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Abstract. We review the history and various approaches to the derivation of Stirling’s series.
We use a different procedure, based on the asymptotic analysis of the difference equation
Γ(z + 1) = zΓ(z). The method reproduces Stirling’s series very easily and can be applied to
analyze more complicated difference equations.
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Introduction

The most widely known and used result in asymptotics is probably Stirling’s
formula,

n! ∼
√

2πnnne−n, n→∞ (1)

named after James Stirling (May 1692 – 5 Dec. 1770). The formula provides an
extremely accurate approximation of the factorial numbers for large values of
n. The asymptotic formula (1), for which Stirling is best known, appeared as
Example 2 to Proposition 28 in his most important work, Methodus Differen-
tialis, published in 1730 [41]. In it, he asserted that log (n!) is approximated by
“three or four terms” of the series(

n+
1
2

)
log

(
n+

1
2

)
− a

(
n+

1
2

)
+

1
2

log (2π)

− a

24
(
n+ 1

2

) +
7a

2880
(
n+ 1

2

)3 − · · · , (2)

where log means the base-10 logarithm and a = [ln(10)]−1 (see [40]).
In 1730 Stirling wrote to Abraham De Moivre (26 May 1667 – 27 Nov. 1754)

pointing out some errors that he had made in a table of logarithms of factorials
in his book and also telling him about (2). After seeing Stirling’s results, De
Moivre derived the formula

ln [(n− 1)!] ∼
(
n− 1

2

)
ln(n)− n+

1
2

ln (2π) +
∑
k≥1

B2k

2k (2k − 1)n2k−1
, (3)
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2 D. Dominici

which he published in his Miscellaneis Analyticis Supplementum a few months
later. Equation (3) is called Stirling’s series and the numbers Bk are called the
Bernoulli numbers, and are defined by

B0 = 1,
k∑
j=0

(
k + 1
j

)
Bj = 0, k ≥ 1. (4)

Clearly Stirling and De Moivre regularly corresponded around this time, for
in September 1730 Stirling related the new results of De Moivre in a letter to
Gabriel Cramer.

In 1729 Leonhard Euler (15 April 1707 – 18 Sept. 1783) proposed a gener-
alization of the factorial function from natural numbers to positive real num-
bers [11]. It is called the gamma function, Γ(z), which he defined as

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
, (5)

and it is related to the factorial numbers by

Γ (n+ 1) = n!, n = 0, 1, 2, . . .

From Euler’s definition (5), we immediately obtain the fundamental relation

Γ(z + 1) = zΓ(z) (6)

and the value Γ(1) = 1. In fact, the gamma function is completely characterized
by the Bohr-Mollerup theorem [8]:

1 Theorem. The gamma function is the only function Γ : (0,∞) → (0,∞)
which satisfies

(i) Γ(1) = 1

(ii) Γ(x+ 1) = xΓ(x)

(iii) ln [Γ(x)] is convex for all x ∈ (0,∞).

Proof. See [4] and [30]. QED

Another complex-analytic characterization is due to Wielandt [43]:

2 Theorem. The gamma function is the only holomorphic function in the
right half plane A satisfying

(i) Γ(1) = 1
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Variations on a theme by James Stirling 3

(ii) Γ(z + 1) = zΓ(z) for all z ∈ A

(iii) Γ (z) is bounded in the strip 1 ≤ Re(z) < 2

Proof. See [35]. QED

In terms of Γ(z), we can re-write (1) as

ln [Γ(z)] ∼ P(z), z →∞ (7)

with
P(z) = z ln (z)− z − 1

2
ln (z) +

1
2

ln (2π) (8)

and (3) in the form

ln [Γ(z)] ∼ P(z) +RN (z), z →∞ (9)

where R0(z) = 0 and

RN (z) =
N∑
k=1

B2k

2k (2k − 1) z2k−1
, N ≥ 1. (10)

Estimations of the remainder ln [Γ(z)] −P(z) −RN (z) were computed in [38].

1 Previous results

Over the years, there have been many different approaches to the derivation
of (7) and (9), including:

(i) Aissen [2] studied the sequence Vn = nne−n

n! . Using his lemma
3 Lemma. If

yn+1

yn
= 1 +

α

n
+O

(
n−2

)
and yn �= 0 for all n, then yn ∼ Cnα, n→∞ for some non-zero constant
C.

he showed that n! ∼ C
√
nnne−n.

