = \mu |v|^{2^* - 2} v + \lambda v + |v|^{q - 2} v,$$

where $\mu = \beta^{-\frac{2^*-2}{q-2}}$. Therefore, by Theorem 6, given $k \in \mathbb{N}$ we can find $\beta_k > 0$ so that problem (17) has at least k pairs of nontrivial solutions for $\beta > \beta_k$. We point out here that problem (17) admits at most one constant solution u = t, where t satisfies the equation

$$|t|^{2^*-2} + \lambda + \beta |t|^{q-2} = 0.$$

4 Case of interference of nonlinearity with eigenvalues

First we consider the case where f interferes with the first eigenvalue $\lambda_1 = 0$.

7 Lemma. Let a(x) be bounded and measurable function on Ω such that $a(x) \leq 0$ with strict inequality on a set of positive measure. Then there exists $\eta > 0$ such that

$$\int_{\Omega} \left(|\nabla u|^2 - a(x)u^2 \right) \, dx \ge \eta \int_{\Omega} u^2 \, dx \tag{18}$$

for every $u \in H^1(\Omega)$.

PROOF. If -a(x) is bounded from below by a positive constant then (18) is obvious. In a general situation we argue by contradiction. Assume that for each $m \in \mathbb{N}$ there exists $u_m \in H^1(\Omega)$ with $||u_m||_2 = 1$ such that

$$\int_{\Omega} \left(|\nabla u_m|^2 - a(x)u_m^2 \right) \, dx \le \frac{1}{m}.$$

Then $\{u_m\}$ is bounded in $H^1(\Omega)$. We may assume that $u_m \rightharpoonup u$ in $H^1(\Omega)$ and $u_m \rightarrow u$ in $L^2(\Omega)$. By the lower semicontinuity of norm with respect to weak convergence, we derive

$$\int_{\Omega} \left(|\nabla u|^2 - a(x)u^2 \right) \, dx = 0.$$

This is a contradiction since $\int_{\Omega} u^2 dx = 1$.

QED

8 Theorem. Suppose that (f_1) , (f_2) and (f_4) hold and that

 $(\tilde{f}_3) \lim_{s \to 0} \frac{2F(x,s)}{s^2} = a(x)$ uniformly a.e. in $x \in \Omega$, where a(x) satisfies assumptions of Lemma 7.

If f(x, s) is odd in s, then for every $k \in \mathbb{N}$ there exists $\mu_k > 0$ such that problem (1) has at least k pairs of nontrivial solutions for every $\mu \in (0, \mu_k)$.

PROOF. We apply Theorem 2 with $V = \{0\}$. Since assumption (\tilde{f}_3) replaces (f_3) we only need to check that I_{μ} satisfies (I_1) of Theorem 2. It is clear that for a given $\epsilon > 0$ we can find $C_{\epsilon} > 0$ such that

$$F(x,s) \le \frac{a(x) + \epsilon}{2}s^2 + C_{\epsilon}|s|^{2^*}$$

for every $(x, s) \in \Omega \times \mathbb{R}$. Applying Lemma 7 we have

$$\begin{split} I_{\mu}(u) &\geq \frac{1+\epsilon}{2(1+\epsilon)} \int_{\Omega} \left(|\nabla u|^2 - a(x)u^2 \right) \, dx - \frac{\epsilon}{2} \int_{\Omega} u^2 \, dx \\ &- \left(\frac{\mu}{2^*} + C_{\epsilon}\right) \int_{\Omega} |u|^{2^*} \, dx \\ &\geq \frac{\eta - \epsilon(1+\epsilon)}{2(1+\epsilon)} \int_{\Omega} u^2 \, dx + \frac{\epsilon}{2(1+\epsilon)} \int_{\Omega} |\nabla u|^2 \, dx \\ &- C(\epsilon) \left(\int_{\Omega} \left(|\nabla u|^2 + u^2 \right) \, dx \right)^{\frac{2^*}{2}}. \end{split}$$

We choose $\epsilon > 0$ so that $\eta - \epsilon(1 + \epsilon) > 0$. Put

$$\beta_{\circ} = \min\left(\frac{\eta - \epsilon(1 + \epsilon)}{2(1 + \epsilon)}, \frac{\epsilon}{2(1 + \epsilon)}\right).$$

Thus

$$I_{\mu}(u) \ge \beta_{\circ} ||u||^2 - C(\epsilon) ||u||^{2^*}.$$

Obviously this implies (I_1) of Theorem 2.