(ii) Bender & Orszag [5], Bleistein & Handelsman [6], Diaconis & Freed-
man [13], Dingle [14], Olver [33] and Wong [45] applied Laplace’s method
to the Euler integral of the second kind

Γ (z) =

∞∫
0

tz−1e−tdt, Re(z) > 0. (11)
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(iii) Bender & Orszag [5] and Temme [39] used Hankel’s contour integral [1]

1
Γ(z)

=
1

2πi

(0+)∫
−∞

t−zetdt

and the method of steepest descent.

(iv) Bleistein & Handelsman [6], Lebedev [25], Sasvári [37] and Temme [39]
used Binet’s first formula

ln [Γ(z)] = P(z) +

∞∫
0

1
t

(
1
2
− 1
t

+
1

et − 1

)
e−tzdt, Re(z) > 0

and
1
t

(
1
2
− 1
t

+
1

et − 1

)
=

∑
k≥1

B2k

(2k)!
t2k−2, |t| < 2π.

(v) Blyth & Pathak [7] and Khan [23] used probabilistic arguments, applying
the Central Limit Theorem and the limit theorem for moment generating
functions to Gamma and Poison random variables.

(vi) Coleman [9] defined

cn =
(
n+

1
2

)
ln(n)− n+ 1− ln (n!) ,

and showed that cn → 1− 1
2 ln (2π) as n→∞. A similar result was proved

by Aissen [2], using the concavity of ln(x).

(vii) Dingle [14] used Weierstrass’ infinite product

1
Γ(z)

= zeγz
∞∏
n=1

[(
1 +

z

n

)
e−

z
n

]
,

(where γ is Euler’s constant) and Mellin transforms.

(viii) Feller [17], [18] proved the identity

ln (n!)− 1
2

ln(n) = I(n)− I

(
1
2

)
+
n−1∑
k=1

(ak − bk) + an, (12)
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where

I(n) =

n∫
0

ln(t)dt, ak =

k∫
k− 1

2

ln
(
k

t

)
dt, bk =

k+ 1
2∫

k

ln
(
t

k

)
dt

and showed that
∞∑
k=1

(ak − bk)− I

(
1
2

)
=

1
2

ln (2π) .

There is a mistake in his Equation (2.4), where he states that

ln (n!)− 1
2

ln(n) + I(n)− I

(
1
2

)
=

n−1∑
k=1

(ak − bk) + an,

instead of (12).

(ix) Hayman [19] used the exponential generating function

ez =
∞∑
k=0

1
k!
zk

and his method for admissible functions.

(x) Hummel [20], established the inequalities

11
12

< rn +
1
2

ln (2π) < 1, n = 2, 3, . . . ,

where

rn = ln
(

n!en√
2πnnn

)
.

Impens [21], [22], showed that for x > 0

R2n(x) < ln [Γ(x)]− P(x) < R2m+1(x), n,m ≥ 0,

where Rn(x) was defined in (10). Maria [26] showed that[
12n +

3
2 (2n+ 1)

]−1

< rn, n = 1, 2, . . . .

Mermin [28] proved the identity

ern =
∞∏
k=n

e−1

(
1 +

1
k

)k+ 1
2

,
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6 D. Dominici

which he used to show that rn ∼ R3(n). Michel [29], proved the inequality∣∣∣∣ern − 1− 1
12n

− 1
288n2

∣∣∣∣ ≤ 1
360n3

+
1

108n4
, n = 3, 4 . . . .

Nanjundiah [32], showed that

R2(n) < rn < R1(n) = 1, 2, . . . .

Robbins [36], established the double inequality

1
12n + 1

< rn <
1

12n
, n = 1, 2, . . . .

(xi) Marsaglia & Marsaglia [27] derived from (11) the asymptotic expansion

n! ∼ nn+1e−n
∞∑
k=1

bk

(
2
n

) k
2

Γ
(
k

2

)
k,

where the generating function G(z) =
∑
k≥0

bkz
k is defined by

G(z) exp [1−G(z)] = exp
(
−1

2
z2

)
, G′(0) = 1.

(xii) Namias [31] introduced the function F (n) = Γ(n)
P(n) , with P(n) defined in

(8). From Legendre’s duplication formula

Γ(2n) =
22n−1

√
π

Γ(n)Γ
(
n+

1
2

)
, (13)

he derived a functional equation for F (n)

F (2n)
F (n)F

(
n− 1

2

) =
√
e

(
1− 1

2n

)n
,

from which he obtained (9). He also considered the triplication case, using
Gauss’ multiplication formula

Γ(mz) =
(√

2π
)1−m

mmz− 1
2

m−1∏
k=0

Γ
(
z +

k

m

)
, m = 2, 3, . . .

with m = 3. His results where extended by Deeba & Rodriguez in [12].
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(xiii) Olver [33] used Euler’s definition (5)

ln [Γ(z)] = − ln (z) + lim
n→∞z ln (n) +

n∑
k=1

[ln (k)− ln (z + k)]

and the Euler-Maclaurin formula. A similar analysis was done by Knopp
[24] and Wilf [44].

(xiv) Patin [34] used (11) and the Lebesgue Dominated Convergence Theorem.

(xv) Whittaker & Watson [42] used Binet’s second formula

ln [Γ(z)] = P(z) + 2

∞∫
0

arctan
(
t
z

)
e2πt − 1

dt, Re(z) > 0

and

arctan(x) = x
∞∑
k=0

(−1)k

2k + 1
x2k, |x| ≤ 1.

Thus, there have been a huge variety of approaches to Stirling’s result, rang-
ing from elementary to heavy-machinery methods. In an effort to join such il-
lustrious company, we present still another direction for deriving (9).

Our starting point shall be the difference equation (6). A parallel approach
was considered in [3]. For a different analysis of (6) using the method of con-
trolling factors, see [5]. Extensions and other applications of the method used
can be found in [10], [15] and [16].

2 Asymptotic analysis

2.1 Stirling’s formula

We begin with a derivation of (7), to better illustrate how the method works.
We assume that

ln [Γ(z)] ∼ f(z) + g(z), z →∞ (14)

with
g = o(f), z →∞. (15)

Using (14) in (6), we have

f(z + 1)− f(z) + g(z + 1)− g(z) ∼ ln(z). (16)
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Expanding f(z + 1) and g(z + 1) in a Taylor series, we obtain

f ′(z) +
1
2
f ′′(z) + g′(z) ∼ ln(z). (17)

From (15) and (17) we get the system

f ′(z) = ln(z),
1
2
f ′′(z) + g′(z) = 0

and thus,

f(z) = z ln(z)− z, g(z) = −1
2

ln(z) + C. (18)

To find the constant C in (18), we replace Γ(z) ∼ ef(z)+g(z) in (13) and obtain

ef(2z)+g(2z) ∼ 22z−1

√
π
ef(z)+g(z)ef(z+

1
2)+g(z+ 1

2),

or

eC− 1
2

(
1 +

1
2z

)z
∼
√

2π, z →∞,

from which we conclude that C = ln
(√

2π
)
.

Hence, we have shown that

ln [Γ(z)] ∼ z ln(z)− z − 1
2

ln(z) +
1
2

ln (2π) , z →∞.

2.2 Stirling’s series

To extend the result of the previous section, we now assume that

ln [Γ(z)] ∼
N∑
k=0

fk(z), z →∞ (19)

with
fk+1 = o (fk) , z →∞, k = 0, 1, . . . , N − 1. (20)

Using (19) in (6) we have

N∑
k=0

fk(z + 1)− fk(z) ∼ ln (z) , z →∞. (21)

Replacing the Taylor series

fk(z + 1) =
∑
j≥0

1
j!
dj

dzj
fk(z)
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in (21), we have
N∑
k=0

∑
j≥1

1
j!
dj

dzj
fk(z) ∼ ln (z) , z →∞. (22)

From (20), we obtain the system of ODEs

d

dz
f0 = ln (z)

and
k−1∑
j=0

1
(k + 1− j)!