We now consider the situation where f interferes with eigenvalues of higher order. We need the following two assumptions:

 (\tilde{f}_4) Let k > 1. There exists a constant $B \ge 0$ such that

$$F(x,s) \ge \lambda_k \frac{s^2}{2} - B$$

for all $s \in \mathbb{R}$ and a. e. in $x \in \Omega$.

QED

 $(\tilde{f}_5) \lim_{s \to 0} \frac{2F(x,s)}{s^2} = a(x)$ uniformly a. e. in $x \in \Omega$, where a(x) is a bounded and measurable function such that $a(x) \leq \lambda_j \leq \lambda_k$ for some $j \leq k$ and with strict inequality on a set of positive measure.

For j > 1 we set $V_j = \text{span}\{e_1, \dots, e_{j-1}\}$ and $W = \text{span}\{e_1, \dots, e_k\}$.

Lemma 9 below follows from the variational characterization of eigenfunctions.

9 Lemma. Suppose that f satisfies (\tilde{f}_4) . Then there exists a constant $M_k > 0$ independent of μ such that

$$\max_{u \in W} I_{\mu}(u) < M_k.$$

10 Lemma. Suppose that a(x) is a measurable and bounded function such that $a(x) \leq \lambda_j$ on Ω with a strict inequality on a set of positive measure. Then there exists $\beta > 0$ such that

$$\int_{\Omega} \left(|\nabla u|^2 - a^+(x)u^2 \right) \, dx \ge \beta \int_{\Omega} u^2 \, dx$$

for all $u \in H^1(\Omega) \cap V_i^{\perp}$.

This follows from the continuation property of eigenfunctions and the fact that $\|\nabla u\|_2$ is a norm on V_i^{\perp} . The proof is similar to that of Lemma 7.

11 Theorem. Suppose that (f_1) , (f_2) , (\tilde{f}_4) and (\tilde{f}_5) hold. If f(x, s) is odd in s, then for every $k \in \mathbb{N}$ there exists $\mu_k > 0$ such that problem (1) has at least k - j + 1 pairs of nontrivial solutions for $\mu \in (0, \mu_k)$.

PROOF. With the aid of Lemma 10 and repeating the argument used in the proof of Theorem 8 we show that assumption (I_1) of Theorem 2 holds. Applying this theorem and Proposition 1 we derive the existence of k - j + 1 pairs of nontrivial solutions.

Finally, we establish the existence of solutions which do not change sign. We need the following abstract result (see [20]).

12 Theorem. Let E be a real Banach space. Suppose that $I \in C^1(E, \mathbb{R})$ satisfies I(0) = 0 and

- (I₁) there exists a constant $\rho > 0$ such that $I(u) \ge 0$ for $||u|| = \rho$.
- (\hat{I}_2) there exist $v_1 \in E$ with $||v_1|| = 1$ and a constant M such that

$$\sup_{t\geq 0} I(tv_1) \le M$$

and

(I₃) if M is a constant from (\hat{I}_2) , then I satisfies the $(PS)_c$ condition for 0 < c < M.

Then I has a nontrivial critical point.

13 Theorem. Suppose that f(x,0) = 0 on Ω and that (f_1) , (f_2) , (\tilde{f}_4) with $\lambda_k = \lambda_1$, and (\tilde{f}_3) hold. (In fact, we need only the estimate from below for F from assumption (f_4)). Then there exists $\mu_1 > 0$ such that problem (1) has a nontrivial nonnegative and nontrivial nonpositive solution for every $\mu \in (0, \mu_1)$.