dk+1−j

dzk+1−j fj(z) +
d

dz
fk = 0, k ≥ 1,

which imply
f0(z) = z ln(z)− z (23)

and

fk(z) = −
k∑
j=1

1
(j + 1)!

dj

dzj
fk−j(z), k ≥ 1, (24)

where we have omitted (for the time being) any constant of integration. To find
the functions fk(z), we set

fk(z) = ak
dk

dzk
f0(z) (25)

in (24) and get a0 = 1 and

ak
dk

dzk
f0(z) = −

k∑
j=1

1
(j + 1)!

dj

dzj
dk−j

dzk−j
f0(z), k ≥ 1,

which gives

a0 = 1, ak = −
k∑
j=1

1
(j + 1)!

ak−j, k ≥ 1,

or

a0 = 1,
k∑
j=0

1
(k + 1− j)!

aj = 0, k ≥ 1. (26)

Multiplying both sides by (k + 1)!, we can write (26) as

a0 = 1,
k∑
j=0

(k + 1)!
(k + 1− j)!j!

j!aj = 0, k ≥ 1,
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or

a0 = 1,
k∑
j=0

(
k + 1
j

)
j!aj = 0, k ≥ 1. (27)

Comparing (4) and (27) we conclude that

ak =
Bk
k!
, k ≥ 0. (28)

Thus, from (23), (25) and (28) we have

fk(z) =
Bk
k!

dk

dzk
[z ln(z)− z] , k ≥ 0,

from which we obtain
f1(z) = −1

2
ln(z) (29)

and

fk(z) =
Bk
k!

(−1)k
(k − 1)!
zk−1

=
(−1)k Bk

k (k + 1) zk−1
, k ≥ 2.

Since B2k+1 = 0 for all k ≥ 1, we need to consider even values of k only,

f2k(z) =
B2k

2k (2k + 1) z2k−1
, k ≥ 1. (30)

So far, we haven’t included any constant of integration in our calculations.
We could add a constant to one of the functions fk(z), let’s say to f1(z), and
proceed as in Section 2.1 to find it. Doing this, we would obtain from (23), (29)
and (30) that

N∑
k=0

fk(z) = P(z) +RN (z)

where P(z), RN (z) were defined in (8) and (10) respectively.
Another possibility, would be to assume no previous knowledge of Γ(z),

except for the difference equation Γ(z+1) = zΓ(z) and the value at 1, Γ(1) = 1.
In doing so, (19) would imply the initial conditions fk(1) = 0, for all k ≥ 0.
Hence, we would have

f0(z) = z ln(z)− z + 1, f1(z) = −1
2

ln(z)

f2k(z) =
B2k

2k (2k + 1) z2k−1
− B2k

2k (2k + 1)
, k ≥ 1

________________________________________________________________________________________________
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and therefore

ln [Γ(z)] ∼ z ln(z)− z − 1
2

ln(z) + CN +RN (z), (31)

with

CN = 1−
N∑
k=1

B2k

2k (2k + 1)
. (32)

Computing the first few CN , we would get

C1 	 .91667, C2 	 .91944, C3 	 .91865, C4 	 .91925, C5 	 .91840,
C6 	 .92032, C7 	 .91391, C8 	 .94346, C9 	 .76382, C10 	 2.1562,

and increasingly greater numbers (in absolute value). We would conclude that,
before the sum starts diverging, the CN seem to be approaching a value close
to .918. Given our previous discussion of Stirling’s formula, it is not surprising
to find that 1

2 ln (2π) 	 .91894.

3 Conclusion

We have presented the history and previous approaches to the proof of Stir-
ling’s series (9). We have used a different procedure, based on the asymptotic
analysis of the difference equation (6). The method reproduces (9) very easily
and can be extended to use in more complicated difference equations.

Bender and Orszag observed in [5, Page 227] that

without further information the constant 1
2 ln (2π) cannot be de-

termined. The difference equation that we have solved is linear and
homogeneous, so any arbitrary multiple of a solution is still a solu-
tion.

While agreeing with them completely, we have shown that by imposing the
additional condition Γ(1) = 1 one can find an approximation to the value of
1
2 ln (2π), without any other assumptions. Thus, local behavior at z = 1 and
asymptotic behavior as z →∞ can be combined fruitfully.
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