PROOF. We only show the existence of nonnegative nontrivial solution. Put $\bar{f}(x,s) = f(x,s)$ for $s \ge 0$ and $\bar{f}(x,s) = 0$ for s < 0. A solution will be obtained as a critical point of the functional

$$J_{\mu}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\mu}{2^*} \int_{\Omega} (u^+)^{2^*} \, dx - \int_{\Omega} \bar{F}(x, u) \, dx,$$

where $\bar{F}(x,s) = \int_0^s \bar{f}(x,t) dt$. To check (\hat{I}_2) we use $v = \frac{1}{\sqrt{|\Omega|}}$. Then for $t \ge 0$

$$J_{\mu}(tv) \leq -\frac{\mu}{2^{*}} |\Omega|^{1-\frac{2^{*}}{2}} t^{2^{*}} + \frac{t^{2}}{|\Omega|} \int_{\Omega} h \, dx + c_{1} |\Omega|.$$

It is clear that $\max_{t\geq 0} J_{\mu}(tv) < \infty$. To check the $(PS)_c$ condition, let $\{u_m\}$ be a $(PS)_c$ sequence. It is easy to show that $u_m^- \to 0$ in $H^1(\Omega)$. Then it suffices to apply Proposition 1 to $\{u_m^+\}$.

References

- ADIMURTHI, G. MANCINI: The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, (1991), 9–25.
- [2] ADIMURTHI, G. MANCINI: Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1–18.
- [3] ADIMURTHI, G. MANCINI, S. L. YADAVA: The role of the mean curvature in semilinear Neumann problem involving critical exponent, Commun. in Partial Diff. Equations, 20 (1995), 591–631.
- [4] ADIMURTHI, F. PACELLA, S. L. YADAVA: Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318–350.
- [5] ADIMURTHI, S. L. YADAVA: On a conjecture of Lin-Ni for a semilinear Neumann problem, Trans. Am. Math. Soc., 336, n. 2 (1993), 631–442.
- [6] ADIMURTHI, S. L. YADAVA: Existence and nonexistence of positive solutions of Neumann problems with critical Sobolev exponents, Arch. Rat. Mech. Anal., 115 (1991), 275–296.
- [7] J. CHABROWSKI, E. TONKES: On the nonlinear Neumann problem with critical and supercritical nonlinearities, Dissertationes Mathematicae, 417, Warszawa 2003.

- [8] J. CHABROWSKI, M. WILLEM: Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), 421–431.
- D. CAO, P. HAN: A note on positive solutions for elliptic equations involving critical Sobolev exponents, Applied Math. Letters, 16 (2003), 1105–1113.
- [10] M. COMTE, M. C. KNAAP: Solutions of elliptic equations involving critical Sobolev exponent with Neumann boundary conditions, Manuscripta Math., 69 (1990), 43–70.
- [11] C. GUI, N. GHOUSSOUB: Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443–474.
- [12] I. EKELAND, N. GHOUSSOUB: Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc., 39, n. 2 (2002), 207–265.
- [13] A. A. LADYZHENSKAYA, N. N. URAL'CEVA: Linear and quasilinear elliptic equations, Nauka, Moscow 1964 (Russian).
- [14] P. L. LIONS: The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, n. 1 and n. 2 (1985), 145–201 and 45–120. 1–20.
- [15] P. L. LIONS, F. PACELLA, M. TRICARICO: Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37 (1988), 301–324.
- [16] G. MANCINI, R. MUSINA: The role of the boundary in some semilinear Neumann problems, Rend. Sem. Mat. Univ. Padova, 88 (1992), 127–138.
- [17] WEI-MING NI, XING-BIN PAN, I. TAKAGI: Singular behavior of least energy solutions of a semilinear problem involving critical Sobolev exponent, Duke Math. J., 67, n. 1 (1992), 1–20.
- [18] WEI-MING NI, I. TAKAGI: On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819–851.
- [19] ELVES A. B. SILVA, MAGDA S. XAVIER: Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponent, Ann. I.H. Poincaré - AN, 20, n. 2 (2003), 341–358.
- [20] ELVES A. B. SILVA: Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Analysis, TMA, 16, n. 5 (1991), 455–477.
- [21] X. J. WANG: Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equations, 93 (1993), 247–281.
- [22] ZHI-QIANG WANG: High-energy and multipeak solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. Edin., 125, A (1995), 1003–1029.
- [23] ZHI-QIANG WANG: The effect of the domain geometry on the number of positive solutions of Neumann problem with critical exponent, Diff. Int. Equations, 8 (1995), 1533–1554.